
Journal of Computer Science & Technology, Volume 22, Number 1, April 2022

A Testing Tool for Information Visualizations based on
User Interactions

Herramienta de Testing para Visualización de Información Basada en Interacciones de
Usuario

Martín Schiaffino1, Martín L. Larrea1-2-3 , M. Luján Ganuza1-2-3 , and Dana K. Urribarri1-2-3

1 Department of Computer Science and Engineering, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
-Computer Graphics and Visualization R&D Laboratory, Universidad Nacional del Sur (UNS) - CIC Prov. Buenos Aires, Bahia

Blanca, Argentina
3 Institute for Computer Science and Engineering, Universidad Nacional del Sur (UNS) - CONICET, Bahia Blanca, Argentina

schiafflnomartin@gmail.com.{mil. mlg. dku}@cs.uns.edu.ar

Abstract

Decision-making has become a vital process in any
organization, evolving from a process based on expe
rience and intuition to one increasingly established in
data analysis. One type of specialized software for
data analysis is that of visual representations for large
data sets. Visual representations are critically impor
tant today as they enable effective exploration of a data
set and facilitate the task of identifying patterns and
drawing conclusions. Every day more decisions are
made based on visual analysis through visual represen
tations of large data sets. It is not only a quantitative
but also a qualitative increase. Decisions are more
critical and with more impact on society, the environ
ment, and individuals. In this context, it is essential to
develop new and better methodologies and tools that
allow the visualization developer to ensure the correct
functioning of visual representations and their inter
actions. To achieve this goal, we present Test Suite
Editor, a platform that assists in visualization testing.
This platform facilitates the generation of test cases
based on user interactions. This contribution is based
on a previously published black box testing technique
for information visualizations that uses regular expres
sions to represent the sequence of user interactions.

Keywords: Information Visualization, User Interac
tions, Regular Expressions, Software Testing.

Resumen

La toma de decisiones se ha convertido en un pro
ceso vital en cualquier organización, evolucionando
de un proceso basado en la experiencia y la intuición
a uno basado en el análisis de datos. La visualización
es un tipo de software especializado para el análisis
de grandes conjuntos de datos. La visualización de
información es de vital importancia hoy en día, ya
que permite la exploración efectiva de un conjunto

de datos y facilita la tarea de identificar patrones y
sacar conclusiones. Cada día se toman más decisiones
basadas en el análisis visual a través de representa
ciones visuales de grandes conjuntos de datos. No
es solo un aumento cuantitativo, sino también cuali
tativo. Las decisiones son más críticas y tienen más
impacto en la sociedad, el medio ambiente y las per
sonas. En este contexto, es fundamental desarrollar
nuevas y mejores metodologías y herramientas que
permitan al desarrollador de la visualización asegurar
el correcto funcionamiento de las representaciones vi
suales y sus interacciones. Para lograr este objetivo,
presentamos Test Suite Editor, una plataforma que
ayuda en el testing de visualizaciones. Esta plataforma
facilita la generación de casos de prueba basados en las
interacciones del usuario. Esta contribución se basa en
una técnica de prueba de caja negra publicada anterior
mente para visualizaciones de información que utiliza
expresiones regulares para representar la secuencia de
interacciones del usuario.

Palabras claves: Visualización de Información, Ex
presiones Regulares, Testing de Software.

1 Introduction

The visual representations of information, particularly
for large data sets, is an area of Computer Science
for which its application in multiple fields has grown
steadily for many years. These visual representations
have become a fundamental tool in the analysis and
decision-making processes. It was not only a quantita
tive increase but also a qualitative one. The decisions
are more critical and with more impact on society, the
environment, and individuals. For this reason, it is
necessary to have the appropriate tools to ensure the
correct functioning of the visual representations.

The visualizations are software products then, it is
possible to evaluate them using those techniques of
software testing proposed by the Software Verification

-78-

Journal of Computer Science & Technology, Volume 22, Number 1, April 2022

and Validation (V&V) area. Many V&V [1] tech
niques are applicable at different stages of software
development. The two main categories are white-box
and black-box techniques. In the first one, the testing is
driven by the knowledge and the information provided
by the software implementation, i.e. the source code.
In the second one, the specification of the software,
the module, or the function is used to test the software.

The source code of visualization software is just
another piece of software; therefore, it can be tested
with any available white-box technique [2]. All black
box testing techniques design their test cases based on
the software specification. Some of these techniques
involve the GUI (Graphical User Interface) compo
nents of the software and their interactions. Buttons,
text fields, and drop-down lists are common elements
among those GUI. Nonetheless, a visualization con
stitutes a GUI by itself with more components than a
regular user interface. Besides buttons and text fields,
a visualization may have glyphs, axes, 3D or 2D vi
sual objects that change location or shape according
to the user’s interactions. In these cases, the black-box
techniques that rely only on traditional GUI compo
nents are not suitable. Those techniques which do not
involve graphic components use decision tables [3] or
other forms of tabular representation to test the soft
ware. Some of them are very informal techniques
that are very difficult to methodize and rely heavily
on the tester’s goodwill. Others allow systematizing
the testing by using a formal specification, which is
very complicated to achieve for information visualiza
tion [4].

In this context, we present Test Suite Editor, an
easy-to-use platform designed specifically for testing
information visualization with a black-box approach.
Test Suite Editor automates the generation of test cases
based on user interactions. Although this platform can
not execute the test cases yet, generating them reduces
test times and allows for orderly testing. Our main
goal is to provide a tool with an easy-to-read and easy-
to-understand methodology to test each visualization.
Our goal is to provide a tool that the developer, or even
the visualization user, can use without needing a test
ing specialist. Our primary intention is to reduce the
disconnection between commercial tools and literature
proposals and between researchers and practitioners,
as mentioned by Banerjee et. al [5]. One of our goals
with this work is to be able to provide the information
visualization community with a testing tool designed
for them.

This paper continues with a brief introduction to
Software Testing and its terminologies in Section 2 and
outlines the previous work on visualization testing in
Section 3. Section 4 describes sequencing constraints
with low-level interactions as a testing methodology,
which is the basis of the work described in this article.
Sections 5 to 6 describe the proposed implementation
of an information visualization testing tool and the

application of this tool to two test cases. Finally, Sec
tion 7 draws some conclusions and presents possible
future work.

2 Background of Software Testing

This section is intended for readers outside the Soft
ware Testing discipline. Here we present a brief intro
duction to those concepts needed to follow the develop
ment of this article. For this purpose, we are using the
work of [1] as a reference. For a better understanding
of the subject, we recommend that the reader consult
the cited bibliography.

The dynamic behavior of the software is checked
through testing, where the tested software will be ex
ecuted. Its behavior must be compared to the given
requirements. A situation can be classified as incorrect
only if we know which is the expected correct situation.
Thus, a failure is a discrepancy between the observed
behavior and the expected one. We must differentiate
between the occurrence of a failure and its cause. A
failure has its root in a fault in the software, or as it is
more popularly called, in a bug. Testing is not debug
ging; while testing is responsible for detecting failures,
debugging deals with locating the bugs that caused the
failure in the software.

The element that we are testing is defined as a test
object. The execution of a test object is done with test
data. The administration of the tests includes the plan
ning, implementation, documentation, and analysis of
the testing. A test suite is defined as the execution of
one or more test cases. A test case contains the test
object, execution conditions, input parameters, and
expected output. The concatenation of test cases, so
that the input of a test is the output of the previous one,
forms a test scenario.

Several different approaches are available for test
ing the test object. They can be categorized into two
groups: black box and white box testing. In black-box
testing, the test object is seen as a black box. Test
cases are derived from the specification of the test ob
ject. The behavior of the test object is watched from
the outside. The operating sequence of the test object
can only be influenced by choosing appropriate input
test data or by setting appropriate preconditions. In
white-box testing, the source code is known and used
for test design. While executing the test cases, the
internal processing of the test object and the output
are analyzed. Both white-box and black-box testing
techniques must describe a test model and, at least,
one coverage criterion. A test model describes how to
generate test cases, and it can be a graph, a table, or
a set of numbers. Coverage criteria, usually boolean
conditions, are used to steer and stop the test gener
ation process [6]. They are widely accepted means
of assessing the quality of a test [7]. Both concepts
will be taken up again later on in Section 4, where we
discuss the coverage criteria of the technique that is

- 79 -

Journal of Computer Science & Technology, Volume 22, Number 1, April 2022

the basis of our proposal.

3 Previous Work

Usability testing of visualization is a well-studied area
within visualization science. Related works, such
as [8], [9], and [10], emphasize the need to assess
whether a visualization is useful for its intended pur
poses. Without a doubt, we agree with this position,
but we also emphasize that usability tests are only a
part, a subset, of the types of tests that we must ap
ply to a visualization. Usability tests do not evaluate
functionality, which is the focus of this research. A pe
culiarity that emerges from the literature review is the
number of visualization articles where the terms “test
ing”, “verification”, and “validation” were all used as
synonyms for usability evaluations. Thus, this leads us
to believe that there may be a lack of knowledge of the
software V&V terminology within the visualization
community.

Banerjee et al. [5] define the term GUI testing to
mean that a GUI-based application, i.e., one that has
a GUI front-end, is tested solely by performing se
quences of events (e.g., “click on button”, “enter text”,
“open menu”) on GUI widgets (e.g., “button”, “text
field”, “pull-down menu”). From the user’s point of
view, GUIs offer many degrees of usage freedom, i.e.,
users may choose to perform a given task by inputting
GUI events in many different ways in terms of their
type, number, and execution order. Banerjee et al. also
provide a study of the existing body of knowledge [5]
on GUI testing since 1991 and present a classification
based on model-based GUI test techniques [11], as
also did Memon and Nguyen [12]. Hellman et al. [13]
presented a review of test-driven development of GUI.
They stated that GUI testing is very difficult, in part,
due to the degree of freedom GUIs allow users. GUIs
can enter a large number of possible states in response
to user input, and it is often difficult to determine the
validity of a given state in an automated fashion. It
becomes even more complex when we consider an
information visualization technique.

Kazmi et al. [14] present what they call a meta
model for automated black-box testing of visualiza
tions. The proposed meta-model works as the architec
ture of an automated testing system for visualizations
should be; however, the authors do not present a sys
tem for this purpose. Although the model validity is
not disputed, it is not possible to validate it without at
least one implementation. Because the proposal is a
meta-model, the article does not delve into specifics of
the software verification and validation areas, such as
testing techniques or coverage criteria.

Anbo et al. [15] focus on the research of automated
testing methods for the quality of cartographic visual
ization to test the visualization quality of vector maps.
In this context, the authors refer to quality as the union
of factors that compose the quality of cartography.

These include how data is obtained, represented, and
interacted with. Although it is a broader vision than
our proposal, the authors test the visualizations consid
ering them as black boxes. Unlike the work of Kazmi
et al., this one presents a case study on a particular
map; however, the publication does not contain the set
of rules used or how the semantic reasoner was used.
Nor can it be understood from this test case how users’
interactions affect the testing process.

Kirby and Silva [16] highlight the need to introduce
verification and validation processes to the visualiza
tion development and the lack of research in this field
within the visualization area. Larrea [17] also validates
this last statement.

When considering these three types of testing men
tioned, usability, GUI, and visualizations, there is a
need to establish the difference between them. Or at
least highlight why each of them cannot supplant the
others. First, we must separate the usability tests from
the other two. As Lauesen [18] said “Usability test
ing does not test the correctness of the program, but
whether the user can work correctly and conveniently
with it”. Both GUI and visualization testing focuses on
the functionality of the system, its correctness, and not
its usability. Regarding GUI and visualization testing,
as indicated by Banerjee et. al [5], GUI Testing deals
with exercising the GUI’s widgets (e.g., text boxes and
clickable buttons). This makes sense because a GUI
is described in terms of widgets, such as buttons, text
fields, and drop-down lists, among others. But a visu
alization, particularly information visualization [19],
is described in terms of the abstract data it represents.
Information visualization is a more abstract visual rep
resentation than GUIs and therefore requires specific
techniques for testing.

4 Black-box testing technique for infor
mation visualization. Sequencing con
straints with low-level interactions

In 2017, we presented a new methodology [17] aimed
at visualization testing through user interactions and
from a black-box perspective. On that occasion, the
technique was introduced without a supporting soft
ware tool. In this section, we briefly describe the
methodology; refer to the original article for more
information.

Our proposal introduced the concept of Sequence
Constraint on the Interactions (SCI). Each SCI in
volves a set of binary or unary operators and a set
of symbols. These symbols represent the actual inter
actions available in the visualization. In essence, each
SCI is a regular expression formed by the interactions
of the visualization that indicate the correct use of the
visualization itself.

- 80 -

Journal of Computer Science & Technology, Volume 22, Number 1, April 2022

4.1 Sequence Constraint on the Interactions

Following the work by Kirani and Tsai [20], the oper
ators involved in an SCI are:

Sequential: If an interaction I2 must always go af
ter the interaction I1, then there is a sequential
relationship among them, denoted as I1 • I2.

Optional: If the user can choose between two inter
actions, said I2 and I1, then there is an optional
relationship among them, denoted as I1 |I2. Note
that in this case, the notation I2 |I1 is equivalent.

Repetition: If the user can use interaction I1 multiple
times in a row, then it is a repetition. Unlike the
work done at [20] and [21], we introduce two
types of repetition, one that implies that at least
one time the user must use I1 and the other that
allows for zero appearance of I1. The symbol *
represents cardinality 0 or more, and the symbol
+, 1 or more. If I1 can be used zero or more times,
then this is represented as I1*. If I1 must be used
at least one time, it is expressed as I1 +, which is
equivalent to I1 • I1*.

These elements can be combined to form more com
plex expressions. If the user can use one of three
interactions multiple times, this can be expressed as
(I1|I2|I3)+. In this case, symbol + indicates that at
least one of the interactions must be used once. Repe
tition operators have precedence over Sequential and
Optional operators. The Optional operator takes prece
dence over the Sequential one. Parentheses can be used
to define the interpretation of an SCI. Suppose we have
three interactions I1, I2, and I3, then the following SCI

I1+ • I2|I3

expresses that first, we must consider the Sequential
operator, use I1 one or more times, and then we must
choose between using I2 or I3. By using parentheses,
we can change the interpretation of the SCI

(I1+ • I2)|I3-

In this case, we first consider the Optional operator to
choose between using I3 or the expression between the
parentheses.

Let us imagine a visualization V with six interac
tions, Open, Pan, Zoom, Selection, Detail, and Close.
Open represents the creation of the visualization, from
opening the source data to setting up the visualization
process; when Open concludes, the user has the ac
tual visualization on screen. Detail represents detail
on demand and can only be used if the user has pre
viously selected something using Selection. Pan and
Zoom allow the user to explore the visualization. The
following grammar represents the constraints over the
sequence of interaction in V; notation considers O for

Open, P for Pan, Z for Zoom, S for Selection, D for
Detail, and finally, C for Close:

SCI for V : O• (O|Z|P|(S+ • D*))* • C

This grammar states that the first valid interaction
with V is Open, then the user can Open again, or
Zoom or Pan or perform Selection. Note that if the
user wants Detail, first, the user must complete at
least one Selection. The interaction with V finishes
when the user ends the visualization with the Close
interaction.

4.2 Coverage Criteria

Within the presented proposal, two types of test cases
are described: Valid test cases based on valid inter
action sequences and invalid test cases based on in
teraction sequences that cannot be derived from the
SCI.

Let I be the set of interactions available on the visu
alization V, and G, the SCI for V using the elements
of I. Consider T to be the set of test cases where each
case is a sequence of interactions in I. With these ele
ments, we can now introduce the Coverage Criteria for
Sequencing Constraints with Low-Level Interactions.
These criteria are divided into two categories [21]:
coverage criteria for valid sequences and invalid ones.
The criteria for each category were defined for our
technique.

4.2.1 Coverage Criteria for Valid Sequences

Base Coverage: Let i be the minimum length of
valid sequences derived from G, then T satisfies the
Base Coverage Criteria if and only if T contains all
the possible sequences derived from G of length i. If i
equals 0 then T is the empty set and satisfies the Base
Coverage Criteria.

Base+1 Coverage: Let i be the minimum length of
valid sequences derived from G, then T satisfies the
Base+1 Coverage Criteria if and only if T contains all
the possible sequences derived from G of length i + 1.

Base+n Coverage: This is a generalization of the
previous coverage. Let i be the minimum length of
valid sequences derived from G, then T satisfies the
Base+n Coverage Criteria if and only if T contains all
the possible sequences derived from G of length i + n,
where n > 2. It is important to note that G may impose
limits on how large n can be.

4.2.2 Coverage Criteria for Invalid Sequences

Invalid Coverage: T satisfies the Invalid Coverage
Criteria if and only if T contains all the possible se
quences of length 1 that are not derived from G.

- 81 -

Journal of Computer Science & Technology, Volume 22, Number 1, April 2022

Invalid-2 Coverage: T satisfies the Invalid-2 Cover
age Criteria if and only if T contains all the possible
sequences obtained combining 2 interactions of I but
are not derived from G.

Invalid-n Coverage: T satisfies the Invalid-n Cov
erage Criteria if and only if T contains all the possi
ble sequences obtained combining n interactions of I,
where n > 2, but are not derived from G.

4.3 Test Cases

Two lists of test cases are generated from the coverage
criteria: a list of valid test cases and a list of invalid
ones. Test cases generally have inputs, pre and post
conditions, and an expected result. The input for each
test case is the subset of interaction that composes
the case. Pre and post-conditions can be defined de
pending on the internal state of the system. Since the
current grammar is not expressive enough to include
conditions, this will be addressed in future works. Be
sides the result of the actual sequence of interactions,
each test-case type has an expected result. Valid test
cases are expected to run successfully, while it is ex
pected that, at some point, the application will not
allow invalid test cases to finish executing.

5 Our Proposal

The work developed in [17] does not include any sup
port software tools. In this way, what was published
served as a procedural manual. Our proposal in this
work is to expand the development carried out by pre
senting the Test Suite Editor, a platform that imple
ments the technique previously presented. The ulti
mate objective of the Test Suite Editor is automatically
testing based on a given SCI. The platform, for the
moment, is limited to generating the test cases, that is,
sequences of interactions for selected coverage criteria.
The execution of each test case must be carried out by
one person. Each test case is presented in the form of
documentation that the user can use to document the
results of each run. To encapsulate the necessary SCI-
parsing logic and to avoid coupling it with the rest of
the application code, the project was subdivided into
two parts that we will call SCI-Parser and SCI-App.
The Test Suite Editor is currently available1 and can be
accessed from all standard web browsers. According
to the concepts introduced in Section 2, this new tool
is a black-box testing tool.

1https://cs.uns.edu.ar/~dku/vis/
visualization-sci-testing/

5.1 SCI-Parser

This module is in charge of validating potential SCIs
and generating the expected test cases, according to
the coverage parameters provided.

(a) Home screen of the Test Suite Editor. It was developed using React
as the front-end framework in TypeScript.

(b) If there is an error in the SCI, it is detected and reported by the
application. The user’s attention is obtained by employing a red box on
the SCI input field and the indication of what the error was, which is
located below the text field.

Figure 1: Test Suite Editor, a web platform that assists
in visualization testing through user interactions.

SCI-Parser offers a small and simple API, composed
of three static methods, briefly explained next. isValid
receives as a parameter a text string that represents
an SCI and returns a Boolean depending on whether
it is a valid SCI or not. syntaxErrorMessage helps
understand why a string is not a valid SCI. In case
the SCI is valid, it returns null; otherwise, it returns
a message that describes why the string is not a valid
SCI. parse returns an instance of the SCI class as long
as the string is valid; otherwise, it returns null.

The following are the elements available for the SCI
class. The interactionSymbols attribute represents the
set of symbols in the SCI, i.e. the user’s interactions
in the SCI. The validSequences method receives an
optional parameter n (by default, it is zero) and re
turns the set of all valid sequences derived from the
SCI that satisfies the base+n coverage criteria. in
validSequences is a method that receives an optional
parameter n (by default, it is one) and returns the set of
all invalid sequences that satisfies the invalid-n cover
age criteria. In this way, the sequences of interactions,

- 82 -

https://cs.uns.edu.ar/%7Edku/vis/visualization-sci-testing/
https://cs.uns.edu.ar/%7Edku/vis/visualization-sci-testing/

Journal of Computer Science & Technology, Volume 22, Number 1, April 2022

the test cases, are generated. The generation of the
interaction sequences is carried out using a third-party
library (see 5.3.1).

5.2 SCI-App

All the development of the front-end was made fol
lowing the usability principles presented in [22] and
although it is still necessary to carry out formal us
ability tests following rigorous controls, the use that
our peers have given the page allows us to affirm with
confidence that it is easy to use.

The front-end is divided into two parts. The initial
one offers an editor that allows the user to enter the
SCI, the coverage parameters, and an optional map
ping between symbols and interaction names. Once the
values are entered and validated, the user can access
the second part of the application. This part presents a
report with all the generated test cases, which can be
completed as a form or exported as a PDF file.

The application offers an extremely simple editor.
Figure 1(a) shows a screenshot in its initial state. As
seen in the figure, it is composed of three mandatory
input fields in which the user enters the regular ex
pression and the two values used as parameters for
the coverage criteria. These last two are initialized
by default with the values 0 and 1 since they are the
minimum values allowed by definition. In turn, the
input fields do notallow entering smaller values. Once
a valid SCI expression has been entered, new fields are
dynamically generated in which the user can option
ally enter the full name of the interaction, as shown in
Figure 2(a).

Symbol mapping is optional at the individual level.
It allows adding a more descriptive name for those
symbols where is worthwhile and omitting it for those
that the user considers unnecessary. When viewing the
report, the names in the mapping are used to display
a detailed version of the SCI expression and to list
the interaction names in each test case. It is impor
tant to note that although the mapping is optional, it
improves the readability of the generated report what
ever abbreviated symbols are used. In case an error is
detected in the entered values, a descriptive message
is displayed (Figure 1(b)). These error messages are
provided by the SCI-Parser module. Once the required
values are entered, the user is enabled to generate the
report. The newly generated report is displayed in a
new tab (Figure 2(b)).

The report was designed and implemented with sim
plicity in mind so that the same format presented in
the application could be exported as PDF using the
standard printing functionality directly. At the top, it
has a heading that shows the values previously entered
in the editor, from which the test cases report was gen
erated. The blue PDF icon is the button that allows
users to export the document as a PDF file (Figure 3).

Then the corresponding test cases are listed, which
are grouped according to whether they are valid or

(a) Each SCI is written using letters as regular expression symbols.
However, it is possible to map these symbols to strings for ease of
understanding. This information can be entered in the Symbol Map
table. This step is optional, and it is the application that is in charge
of automatically detecting the symbols used and enabling a text field
for each one in this table. When a symbol has a defined mapping, that
character string is used in the test case report.

Report l°

SCI: a.v.vt
Coverage criteria: Base +1 Invalid + 1

Test cases for valid sequences

Valid test case a.v.v Kz X

__ _ Comments-------
□ O.a
□ 1.v
□ 2.v

Valid test case a.v.v.v ✓ X

□
 □□□

Test cases for invalid sequences

Invalid test case a ✓ X

□ O.a

Invalid test case v E X
□ O.v

(b) Once the SCI is validated, it is possible to generate the report of test
cases. It is generated from the indicated coverage criteria. This report
can be used as a web form or as a PDF. The report allows indicating if
each interaction could be carried out, as well as the complete sequence.
There is also space to enter comments related to each sequence.

Figure 2: Test Suite Editor allows the generation of
reports that help in the execution of test cases.

- 83 -

Journal of Computer Science & Technology, Volume 22, Number 1, April 2022

Figure 3: The same report used as a form can be ex
ported as a PDF, keeping the same presentation.

invalid sequences of interactions. Each test case is
represented by a box like the one shown in Figure 4,
where the title shows the sequence of interactions from
the SCI expression that results in the test case. As men
tioned above, in cases where mapping was provided,
the names will be used to list interactions. The re
port allows users to check whether the test case was
successfully executed or failed at some point. After
the execution of the test case, the user can select the
result in the upper right corner and write comments if
necessary. Note that a valid test case is successful if
the sequence executes correctly; however, an invalid
test case is successful if the sequence fails to execute.

5.3 Technical notes

5.3.1 SCI-Parser

The SCI-Parser code is available in its respective repos
itory on GitHub2. As can be seen there, this module
was not implemented from scratch but was started from
a fork of the genex.js project repository [23], authored
by Alix Axel. SCI-Parser was implemented entirely
in TypeScript, to make it easier to use by providing a
statically typed API. Like genex.js, SCI-parser uses
the ret (Regular Expression Tokenizer) library [24]

2https://github.com/mschiaffino/sci-parser

Test cases for valid sequences

Valid test case O.C

Q 0. Open
Q 1. Close

Figure 4: These are the fields with which the user can
interact in the report.

to parse the regular expression associated with the SCI
and return a tree of tokens. This tree is then traversed
to generate the strings that represent the test cases.

5.3.2 SCI-App

The application was developed using React as the front
end framework; it was programmed in TypeScript to
be consistent with the SCI-Parser module and to take
advantage of static typing. In addition, the Material-UI
web component library [25] was used. As its name
indicates, this library offers a wide variety of compo
nents developed following the Material Design stan
dards [26].

5.3.3 Limitations

The Test Suite Editor presents two technical limita
tions. Both are a direct consequence of the compre
hensiveness of test cases generated by the testing tech
nique. When the coverage criteria imply the gener
ation of a huge amount of interaction sequences for
the given grammar, displaying the serialized report
becomes problematic for the browser to handle.

The first limitation manifests when the space re
quired to store the serialized report is larger than the
available browser’s local storage. Since the serialized
report cannot be stored, it is impossible to open the new
tab to display it. The second limitation occurs when
the size of the serialized report is not large enough
to exhibit the first limitation, but the number of Re
act components to render becomes unmanageable for
the browser. In this case, after a while, the tab that
should display the report is aborted by the browser. A
potential solution is to implement some virtualization
to avoid rendering not visible components. However,
due to the variable size of the test case components,
this would not be trivial to implement. In this instance,
seeking a solution to these limitations was not a prior
ity; both are present for combinations of grammar and
criteria where it would be impractical for a person to
verify all the generated test cases.

6 Test Cases

In this section, we show how the Test Suite Editor
detected possible errors in two different interactive
web visualizations. The notation for the sets of valid
and invalid sequences will be as follows:

- 84 -

https://github.com/mschiaffino/sci-parser

Journal of Computer Science & Technology, Volume 22, Number 1, April 2022

• T+n denotes a set of sequences that satisfy the
base+n coverage criteria. Thus, all the sequences
in this set are valid sequences of the minimum
possible length plus n.

• Tnmv denotes a set of sequences that satisfy the
invalid-n coverage criteria. Thus, all sequences
in this set are invalid and of length n.

6.1 MoCap Synchromparator

MoCap Synchromparator [27] is a comparative visu
alization of motion capture sequences that focuses on
the time dimension. The visualization starts with an
overview of the misalignment between the data corre
sponding to different subjects (Figure 5). Details on
the comparison between two particular sequences can
be obtained on demand by clicking on each overview
box (Figure 6). The detail view provides an overview
of the misalignment between the selected sequences
and visual information about when one of them is
delayed or early with respect to the other. The time
frames where the sequences differ are easily percepti
ble due to color-coding.

The visualization offers four interactions: Open,
which loads the data sets and creates the visualiza
tion; Hover, which displays a brief information text
every time the user places the mouse over one of the
boxes from the overview; Click, after the hover inter
action, the user can click in the box and display the
detail view; and Back, on the detail view, the only
available interaction is to return to the overview, this
interaction is achieved by clicking the blue arrow on
the bottom right. Once the visualization is created, the
user can hover as many times as wanted, click to get
more details, and then back to the overview to continue
exploring the visualization. The following SCI repre
sents this interaction; it uses the symbols O for Open,
H for Hover, C for Click, and finally B for Back:

O+ • H* • (H+ • C • B)*

From this SCI, the online tool generated both valid
and invalid interaction sequences. The minimum pos
sible values for the valid and invalid coverage criteria
are 0 and 1, respectively, which implies sequences of
length 1:

T+0 = {O}

T1inv = {H ,C, B}

The only valid sequence is the Open interaction, which
worked correctly. The set of 1-length invalid sequences
T1inv includes all the other interactions: Hover, Click,
and Back. None of those sequences could be executed,
which is correct. Increasing the coverage criteria by
1 resulted in the following T+1 and T2mv sets of se
quences that satisfy the base+1 coverage criteria and

the invalid-2 coverage criteria, respectively:

T+1 = {O • O, O • H}

T2“v = {B • B, B • C, B • H, B • O, C • B,C • C, C • H,
C• O, H • B, H • C, H • H, H • O, O • B, O • C}

The only two valid sequences were executed flaw
lessly. However, from the set of invalid sequences of
length 2, we found a problem with sequence O • C,
which starts with the valid interaction Open but contin
ues with an invalid one. Surprisingly, it was possible
to execute this sequence. Let’s not forget that this oc
curs in the context of invalid sequences, which means
that being able to execute one of these sequences in
dicates the presence of an error. When the user clicks
outside but close to an overview box (Figure 7), the
system considers it as a click on the box and moves
to the detailed view. Even in the case depicted in
Figure 7, where the click is closer to the overview of
trial0005 x trial0008, the system recognizes it as a
click on trial0005 x trial0005. No other errors were
found after this one. Figure 8 shows the report of test
cases. Note that all three valid cases were executed
satisfactorily. However, it was possible to execute com
pletely an invalid case, then that was an unsatisfactory
invalid case.

6.2 Spinel Web

The second application is Spinel Web [28], an interac
tive web application for visualizing the chemical com
position of spinel group minerals. The spinel group
minerals provide useful information regarding the ge
ological environment in which the host rocks were
formed. These minerals constitute excellent petro-
genetic indicators and guide the search for mineral
deposits of economic interest. It is common to repre
sent the spinels’ mineral composition in a prismatic
space called spinel prism.

The Spinel Web provides a rich set of functionali
ties required by the geologist, comprising 2D binary
plots, ternary plots, and a 3D representation of the
spinel prisms. All views are interactive, linked, and
integrated into a coordinated multiple views setup,
allowing the dataset to be simultaneously displayed
using different visualization techniques. The overall
premise of this exploratory technique is that users bet
ter understand their data if they can interact with their
data by viewing it through different representations.

A common task in spinel mineral analysis is to ex
plore the data in the spinel prism context, analyzing
the representation of the dataset in the spinel prism
and its projections simultaneously (Figure 9).

In order to illustrate the usefulness of Test Suite
Editor in the detection of errors, we consider a partial
evaluation focused on the visualization of one dataset
in the spinel prism context, considering only two coor
dinated views to perform the testing: the spinel prism

- 85 -

Journal of Computer Science & Technology, Volume 22, Number 1, April 2022

Comparison between time-aligned MoCaps
Click on a graph to get more details, Hastened | On-time Delayed |

Figure 5: The visualization starts with an overview of the misalignment between the data corresponding to different
subjects. The visual representation is created as a matrix of the percentage summaries of every pair of sequences.

Detailed comparison between trial0027 and trial0047

Original data from: Casa Paganini - Infomus

Figure 6: Details on the comparison between two particular sequences. The upper graph shows, with colors, the
misalignment between the motion captures and the absolute difference between time-aligned frames. The middle
graph is the misalignment function. The graph at the bottom shows a heat-map visualization of the two motion
captures and how they are aligned in time. The color coding uses blue for delayed frames, yellow for on-time ones,
and red for early ones.

- 86 -

Journal of Computer Science & Technology, Volume 22, Number 1, April 2022

Figure 7: The system considers some clicks outside an
overview box as actual clicks on a box, and the system
goes to the detailed view.

and the triangular projection. For this partial evalua
tion, we consider four interactions: open the data file,
load the spinel prism, load the triangular projection,
and brushing and linking. The brushing-and-linking in
teraction allows the user to interactively select (brush)
subsets of the data in a view, and all the correspond
ing data items in all linked views will be consistently
highlighted (linking).

To write the Sequencing Constraints with Low-
Level Interactions we replace each interaction with
a simplified representation: let O be open the data file,
P to load spinel prism, T to load triangular projection,
and B to do brushing and linking. To visualize the
data, the first interaction that must explicitly occur is
to open the data file. Then one or both charts must be
loaded, but there is no restriction in the order on which
of the two low-level interactions P and T should be
used. The only restriction is that the same chart must
not be loaded more than once, but it is not necessary
to load both for the application to work properly. The
B interaction can be used as soon as the first chart is
loaded. Therefore, the behavior of this visualization is
described by the following SCI:

O\(O • ((P • B*)|(P • B*» T)\(T • B*)\(T • B* • P)) • B*)

Since it is mandatory to open the data file as the first
action before loading a chart, the minimum sequence
of interactions valid for this visualization is 1. The
test set T+0 that satisfies the Base Coverage criteria
contains only one interaction, the Open the data file
interaction, that worked properly:

T+o = {O}

With the Test Suite Editor, we easily generated the
test sets that satisfy the Base+1, Base+2, and Base+3
Coverage criteria:

T+1 = {O • P, O • T}

T+2 = {O • P• B, O• P• T, O • T • B, O • T • P}

T+3 = {O • P • B • B, O • P • B • T, O • P • T • B,
O • T • B • B, O • T • B • P, O • T • P • B}.

Figure 10 shows the report generated by the Test Suite
Editor for the valid sequences that satisfy the Base+3
Coverage criteria. This report was very useful to guide

in the testing of the Spinel Web, and fortunately, no
errors were found when executing the interaction se
quences in T+1, T+2, and T+3.

We also used the Test Suite Editor to generate the
test cases for invalid sequences of interactions (see
Figure 12). The test set T1inv , which contains all the
possible sequences of length 1 not derived from the
SCI, satisfies the invalid coverage criteria. In this
particular case, it includes any interaction other than
open the data file.

T1inv = {P, B, T }

The Spinel Web worked properly, not allowing to load
any view or perform a brush before opening a data file.

Then, we generated the test sets T2inv and T3inv con
taining the invalid sequences that satisfy the Invalid-2
and Invalid-3 Coverage.

T2inv = {B • B, B • O, B • P, B • T, O • B, O • O, P • B,
P • O, P • P, P • T, T • B, T • O, T • P, T • T}

T3inv = {B • B • B, B • B • O, B • B • P, B • B • T,

B • O • B, B • O • O, B • O • P, B • O • T,
B • P • B, B • P • O, B • P • P, B • P • T,
B • T • B, B • T • O, B • T • P, B • T • T,
O • B • B, O • B • O, O • B • P, O • B • T,
O • O • B, O • O • O, O • O • P, O • O • T,
O • P • O, O • P • P, O • T • O, O • T • T,
P • B • B, P • B • O, P • B • P, P • B • T,
P • O • B, P • O • O, P • O • P, P • O • T,
P • P • B, P • P • O, P • P • P, P • P • T,
P • T • B, P • T • O, P • T • P, P • T • T,
T • B • B, T • B • O, T • B • P, T • B • T,
T • O • B, T • O • O, T • O • P, T • O • T,
T • P • B, T • P • O, T • P • P, T • P • T,
T • T • B, T • T • O, T • T • P, T • T • T}

We used the generated report (see Figure 12) to ver
ify all the invalid sequences. Unexpectedly, Spinel
Web did not work properly with all test cases of
T2inv . It was possible to run without a problem the
invalid sequence O • O, evidencing that the system
allows opening data files more than once. At this
point, we realized that this problem was going to per
sist while testing the Spinel Web with the invalid se
quences of T3inv . Hence, it was not a surprise that
the system allowed to perform the invalid sequences
{O • O • O, O • O • P, O • O • T, O • P • O, O • T • O},
which involve multiple data opening. However, we did
not expect the Spinel Web to allow the execution of
the invalid sequences {O• T • T, O • P• P}, revealing
a second error: the system allows loading the same
view more than once (Figure 11). Finally, thanks to
the automatic generation of cases and the interactive

- 87 -

Journal of Computer Science & Technology, Volume 22, Number 1, April 2022

Report I®

Figure 8: Report of test cases with coverage criteria Base+0 and Base+1 for valid sequences and invalid-1 and
invalid-2 for invalid ones. Note that it was possible to execute the last invalid case, then it is an unsatisfactory test
case.

report provided by the Test Suite Editor, we were able
to detect two important errors in the Spinel Web that
were definitely overlooked in previous stages of devel
opment.

7 Conclusions and future work

Today’s decision-making processes require the assis
tance of specialized tools, which include information
visualizations and interactions. The responsibility of
developers of these tools is to ensure their correct
operation, especially when the impact of decisions
based on the displayed information is critical to human
life. This crucial usage motivated us to develop a new
tool that assists in visualizations testing and ensures
their correct operation. This new tool is easy to use
and does not require specific knowledge in the V&V
area; it is platform-, implementation-, and language
independent, it applies to any visual representation. As
we mentioned before, it is not our goal to provide a
contribution to the testing community about informa
tion visualization, but instead, our contribution is to
the information visualization community about testing.
As detailed case studies demonstrated the tool allows
the users to find errors that would not otherwise be easy
to detect. During the tests documented in this work,
the platform did not exhibit any problem related to the
technical limitations previously described. The cases
tested were representative combinations of visualiza
tion use and it was considered that it was not necessary
to continue with greater coverage criteria. However,
the coverage criteria continued to be increased to es
tablish at what point our proposal began to exhibit
problems related to technical limitations. For example,
in the MoCap Synchromparator it was only when the
base+4 and invalid—5 criteria were met that the plat
form experienced issues and was unable to generate
the full set of test cases.

There is still work to do; specifically, we are looking

to generate a more expressive grammar to represent
new conditions in the interaction sequence. But above
all, we are looking to automate the execution of the
test cases generated from a regular expression and the
coverage criteria. Regarding the current web imple
mentation, we will look for alternatives to overcome
the browser’s memory limitation and be able to dis
play long reports. Furthermore, given the grammar,
we intend to inform the user of maximum values for
the coverage criteria that reach a manageable number
of test cases.

Competing interests

The authors have declared that no competing interests
exist.

Funding

This work was partially supported by the following
research projects: PGI 25/N050 and PGI 24/N048
from the Secretaría General de Ciencia y Tecnología,
Universidad Nacional del Sur, Argentina, PICT-2017-
1246 by ANPCyT (Argentina), and PDTS-0414 by
ANPCyT (Argentina) and Universidad Nacional del
Sur (UNS).

Authors' contribution

MLL and DKU carried out the conception of this work.
MS carried out the implementation of the web plat
form. MLL performed the state of the art, DKU and
MLG worked on the test cases. MLL, DKU and MLG
worked on the general writing of the article and the
reviews provided.

- 88 -

Journal of Computer Science & Technology, Volume 22, Number 1, April 2022

I Selecdonar arctiivo"] SPINEL ...nData.csv

C.AI7H4

® item color • selected item color Change Divisions Marchmg Cubes: 16 a

Select BÄR volume: Category a Subcategory a

BAR Percentile 90% User Data Percentile 0%:

X

J

Select B&R volume Çategor,
^3 Percentile 50 ^3 per
Sen-automatic categorization

+Add Chart

Alkali lamprcphyres-Lamproite

Subcategory a

User Data Pere
Alkali lampropnyres-AJi

Select B&R volume Çategor,
^3 percentile 50 ^3 Pe
Sen-automatic categorization

Figure 9: Screenshot of an analysis session in which geologists interact with different views of the data: the spinel
prism (left), and the triangular (bottom right) and lateral projection (upper right). A brushing is activated (red points)
and highlighted in all coordinated views [28].

Subcategory a

References

[1] A. Spillner and T. Linz, Software Testing Foun
dations: A Study Guide for the Certified Tester
Exam-Foundation Level-ISTQB® Compliant.
Dpunkt. verlag, 2021.

[2] M. Nouman, U. Pervez, O. Hasan, and K. Saghar,
“Software testing: A survey and tutorial on
white and black-box testing of c/c++ programs,”
in 2016 ieee region 10 symposium (tensymp),
pp. 225-230, IEEE, 2016.

[3] S. Supriyono, “Software testing with the ap
proach of blackbox testing on the academic infor
mation system,” IJISTECH (International Jour
nal of Information System & Technology), vol. 3,
no. 2, pp. 227-233, 2020.

[4] M. Roggenbach, A. Cerone, B.-H. Schlingloff,
G. Schneider, and S. Shaikh, “Formal methods
for software engineering: Languages, methods,
application domains,” 2020.

[5] I. Banerjee, B. Nguyen, V. Garousi, and
A. Memon, “Graphical user interface (gui) test
ing: Systematic mapping and repository,” Infor
mation and Software Technology, vol. 55, no. 10,
pp. 1679-1694, 2013.

[6] S. Sherin, M. Z. Iqbal, M. U. Khan, and A. A.
Jilani, “Comparing coverage criteria for dynamic

web application: An empirical evaluation,” Com
puter Standards & Interfaces, vol. 73, p. 103467,
2021.

[7] M. Friske, B.-H. Schlingloff, and S. WeiBleder,
“Composition of model-based test coverage crite
ria.,” in MBEES, pp. 87-94, 2008.

[8] Z. Sterba, C. Sasinka, Z. Stachofi, et al., “Usabil
ity testing of cartographic visualizations: princi
ples and research methods,” in Proceedings of
the 5th International Conference on Cartography
and GIS Proceedings, vol. 1, pp. 147-256, 2014.

[9] A. Vizoso, “Information visualization and usabil
ity: Tools for human comprehension,” in Journal
istic Metamorphosis, pp. 85-98, Springer, 2020.

[10] D. Dowding and J. A. Merrill, “The development
of heuristics for evaluation of dashboard visu
alizations,” Applied clinical informatics, vol. 9,
no. 3, p. 511,2018.

[11] I. Banerjee, “Advances in model-based testing of
gui-based software,” in Advances in Computers,
vol. 105, pp. 45-78, Elsevier, 2017.

[12] A. M. Memon and B. N. Nguyen, “Advances in
automated model-based system testing of soft
ware applications with a gui front-end,” in Ad
vances in Computers (M. V. Zelkowitz, ed.),

- 89 -

Journal of Computer Science & Technology, Volume 22, Number 1, April 2022

Figure 10: The report generated by the Test Suite Editor for the valid sequences that satisfy the Base+3 Coverage
criteria. Fortunately Spinel Web worked properly for all the test cases that satisfy the Base+3 Coverage criteria.

+Add ChartI Selecdonar archiva | SPINEL ...nData.csv

* item color ® select«! item color Change Divisions Mbrdmg Cubes: 1ô*

Select BER valline: Category* Subcetegory *■ ftRanove

BER Percentile'JO'::-: User Data Percentile Oft:
J

• item color ® selected item color Change Divisions Marching Cubes: 16*

Select ESfi volume: Catega y * Su beategory * [ft Remove

EBA Percentile 90ft: User Data Percentile D-t:
J

Figure 11: Screenshot of an analysis session in which the system allowed loading the spinel prism view twice.

vol. 80 of Advances in Computers, pp. 121-162,
Elsevier, 2010.

[13] T. D. Hellmann, A. Hosseini-Khayat, and F. Mau
rer, Agile Interaction Design and Test-Driven De
velopment of User Interfaces - A Literature Re
view, pp. 185-201. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010.

[14] S. H. Kazmi, F. Azam, M. W. Anwar, andB. Maq-
bool, “A meta-model for automated black-box
testing of visualization based software applica
tions,” in Proceedings of the 2020 9th Interna
tional Conference on Software and Computer
Applications, pp. 183-187, 2020.

[15] A. Li, L. Hong, and J. Cao, “Study on the method
of cartographic visualization quality automated
testing,” in 2010 18th International Conference
on Geoinformatics, pp. 1-6, 2010.

[16] R. M. Kirby and C. T. Silva, “The need for veri
fiable visualization,” IEEE Computer Graphics
and Applications, vol. 28, no. 5, pp. 78-83, 2008.

[17] M. L. Larrea, “Black-box testing technique for
information visualization. sequencing constraints
with low-level interactions,” Journal of Com
puter Science & Technology, vol. 17, 2017.

[18] S. Lauesen, “Usability engineering in industrial
practice,” in Human-Computer Interaction IN
TERACTS, pp. 15-22, Springer, 1997.

[19] C. Ware, Information visualization: perception
for design. Morgan Kaufmann, 2019.

[20] S. H. Kirani and W. Tsai, Specification and veri
fication of object-oriented programs. PhD thesis,
Citeseer, 1994.

[21] F. Daniels and K. Tai, “Measuring the effective
ness of method test sequences derived from se-

- 90 -

Journal of Computer Science & Technology, Volume 22, Number 1, April 2022

Invalid test case O.O.T
□ 0. Brushing and Linking

Invalid test case O.B

Invalid test case 0.0

□ 0, Brushing ar
□ 1. Open Data

□ 0. Brushing and Linking
0 1. Triangular Projection

Q 0. Open Data
3 1. Open Data

3 0. Open Data
3 1 • Open Data

3 0. Open Data
□ 1. Brushing and Linking

0 0. Brushing ar
0 1. Brushing ar
□ 2. Open Data

Invalid test case B O B

Invalid test case B.0.0

Invalid test case P.T.T

Invalid test case O.P.P

nvalid test case B.P.B Invalid test case T.B.O

□ 2. Brushing and Linking

Invalid test case T.B.P

□ 2. Open Data □ 2. Spinel Prism

Invalid test case B.P.P Invalid test case P.B.B

Invalid test case T.O.B

□ 2. Brushing and Linking

Invalid test case P.O

Invalid test case P.T

Invalid test case B.T.T

□ 0. Triangular Projection
Invalid test case T.B

Invalid test case T.P.O

Invalid test caseT.T

Invalid test case B.B.B

Invalid test case O.B.T Invalid test case T.T.B

Invalid test case O.O.B

2. Open Data

□ 2. Triangular Projection

□

□ 0. Triangular Projection

□

□

□□

Q 0. Open Data
3 1. Open Data
Q 2. Open Data

□ 0. Spinel Prism
□ 1. Open Data

□ 1. Triangular Projection
0 2. Triangular Projection

3 0. Open Data
0 1. Brushing and Linking

Open Data
Spinel Prism

3 2. Spinel Prism

3 0. Open Data
3 1 Open Data
3 2. Spinel Pris

□ 0. Triangular Projection
□ I-’

Invalid test case B

Invalid test case P

O 0. Brushing ar
□ 1. Open Data
□ 2. Open Data

Invalid test case O.P.OQ 0- Spinel Prism unable to load a view without loading data
Invalid test case B.O.P Qx

Invalid test case T 0 0. Brushing and Linking 1
0 1. Open Data

unable to brush without loading data
□ 0. Triangular Projection „Zle'toload a view withoutloading data 0 2. Spinel Prism

Invalid test case B.B Invalid test case B.O.T ,. . s
□ 0. Brushing and Linking unable to brush without loading data
0 1. Brushing and Linking

0 0. Brushing and Linking I
0 1. Open Data
0 2. Triangular Projection

unable to brush without loading data

3 0- Open Data
3 1. Spinel Prism

□ 2. Triangular Projection

Invalid test case T.B.B

□ 0. Triangular Projection

□ 0. Triangular Projection
□ 1. Brushing and Linking

Invalid test case B.T

Invalid test case P.B

Invalid test case P.P

□ 0. Spinel Prism

Invalid test case T.O

O 0. Triangular Projection

Invalid test caseT.P

□ 0 Triangular Projection

Invalid test case B.B.O

Invalid test case B.B.P

O 0. Brushing and Linking
□ 1. Brushing and Linking

Invalid test case B.P.O

Invalid test case T.B.T
□ 0. Spinel Prism
□ 1 ■ Brushing and Linking
□ 2. Brushing and Linking

□ 0. Triangular Projection

Invalid test case P.B.O
0 0. Brushing and Linking
□ 1. Spinel Prism
0 2. Triangular Projection

Invalid test case B.T.B

□ 0. Brushing and Linking
□ 1. Triangular Projection
□ 2. Open Data

Invalid test case B.T.P

□ 2. Triangular Projection

3 0- Open Data
□ 1. Brushing ar
□ 2. Brushing and Linking

Invalid test case O.B.O

3 0. Open Data
0 1. Brushing and Linking
□ 2. Open Data

Q 0. Open Data

3 0- Open Data
3 1 • Open Data
□ 2. Brushing and Linking

n 0. Spinel Prism □ 0. Triangular Projection
□ 1. Open Data
□ 2. Brushing and Linking

Invalid test case T.0.0

□□□

0 0. Triangular Projectic
□ 1. Open Data
□ 2. Triangular Projection

□ 0. Triangular Projection
□ 1. Open Data
□ 2. Open Data

0 0. Triangular
0 1. Open Data
□ 2. Spinel Prism

Invalid test case T.O.P

Invalid test case T.O.T

□ 0. Spinel Prism
□ 1. Open Data
□ 2. Triangular Projection

0 0. Triangular Projection
0 1. Spinel Prism
□ 2. Open Data

Invalid test case P.P.B Invalid test case T.P.P
□ n

□□

□□□

□□□

□ 0. Triangular Projection
□ 1. Triangular Projection
□ 2. Brushing and Linkinc

Figure 12: The report generated by the Test Suite Editor for the invalid sequences that satisfy the Invalid-2 and
Invalid-3 Coverage. Unfortunately the Spinel Web did not work properly with all test cases.

quencing constraints,” in Proceedings of Technol
ogy of Object-Oriented Languages and Systems
TOOLS 30 (Cat. No. PR00278), pp. 74-83, IEEE,
1999.

[22] J. Nielsen, “Usability inspection methods,” in
Conference Companion on Human Factors in
Computing Systems, CHI '94, (New York, NY,
USA), p. 413-414, Association for Computing

Machinery, 1994.

[23] A. Alix, “genex.js project repository.” https:
//github.com/alixaxel/genex.js/. Ac
cessed: 2021-04-16.

[24] R. S. Engelschall, “Regular expression to-
kenizer library.” https://github.com/rse/
tokenizr. Accessed: 2021-04-16.

- 91 -

https://github.com/alixaxel/genex.js/
https://github.com/alixaxel/genex.js/
https://github.com/rse/tokenizr
https://github.com/rse/tokenizr

Journal of Computer Science & Technology, Volume 22, Number 1, April 2022

[25] Material-UI, “Material-ui. a popular react
ui framework.” https://material-ui.com/.
Accessed: 2021-04-16.

[26] I. G. Clifton, Android user interface design:
Implementing material design for developers.
Addison-Wesley Professional, 2015.

[27] D. K. Urribarri, M. L. Larrea, S. M. Castro, and „
E. Puppo, “Overview+detail visual comparison (Citation: M. Schiaffino, M. L. Larrea, M. L.
of karate motion captures,” in Computer Science
- CACIC 2019 (P. Pesado and M. Arroyo, eds.),
(Cham), pp. 139-154, Springer International Pub
lishing, 2020.

[28] A. S. Antonini, M. L. Ganuza, G. Ferracutti, M. F.
Gargiulo, K. MatkoviC, E. Groller, E. A. Bjerg,
and S. M. Castro, “Spinel web: an interactive
web application for visualizing the chemical com
position of spinel group minerals,” Earth Science
Informatics, vol. 14, no. 1, pp. 521-528, 2021.

Ganuza, D. K. Urribarri. A Testing Tool for
Information Visualizations based on User
Interactions. Journal of Computer Science &
Technology, vol. 22, no. 1, pp. 78-92, 2022.
DOI: 10.24215/16666038.22.e06
Received: April 27, 2021 Accepted: November
2, 2021.
Copyright: This article is distributed under the
terms of the Creative Commons License CC-BY-

- 92 -

https://material-ui.com/

