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Abstract

Dense facial landmark detection is one of the key ele
ments of face processing pipeline. It is used in virtual 
face reenactment, emotion recognition, driver status 
tracking, etc. Early approaches were suitable for fa
cial landmark detection in controlled environments 
only, which is clearly insufficient. Neural networks 
have shown an astonishing qualitative improvement 
for in-the-wild face landmark detection problem, and 
are now being studied by many researchers in the field. 
Numerous bright ideas are proposed, often compli
mentary to each other. However, exploration of the 
whole volume of novel approaches is quite challenging. 
Therefore, we present this survey, where we summa
rize state-of-the-art algorithms into categories, pro
vide a comparison of recently introduced in-the-wild 
datasets (e.g., 300W, AFLW, COFW, WFLW) that con
tain images with large pose, face occlusion, taken in 
unconstrained conditions. In addition to quality, ap
plications require fast inference, and preferably on 
mobile devices. Hence, we include information about 
algorithm inference speed both on desktop and mobile 
hardware, which is rarely studied. Importantly, we 
highlight problems of algorithms, their applications, 
vulnerabilities, and briefly touch on established meth
ods. We hope that the reader will find many novel 
ideas, will see how the algorithms are used in applica
tions, which will enable further research.

Keywords: Computer Vision, Edge Computing, Fa
cial Landmarks, Neural Networks, Mobile Applica
tions, Literature Overview.

Resumen

La detección de puntos de referenda faciales densos 
es uno de los elementos clave del proceso de proce
samiento de rostros. Se utiliza en la anünación de 
rostros virtuales, el reconocüniento de emociones, 
el seguimiento del estado del conductor, etc. Los 
prüneros enfoques eran adecuados para la detección 
de puntos de referencia faciales solo en entornos con
trolados, lo que claramente es insuficiente. Las re
des neuronales han mostrado una asombrosa mejora 

cualitativa para el problema de detección de puntos 
de referencia faciales en condiciones del mundo real, 
y ahora están siendo estudiadas por muchos investi
gadores en el campo. Se proponen numerosas ideas 
brillantes, a menudo complementarias. Sin embargo, 
la exploración de todo el volumen de enfoques nove
dosos es bastante desafiante. Por lo tanto, presenta
mos esta encuesta, donde resumimos los algoritmos 
de última generación en categorías, brindamos una 
comparación de los conjuntos de datos introducidos 
recientemente (por ejemplo, 300W, AFLW, COFW, 
WFLW) que contienen imágenes con pose grande, 
oclusión facial, tomadas en condiciones sin restric
ciones. Además de calidad, las aplicaciones requieren 
una inferencia rápida y preferentemente en disposi
tivos móviles. Por lo tanto, incluimos información 
sobre la velocidad de inferencia de algoritmos tanto 
en hardware de escritorio como móvil, que rara vez 
se estudia. Es importante destacar que destacamos los 
problemas de los algoritmos, sus aplicaciones, vulner
abilidades y mencionamos brevemente los métodos es
tablecidos. Esperamos que el lector encuentre muchas 
ideas novedosas, vea cómo se utilizan los algoritmos 
en las aplicaciones, lo que permitirá futuras investiga
ciones.

Palabras claves: Visión por computadora, Com
putación en la frontera, Puntos faciales de referencia, 
Redes neuronales artificiales, Aplicaciones móviles, 
Estudio de la bibliografía

1 Introduction

Dense facial landmark detection is one of the key 
elements of face processing pipeline. Applications 
include virtual face animation, emotion recognition, 
driver status tracking, etc. Early attempts to solve the 
problem were based on deformable face model, where 
statistical algorithms predicted face model deforma
tion coefficients. These approaches were unsuitable 
for landmark annotation with large pose, face occlu
sion or unusual illumination. Later, attention has been 
driven to neural networks, that show high quality in 
solving tasks, in which we, humans, are good at, such 
as image classification or natural language process
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ing. Neural networks have also shown an astonishing 
qualitative improvement for in-the-wild face landmark 
detection problem, and are now being actively studied 
by many researchers in the field. Primarily, neural net
works were designed to be executed on servers with 
many GPUs and a stable power supply. However, the 
development of Internet of Things and mobile devices 
makes client-server applications sometimes impracti
cal or even unacceptable. For example, when Internet 
connectivity is poor, low latency data processing is 
required, if the amounts of raw data generated are too 
large to be sent over to a server. Finally, when no 
data can leave the user’s device for security reasons. 
In many of these cases use of neural networks is de
sirable, and processing should be done directly on a 
mobile device. Thus, on-device machine learning has 
become one of the most prominent machine learning 
research directions [1], [2],

In this paper we present a description of recently 
introduced neural-network-based facial landmark de
tection algorithms. Existing surveys are quite old and 
mostly cover either statistical algorithms or the ones 
based on ensembles of regression trees [3], [4], These 
algorithms show poor facial landmark detection qual
ity for in-the-wild pictures (i.e., taken in unconstrained 
environments). Recently, numerous bright neural- 
network-based approaches were proposed, that show 
substantially better quality. However, exploration of 
the whole volume of novel approaches is quite chal
lenging. Therefore, we present this work. The primary 
focus of this survey is on recently introduced algo
rithms, covering years 2018 - 2021. We include some 
important older algorithm for completeness as well.

We start our survey by defining facial landmark de
tection problem, algorithm quality assessment metrics. 
Next, we describe common in-the-wild datasets (e.g., 
300W, AFLW, COFW, WFLW) with dense landmark 
annotation (from 21 to 98 landmarks). These datasets 
contain images taken in unconstrained conditions with 
large pose, face occlusion, different emotions, etc. The 
following section describes ideas of facial landmark 
algorithms, that have led to accuracy improvement or 
have proposed a novel way to solve the problem. This 
section is key for this survey. To make algorithm ideas 
clear, we start by explaining common neural network 
backbones used for facial landmark detection. Based 
on these materials, we follow with an explanation of 
facial landmark detection algorithms ordered by years. 
Finally, we summarize state-of-the-art algorithms into 
categories, provide accuracy comparison on recently 
introduced in-the-wild datasets. In addition to quality, 
applications require fast inference, possibly on mo
bile devices. Hence, we include information about 
algorithm inference speed both on desktop and mobile 
hardware, which is rarely studied in literature. Where 
available, inference time is shown for desktop CPU 
and GPU, as well as mobile phone. Also, we provide 
estimated number of neural network parameters and 

floating-point operations. These are the metrics, that 
influence memory consumption and inference time 
correspondingly. Importantly, we highlight problems 
of algorithms, their applications and vulnerabilities. 
Overall, we note that algorithm accuracy needs to be 
improved by the next generation of algorithms. Also, 
state-of-the-art algorithms have inference times that 
are quite high for practical applications. We hope that 
in this survey the reader will find many novel ideas, 
will see how the algorithms are used in applications, 
which will enable new research in the field.

The paper is structured as follows: Section 2 covers 
facial landmark detection problem. Section 3 describes 
datasets used to train and evaluate models. Section 4.1 
gives a brief introduction of historical landmark detec
tion methods. The main Sections 4.2 and 4.3 cover 
common neural network backbones and landmark de
tection algorithms correspondingly. Analysis of algo
rithm accuracy, inference speed, and summary of novel 
ideas is presented in Section 4.4. Section 5 is focused 
on real-world use of face landmark detection methods. 
We show several possible approaches of joint face and 
landmark detection algorithms in Section 5.1. Applica
tions of dense facial landmark detection are shown in 
animation in Section 5.2, driver status tracking in Sec
tion 5.3, face and emotion recognition in Section 5.4. 
Finally, adversarial attack vulnerability is discussed in 
Section 6.

2 Facial Landmark Detection Problem 
Statement

Let I be an input image, which is represented in a form 
of 3-dimensional tensor of size W x H x C, where W, 
H, C are the width, height, and number of image color 
channels correspondingly. Note, that typically color 
images are used with 3 channels, one for red, green and 
blue colors. Then facial landmark detection problem 
is to find such function 0 :1 —> Y, that from the input 
image I predicts a landmark matrix Y e RNlx2, where 
Nl is the number of facial landmarks, Yu e [0; W] rep
resents X coordinate and Ph € |0; W represents Y coor
dinate of z* landmark. Number of facial landmarks Nl 
and exact mapping between z*11 facial landmark and its 
location on the face (the so-called annotation scheme) 
are defined at dataset level. Examples of face landmark 
annotations are present in Fig. 1. Also, dataset defines 
which images are used to train function 0 (train set) 
and which to evaluate (test set).

Next, we present commonly used metrics to re
port algorithms’ quality on facial landmark detection 
datasets. Note, that each dataset has a special proto
col, which defines train/test split, metrics for algorithm 
comparison, etc. The main metrics include [6], [7]:
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(a)SOOW1 (b)WFLW2[5]

Figure 1: Examples of faces annotated with facial land
marks from several of the commonly used datasets: 
300W and AFLW. In both cases landmarks cover areas 
of jaw, eyes, eyebrows, nose, lips. However, annota
tion schemes differ. For instance, WFEW annotates 
lower and upper boundary of eyebrows, whereas 300W 
has a single central line. Also, WFEW has the densest 
landmark annotation.

1. Normalized Mean Error (NME, %):

1 K
NME = - T NMEk,

K k=l

NMEk x 100, (1)

where Y is the matrix of true landmark locations, 
Y is the matrix of predicted landmark locations, d 
is the normalization coefficient (different for each 
dataset), Nk is the number of facial landmarks per 
face in the dataset, K is the number of images in 
the test set. Eower metric values are better.

2. Failure Rate (FR, %):

1 K
FR=-^ [NMEk > 10%] x 100, (2)

K k=l

denotes number of images with Normalized Mean 
Error above 10 % threshold. Eower metric values 
are better.

3. Cumulative Error Distribution - Area Under 
Curve (CED-AUC). First, fraction of images 
whose NME is less than or equal to the NME 
value on X axis is plotted. Area under curve is 
then computed. Typically, NME is taken in range 
[0; 10%]. Computed CED-AUC value is always 
scaled in range [0; 1]. Greater metric values are 
better, and denote that larger part of the test set is 
well predicted.

3 Common Face Landmark Datasets

There are several open datasets available to train and 
evaluate quality of face landmark detection algorithms.

'image is based on this source. License: CC BY 2.0. It has been 
annotated with landmarks available in 300W dataset by the authors 
of this survey.

"Author’s written consent has been acquired to include this im
age.

Each of the datasets includes image of a person and 
corresponding face landmark annotations. Landmarks 
are provided in a separate hie. The datasets can include 
photos of the following kinds:

• in controlled environment (e.g., studio) or in-the- 
wild;

• with different shooting conditions, such as pres
ence of face occlusion, large pose, make-up, etc.;

• real images or synthetic (when faces are gener
ated with an algorithm);

• 2D or 3D face landmarks.

Next, we describe typical datasets used to train 
and evaluate facial landmark detection models. The 
datasets were selected from the following sources: 
1) introduced jointly with a novel facial landmark de
tection algorithm; 2) presented separately, but at least 
one of the algorithms from Section 4.3 uses the dataset 
for training or evaluation. While we discuss all such 
datasets, the focus of this survey is on in-the-wild 
2D face landmark datasets with non-synthetic images. 
Note, that in-the-wild datasets also include images in 
controlled environments, which makes them applica
ble to a wide range of practical use-cases.

300 Faces in-the-Wild (300W) [8] dataset con
tains a collection of different datasets: LFPW [9], 
AFW [10], HELEN [11], XM2VTS [12] and IBUG, 
that were relabeled with 68 facial landmarks. The pro
tocol defines which images should be used for train
ing and which for testing. The testing subset is split 
into common, challenge and full. Normalized Mean 
Error for each of the splits is usually presented for 
comparison. The NME is normalized (d in Eq (1)) 
by inter-pupil or inter-ocular (outer eye comer) dis
tance. This is done, so that faces of different sizes 
make an equal contribution to the resulting error. Note, 
that images in the 300W dataset have different shoot
ing conditions (lighting, color gamut), emotions and 
faces at an angle. There have been multiple extensions 
to the 300W datasets presented: 300W-LP-2D [13], 
where the original 300W dataset has been expanded 
with synthetically generated images with large pose; 
Masked-300W [14] has synthetically added medical 
mask to the 300W dataset images. However, the same 
blue medical mask model has been used for all images, 
which is a disadvantage.

Annotated Facial Landmarks in-the-Wild 
(AFLW) [15] contains a larger number of images, yet 
they are labeled with only 21 facial landmarks. In 
comparison to 300W, this dataset has face photographs 
taken at a larger angle in range of ±120° yaw and 
±90° pitch. The authors propose splitting the dataset 
into AFLW-Frontal (with face photos that are close 
to frontal) and AFLW-Full (all images). Also, there 
is a relabeled version with 68 facial landmarks, 
named AFLW-68 [16], yet in practice it is used less 
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often. MERL-RAV dataset presented in [6] has 
AFLW relabeled with 68 landmarks with an extra 
visibility label, such as: 1) visible; 2) self-occluded 
(for instance, due to large pose); 3) occluded by other 
object (hand, etc.). NME metric, normalized by face 
bounding box size (diagonal), is used for comparisons.

Caltech Occluded Faces in-the-Wild 
(COFW) [17] focuses on face images, that are 
partially occluded by real-world objects (microphone, 
etc.) or by the person itself (hair, hand, etc.). In addi
tion to the NME metric, Failure Rate (FR, Eq (2)) is 
used. The dataset has 29 landmark annotations. NME 
is normalized by either inter-pupil or inter-ocular 
distance. The COFW test set has also been relabeled 
to 68 landmarks in COFW-68 [18], but no COFW 
training set with 68 landmarks is available. COFW-68 
can be used to assess landmark detection quality, when 
the network has been trained on a different dataset.

Wider Facial Landmarks in-the-Wild 
(WFLW) [5] is the dataset with the largest number of 
facial landmarks (98 landmarks). It is also the most 
recently introduced. In comparison to the datasets 
covered so far, WFLW has more images taken under 
unusual conditions, e.g., with make-up, wide range of 
emotions, poses, in various lighting conditions, etc. 
All three above-mentioned metrics are used to present 
the results: NME, Failure Rate and CED-AUC. NME 
is normalized by inter-ocular distance. The results are 
reported for each subset of unusual images, as well 
as for all images available in the dataset. This makes 
it possible to analyse, which conditions are the most 
challenging to the algorithms. The following subsets 
are available in WFLW dataset: Pose, Expression, 
Illumination, Make-Up, Occlusion, Blur. Information 
about image scene type is included in the dataset and 
can also be used during training.

Menpo-2D [19], [20] is a collection of frontal and 
profile faces. However, annotation schemes and num
ber of landmarks are different between types of faces. 
The dataset is less used in practice.

In addition, there are many datasets that provide 
3D annotations of facial landmarks (either syntheti
cally generated or manually), such as 300W-LP [13], 
AFEW2000-3D [13], ES3D-W [21], Menpo-3D [20], 
[22], Also, landmark annotated video datasets exist, 
e.g., 300 Videos in the Wild (300VW) [23]-[25],

Table 1 summarizes information about common 
datasets. We include information about number of 
labeled images for algorithm training and testing, as 
well as number of facial landmarks the dataset has 
been labeled with. The most widely used datasets are 
shown in bold.

Table 1: Information about facial landmark datasets: 
number of images contained in training and testing 
tests, as well as number of facial landmarks the dataset 
has been annotated with.

Dataset Train Test Land.

300W [8] 3,837 600 68
AFLW [15] 20,000 4,386 21
COFW [17] 1,345 507 29
WFLW [5] 7,500 2,500 98
300W-LP-2D [13] 61,225 - 68
AFLW-68 [16] 20,000 4,386 68
COFW-68 [18] - 507 68
Menpo-2D [19], [20] 7,564 7,281 68/39
MERL-RAV [6] 15,449 3,865 68
Masked-300W [14] 3,837 600 68

4 Facial Landmark Detection Algo
rithms

4.1 Early Landmark Detection Algorithms

First algorithms were mainly based on fitting a de
formable face mesh. The most prominent algorithms 
include Active Shape Model (ASM), Active Appear
ance Model (AAM) and Constrained Local Model 
(CLM) [3], [4], Based on the obtained mesh, each of 
the landmark locations are computed. In many cases 
such algorithms utilize statistical methods as a base. 
They have good enough prediction accuracy in con
trolled environments (with proper lighting and frontal 
face). However, such approaches offer underwhelm
ing performance for most types of in-the-wild images. 
Next wave of methods was based on Random Forests 
and Gradient Boosting, such as ERT [26] algorithm, 
which we describe below. Such methods have better 
accuracy, but performance for occluded faces, faces 
shot under large angle or unusual illumination is still 
insufficient. As will be shown later in this work, many 
practical applications require accurate in-the-wild fa
cial landmark detection.

Dlib [27] is an open-source machine learning li
brary. Among others, it has Ensemble of Regression 
Trees (ERT) [26] facial landmark detection algorithm, 
which is a cascade, based on gradient boosting. The 
authors use a “mean” face template as an initial ap
proximation, then the template is refined over several 
iterations. The algorithm requires the face to be first 
detected in the frame (Viola-Jones [28] face detector is 
used). Note, that most facial landmark detection algo
rithms require face to be first detected. High speed is 
the main advantage of ERT (according to the authors, 
around 1 millisecond per face). The library contains 
ERT implementation, trained on 300W dataset. The 
algorithm is still actively used in the modern research 
thanks to an open implementation and speed. However, 
not so long ago it has been shown that neural networks 
are preferred in terms of quality for faces with large 
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pose [29]. Mobile-friendly implementations of ERT 
are available.

An overview of early neural-network-based facial 
landmark detection algorithms can be found in [4], 
[30],

4.2 Face Landmark Detection Network Back
bones

Modem in-the-wild face landmark detection algo
rithms are based on neural networks. They are divided 
into 2 main categories: direct (or coordinate) regres
sion methods, when the model predicts x, y coordinates 
directly for each landmark; /leatmap-based regression 
methods, where a 2D heatmap is built for each land
mark. The values in the heatmap can be interpreted 
as probabilities of landmark location at a certain im
age location. Typically, argmax or its modification is 
used to acquire exact landmark coordinates from the 
heatmap. Fig. 2 illustrates the two approaches. As neu
ral network architectures have become more complex, 
algorithms typically base on a pre-defined network 
architecture (called backbone). Facial landmark detec
tion algorithms, described in the following subsection, 
propose modifications to training, inference procedure 
or the backbone itself. Here we introduce main back
bones for landmark detection problem. Note, that 
in many cases backbones for face landmark and hu
man pose (whole body) landmark detection are the 
same. Direct regression methods typically use widely 
known backbones from ImageNet challenge [31], such 
as ResNet [32], MobileNetV2 [2], MobileNetV3 [33], 
ShuffleNet-V2 [34], Heatmap-based methods com
monly use Hourglass [35] network architecture, but 
also HRNet [36] and CU-Net [37]. Such backbones 
are less known. Thus, we describe them here.

Hourglass [35] architecture has been initially de
signed for human pose estimation. The network takes 
a 256 x 256 image as an input. The authors note that 
processing the image at full resolution would require 
too much computation and memory. This is why a 
convolutional block is used to quickly process the im
age to obtain feature map of resolution 64 x 64, which 
remains the maximum feature map resolution till the 
end of the network. The feature map is then processed 
via Hourglass modules. An illustration of Hourglass 
network is shown in Fig. 3. Note, that architecture al
lows stacking, i.e., Hourglass modules can be repeated 
sequentially multiple times. Typically stacks of 1, 2 or 
4 Hourglass modules are used. The network outputs 
heatmaps at a resolution of 64 x 64, a single heatmap 
is produced for each of the landmarks.

Hourglass module follows encoder-decoder archi
tecture. Input image is processed via convolutional 
blocks at different feature map resolutions. First, fea
ture map resolution is decreased after each convolu
tional block (encoder part), then feature map resolution 
is restored (increased) after each block (decoder part). 
Accuracy of human pose estimation, facial landmark 

detection and several other tasks is improved by pro
cessing image at multiple resolutions.

Overall, stacked Hourglass architecture becomes 
quite deep, which slows down training. The authors 
propose two ideas to solve the problem: skip con
nections inside Hourglass module and intermediate 
supervision. Firstly, as is clearly seen from Fig. 3, 
after each convolutional block the output is split into 
two parts, one part is downscaled and fed into next 
convolutional block, another is skipped from encoder 
to decoder. The latter concept is then referred to as 
“skip connection”. This improves gradient propagation. 
Secondly, intermediate supervision is applied to each 
Hourglass module (as previously said, stacks of multi
ple Hourglass modules can be constructed). Prediction 
heatmaps are always constructed after each Hourglass 
module (shown in green in Fig. 3). The training loss in
cludes weighted sum of losses for each of the heatmap 
predictions.

CU-Net [37] tries to improve Hourglass architecture 
not only in quality, but also in memory footprint and 
inference time. The authors note an importance of effi
cient architecture for use on mobile devices. Similarly 
to Hourglass, the network takes 256 x 256 image as 
an input and resizes it in preamble to 64 x 64, which 
remains the maximum resolution at which features 
are processed till the end of the network. To improve 
training and enable deeper CU-Net stacks, the authors 
propose to add skip connections not only between fea
tures of the same module, but also between different 
modules. To avoid excessive number of skip connec
tions, a concept of Order-A" coupling has been intro
duced in the paper. Order-A" coupling denotes that skip 
connections will be added only K modules forward. In 
most cases, adding skip connections to one module for
ward (K = 1) seems sufficient. The authors decrease 
memory consumption and improve inference speed by 
avoiding unnecessary features copies, sharing memory, 
and quantizing both features and parameters. In addi
tion, blocks with smaller number of features are used 
to decrease overall number of parameters. All these 
improvements have allowed to achieve similar to Hour
glass accuracy on human pose estimation with only 
a fraction of parameters and higher inference speed. 
Exact number of parameters and inference times are 
shown in Table 2. However, despite the improvements, 
most recently introduced approaches prefer Hourglass 
architecture over CU-Net as will be shown later.

HRNet [36] has also been initially proposed for 
human pose estimation and then adapted to face land
mark prediction in [38] and other works. This ar
chitecture significantly differs from the previous two. 
HRNet doesn’t follow encoder-decoder architecture 
and doesn’t use multiple stacks. Instead, parallel 
branches with different feature resolutions are main
tained throughout the network. An illustration of 
HRNet architecture is shown in Fig. 4. Similarly to 
previous works, the network takes an image of size
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Neural Network

Landmarks

argmax (or modification) 
is used to get coordinates

Sum of all Heatmaps

Figure 2: Direct landmark regression (upper row). The problem is solved in a form of regression, where actual 
landmark coordinates (x,y) are predicted directly by the algorithm. Heatmap-based (bottom row). The algorithm 
predicts probability distributions of landmark locations in a form of heatmaps. One heatmap per each of the 
landmarks is formed. Argmax (or its modification) is used to get each landmark coordinates.

Figure 3: Hourglass architecture. Input image of size 256 x 256 is rescaled to 64 x 64 in Preamble (orange). 
Hourglass encoder-decoder module is to follow. First, Hourglass processes input via Residual blocks (blue boxes) 
and downscales features after each block (encoder part). Then in decoder features are upscaled after each Residual 
block. Additional skip connections between blocks of the same resolution are added to improve gradient propagation. 
Note, that encoder block’s output is processed via an extra Residual block before signal is added to decoder features. 
Module features (in red) and predictions (in green) are formed after each Hourglass block. Then Hourglass block 
is repeated /V — I times for a stack of N Hourglass modules. At training time not only final, but also intermediate 
predictions participate in loss function computation (the so-called intermediate supervision).
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Table 2: Comparison of number of parameters and 
inference time for Hourglass and CU-Net architec
tures. [37]. Larger stacks still have reasonable infer
ence time and small number of parameters, which is 
achieved thanks to memory sharing, quantization and 
smaller blocks.

Method # Params (M) Inference (ms)

4 x Hourglass 25.5 48.9
8 x CU-Net 7.9 36.1
16 x CU-Net 15.9 70.8

256 x 256, which is then resized to 64 x 64 feature 
map in preamble. Next, the image is processed via 
convolutional blocks. Then another branch of resolu
tion 32 x 32 is added. Note, that in contrast to previous 
works, 64 x 64 branch continues to be processed in 
parallel. The authors propose to exchange features be
tween parallel branches. However, these feature maps 
are of different resolutions. To downscale feature map, 
strided convolution is used. To upscale feature map, 
nearest neighbor upsampling is used. Till the end of 
the network 4 parallel branches with different feature 
map resolutions are created. The final heatmap is gen
erated at resolution of 64 x 64. At a similar number 
of parameters to a stack of 8 Hourglass modules, HR- 
Net uses nearly twice fewer floating-point operations. 
Additionally, HRNet network width (number of convo
lutional channels) can be configured to change overall 
number of parameters and resulting inference speed.

We summarize backbone performance in Fig. 5, 
where we show number of floating-point operations 
in Fig. 5a (the greater is the number, the more time it 
takes to infer the network) and number of parameters 
in Fig. 5b (more parameters take more memory). Note, 
that Hourglass, CU-Net, HRNet require much more 
computation than other backbones, but have relatively 
small number of parameters. This is because these 
networks consider input at multiple resolutions and 
have to produce large heatmaps for each landmark. 
Other backbones (MobileNet, ShuffleNet and ResNet) 
process input at single scale and do not work with 
heatmaps.

Network backbones for each model considered in 
this survey are shown is summary Section 4.4, Table 9.

4.3 Facial Landmark Detection: Novel Algo
rithms and Ideas

In this section we present a description of recently in
troduced facial landmark detection algorithms. Each 
description is structured as follows: backbone and al
gorithm type are mentioned first, followed by explana
tion of novel ideas and approaches. The primary focus 
of this paper is on modem algorithms, covering years 
2018 - 2021. We include some important older algo
rithm for completeness as well. The facial landmark 

algorithms covered in this section have been selected 
if: 1) the algorithm improves state-of-the art score 
established in the previous year; 2) ideas presented 
in the algorithm are then used in several following 
papers; 3) algorithm expands applicability of facial 
landmark detection or presents distinctive novel idea 
not discussed before. If only a slight modification is 
presented, that doesn’t improve inference speed, qual
ity or applicability of the algorithm, such algorithm 
is not included in this section. The algorithms are 
collected from various sections, including, but not lim
ited to, top worldwide computer vision conferences. 
Overall 22 algorithm discussions are presented in this 
section.

Dense Face Alignment (DeFA) [39] is a shape- 
model-based approach. It uses custom-built convolu
tional neural network as a backbone. It is the only 
algorithm described in this section, where a neural 
network is used for facial landmark prediction through 
a deformable 3D face mesh. Algorithm is interesting 
in the following: 1) it allows to build a dense 3D face 
mesh using only a single 2D image. Mesh can be 
built for a wide range of poses and emotions (Fig. 6); 
2) DeFA can be trained jointly on datasets with differ
ent number of landmarks, as landmarks are hooked as 
mesh constraints.

Style Aggregated Network (SAN) [40] is a 
heatmap-based approach, which is based on a modi
fied ResNet-152 backbone. The authors have noticed 
style variability of photographs in 300W and AFLW 
datasets, which can be dark or light, colored or black & 
white. Existing to date algorithms were not accounting 
for that information. Furthermore, the authors have 
noticed that depending on style, prior algorithms were 
predicting facial landmark locations in slightly dif
ferent places, with higher error on photographs with 
harsh lighting conditions. As a solution they have 
proposed: 1) to train Generative Adversarial Network 
(GAN) [41], namely CycleGAN [42] to transform im
ages of different styles into neutral; 2) to train another 
neural network to predict landmarks from two inputs: 
style-neural and the original image. CycleGAN col
orizes grayscale images and tones down bright colors. 
This makes all input images have a similar color dis
tribution, which simplifies learning of face features by 
a neural network. Note, that style-neutral images pro
duced by the proposed network are not always properly 
colorized and might containing artifacts, because-of 
that the authors propose to predict landmark jointly on 
the original and style-neutral images.

Look at Boundary (LAB) [5] is a combined 
heatmap and direct regression method. A stack of 
4 Hourglass modules is used to predict boundary 
heatmap, from which another neural network predicts 
landmark matrix. The key advancement of this ar
chitecture is that the authors introduce face feature 
boundary heatmap, which is built as an intermediate 
representation between original image and predicted
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8x8

Figure 4: HRNet architecture. Input image of size 256 x 256 is rescaled to 64 x 64 in Preamble (orange). Next, 
input is processed at resolution of 64 x 64. After each set of convolutional blocks, a parallel branch is added with 4 
tunes smaller resolution. Overall, 4 parallel branches are created till the network end, with the smallest resolution 
of 8 x 8. Features between blocks of different resolutions are exchanged. To pass features to blocks of higher 
resolution, nearest neighbor upsampling is used (orange arrows). To pass features to blocks of smaller resolution, 
strided convolution is used (green arrows). Blue arrows denote that feature map is not rescaled. The final output 
contains a sum of features of all scales.

(a) Number of floating-point operations

Figure 5: Comparison of different backbones by the number of floating-point operations (a) and the number of 
parameters (b). Note that Hourglass, CU-Net, HRNet require much more computation, than other backbones, but 
have relatively small number of parameters. We use Sx to denote a stack of S modules, w = X to denote width 
multiplier of X.

(b) Number of parameters
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(a) (b)

Figure 6: (a) DeFA dense 3D face mesh produced for 
different emotions and poses, (b) DeFA facial land
mark predictions acquired from the face mesh. Im
portantly, varied number of facial landmarks can be 
produced from a single face mesh.3 

authors make a comparison of L2 against other loss 
functions, such as Ll(x) = |x| and smoothLl, which is 
defined as:

, .. , fx2/2, lf.x < 1
smoothLl(x) = < . . , (3)|Ja-| — 1 / 2, otherwise,

and note that the latter two give better results. The 
main paper contribution is in introduction of a new 
loss, named Wing loss, which combines LI for large 
landmark deviations and ln(-) for medium and small: 

landmarks (Fig. 7). Such a trick improves facial land
mark prediction quality. Furthermore, it allows to train 
boundary estimation module on several datasets with 
different annotation schemes at once. After bound
ary module, another network predicts facial landmark 
coordinates. It should be noted, that only boundary 
submodule can be trained on datasets with different 
annotation schemes, while the landmark regression 
is trained for each dataset separately. Face structural 
information is modeled with the use of message pass
ing [43], [44], that is, a graph-based way to model re
lationships. Boundary module is trained in adversarial 
(GAN) fashion. As the authors have shown, pretrain
ing the boundary module on 300W improves predic
tion quality on AFLW and COFW datasets. Also, a 
novel facial landmark dataset was introduced in the 
work, namely WFLW.

wing(x) =
M’ln(l + |x|/e),
|x| -C,

if |x| < W 
otherwise,

(4)

where C = w- wln( 1 + w/e), w and e are hyperpa
rameters (w = 15, e = 3 in paper). Visual comparison 
of loss functions is presented in Fig. 8.

(a) (b) (c)
Figure 8: Loss function comparison: L2, LI, 
smoothLl, Wing (with w = 15, e = 3). Note, that 
quadratic growth of L2 loss makes it sensitive to out
liers. Thus, forcing the network to learn annotation 
errors. L2, LI and smoothLl yield very small values 
for small landmark location differences. This hinders 
network training, when network predictions are al
most correct. In contrast, Wing is less sensitive to 
outliers and is much sensitive to medium-to-small er
rors, which improves training overall.

Figure 7: LAB: (a) image to be labeled; (b) lirst 
module predicts intermediate boundary representation, 
that is common for different face landmark annotation 
schemes; (c) second module predicts actual facial land
mark coordinates from boundary information [5].4

Wing Loss [29] is a direct regression approach. Sev
eral backbones were considered: custom-built CNN-6; 
two-stage approach, when CNN-6 produces coarse 
landmarks, and CNN-7 then refines them; ResNet-50 
backbone. The authors note, that the field of loss func
tions for facial landmark detection problem is barely 
studied. Most researchers use L2 = _v2/2 as a loss 
function for direct regression, which is known to be 
sensitive to outliers. For that reason, some of prior 
works have used smoothLl [45] loss instead. The

3 Images are included under MIT license. Source: DeFA
4Author’s written consent has been acquired to include these 

images.

Also, to train more on hard examples the authors 
introduce PDB algorithm, which works as follows: 
1) face rotation angle histogram is built; 2) rare ex
amples (determined via the histogram) are duplicated 
with augmentations. As can be seen from Table 3, us
ing CNN-6/7 cascade with wing(-) loss in combination 
with PDB substantially lowers the NME.

AVS [16] is a heatmap-based approach. Similarly to 
SAN, the authors have studied style in face landmark 
detection. They have proposed augmenting training set 
by changing image style via GAN image generation.
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Table 3: NME comparison of different loss functions 
on AFLW dataset. Note that Wing loss with PDB hard 
example mining has the best performance.

Network L2 LI smoothLl Wing

CNN-6/7 2.06 1.82 1.84 1.71
CNN-6/7+PDB 1.94 1.73 1.76 1.65

The authors have trained ResNet-18, SAN and LAB 
methods on their extended training set, which resulted 
in better performance.

Practical Facial Landmark Detector (PFLD) [46] 
is a direct approach. MobileNetV2 backbone with 
full (IX) and quarter (0.25X) width has been consid
ered. PFLD enables fast facial landmark detection 
directly on a mobile device. This is, to the best of our 
knowledge, the only modem neural-network-based 
algorithm, whose authors have shown that their algo
rithm can work efficiently on a mobile device. Mo- 
bileNetV2 [2] is used as feature extractor in PFLD. 
Two heads are attached to it (Fig. 9): 1) facial land
mark regression, where multi-scale fully-connected 
layer in the end of the head is used (lower branch); 
2) 3D face model rotation angle estimator (yaw, pitch 
and roll), shown in upper branch of the figure. The 
second head contains a set of convolutional layers and 
is only used during training.

Multi-scale 
Dense Layer

Figure 9: PFLD architecture. MobileNetV2 is used 
as feature extractor with multiple tasks: 1) to predict 
face landmark locations multi-scale fully-connected 
layer is used, which better captures image features at 
multiple scales (lower branch); 2) additional convo
lutional blocks are attached to MobileNetV2 for yaw, 
pitch, roll face rotation angle prediction (upper branch). 
Estimated angles are embedded into training loss to 
improve overall network performance. Estimation is 
not performed during network inference.

The most common datasets do not have information 
about 3D landmark coordinates. To get them the au
thors propose to 1) build a “mean” face representation 
containing 11 facial landmarks, based on the data in 
the training set; 2) estimate rotation matrix for each 
face between its and “mean” landmarks; 3) compute 
yaw, pitch, roll angles from the rotation matrix. Ac
cording to the authors, such an approach is not very 

accurate for estimating angles, yet improves network 
training.

Furthermore, during training, the data is weighted 
based on image difficulty using a special loss function:

. M n / c K \

M E E E • E (1 - C0S en ) 11 d-n 115

(5) 
where N is the number of facial landmarks, M is the 
number of training examples, K = 3, ft, ft, ft are yaw, 
pitch, roll rotation angles of the above-described 3D 
face model, d™ represents difference vector between 
/1th predicted and ground true facial landmarks for 
«1th image; C is the number of complexity classes for 
face images (such as profile or frontal face, face-up, 
face-down, emotions or occlusion), oj^ is fraction of 
images in the corresponding complexity class to their 
total number M.

FAN [21] is a hcatinap-based approach. A stack 
of 4 Hourglass modules is used. The authors mod
ify Hourglass architecture by substituting Bottleneck 
block with hierarchical, parallel and multi-scale block 
with binary convolutions from [47]. 3 methods have 
been trained in the work: for 2D, 3D landmark detec
tion, and 2D-to-3D model. 2D-to-3D model serves to 
transform 2D landmark representation into 3D. Inter
estingly, the inputs to the 2D-to-3D network are image 
and landmark heatmaps (one for each of the input 2D 
landmarks). The algorithm has not been tested on con
ventional 2D face landmark datasets. Thus, is missing 
from summary in Section 4.4. While binarized convo
lutions are stated to be faster, than conventional [47], 
no testing results have been presented. Architecture 
has been applied to landmark prediction in further 
works. Also, LS3D-W 3D face landmark dataset has 
been presented in this work.

AWing [7] is a heatmap-based algorithm, Hourglass 
is used as a backbone. Stacks from 1 to 4 modules 
have been considered. The algorithm is based on Wing 
loss, FAN, LAB papers, and CoordConv [48]. The 
authors have noticed, that L2 loss function does not 
produce sharp-enough heatmaps on difficult face im
ages, because it is insensitive to small errors. In the 
meantune, the original Wing loss is inappropriate for 
heatmap-based detection as its gradient is discontin
uous at the point of zero. In addition, each heatmap 
has a class imbalance. Only a few pixels on the map 
relate to the foreground class (meaning that landmark 
is likely to be at this point), while most parts are la
beled as background class. The class imbalance is 
also not considered in the original Wing loss imple
mentation. To solve all these issues, Adaptive Wing 
loss (Fig. 10) is introduced, which is 1) differentiable 
around zero; 2) accents small errors around foreground 
pixels, but not around background. Here we do not 
give the function formula due to its complexity. To 
predict foreground pixels even more precisely, the au
thors introduce a special weighted loss map, which 
additionally enhances sharpness of the facial landmark 
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heatmap.
MobileFAN [49] is a heatmap-based approach, 

based on modified MobileNetV2 backbone with IX or 
0.5X width. The authors examine network distillation 
approaches in order to reduce the number of model 
parameters and increase inference speed for heatmap
based methods. Note, that despite name similarity the 
approach is not based on FAN [21], discussed earlier.

Geometry Aggregated Network (GEAN) [50] is a 
heatmap-based approach, based on a stack of 4 Hour
glass modules. The authors propose train- and test
time augmentation using Adversarial Attacks. Face 
adversarial attacks add noise or deformation to an im
age, so that face will not be recognized by face recog
nition system. To do that, face adversarial attack [51] 
warps the image to shift facial landmarks. The result
ing face has slightly different shape, eye distance, etc. 
Hourglass is used to detect landmark locations on such 
deformed image. The detected landmarks now corre
spond to the warped face. However, we need to form 
a prediction for the original face. To do that, we shift 
landmark coordinates with warp deformation, that is 
opposite to the one introduced by the adversarial at
tack. Now the predicted landmarks correspond to the 
original face. Next, we follow this procedure for K 
random adversarial attacks. It turns out, that the pre
dicted facial landmarks for each of the K images will 
be slightly different. Averaging such landmarks over 
all K images, results in accuracy improvement.

According to the authors, with respect to perfor- 
mance/quality ratio, it is the most beneficial to gener
ate K = 5 adversarial examples for both training and 
testing. It is possible to use different number of adver-

Figure 10: AWing surface plot. AWing accepts true y 
and predicted y heatmap probabilities. The function 
behaves as L2 loss for background pixels (when y,y 
are close to zero), and as Wing loss for foreground 
(when y,y are close to one), while preserving continu
ity. Thus, a greater weight is assigned to foreground 
pixels, resulting in sharper heatmaps and more accu
rate prediction.

sarial images for training and testing. The authors have 
explored several modifications to the adversarial attack 
algorithm, and the best results are obtained when at
tack scale is set individually for each of the landmarks’ 
semantical groups. The groups are assigned based on 
face region, such as nose, eyes, eye-brows, etc.

We have a deeper look at the concept of Adversarial 
Attacks in Section 6 of this paper.

HRNetV2 [38] is a heatmap-based approach. In this 
work the original architecture of HRNet [36] has been 
improved and applied to the task of facial landmark 
prediction.

LUVLi [6] is a heatmap-based approach. This is 
the only algorithm with CU-Net backbone. A stack of 
8 modules is used. The authors state, that facial land
mark detection is used in many critically important 
applications. Thus, they propose a method to predict 
facial landmark visibility and algorithm confidence for 
each landmark. Cholesky Estimator Network (CEN) 
and the Visibility Estimator Network (VEN) are in
troduced for landmark and visibility predictions corre
spondingly. To increase heatmap precision, the authors 
use weighted spatial mean of heatmap’s positive ele
ments, instead of simple argmax. Also, a relabeled 
AFLW dataset with 68 landmarks and landmark visi
bility labels is presented.

Deep Adaptive Graph (DAG) [52] is a direct re
gression approach. Note, that landmarks here are pre
dicted through a graph. Multiple backbones have been 
considered: VGG16 [53], ResNet50, 4xHourglass, 
HRNet-18. HRNet-18 has shown the best results.

Face landmark prediction accuracy can be improved 
by taking into account structural information about 
human face. The authors propose a topology-adapting 
graph learning in a form of Graph Convolutional Net
work (GCN) cascade for facial and medical (e.g., hand, 
pelvis) landmark detection. In DAG algorithm graph 
G = (V,E,F) is constructed, where V is a set of ver
tices, E is a set of edges, F = • •. ,/jv|} is the
so-called graph signal or graph features. Each vertex v 
corresponds to a single landmark. Each pair of vertices 
(v,:,v7),y7 is connected via a weighted edge e,:7. The 
weights aj are learned during training process, they 
determine how information is propagated in a graph 
convolution. Larger weights denote stronger semanti
cal connection between corresponding vertices. Graph 
convolution is defined as follows:

\e\ 
fii+i=Wif!i+^eijW2fi (6)

7 = 1

where Wi and W3 are learnable parameter matrices. fk 
is the feature computed for z111 vertex and A:* graph 
convolution.

Features F contain visual pt and shape qt features. 
Visual features are acquired from feature map H, that 
is produced by processing the whole image via convo
lutional neural network. Feature pt, that corresponds 
to i* vertex, is then acquired from H at a location 
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near the landmark. To obtain shape features qi the 
authors compute displacement vectors for each pair 
of landmarks. Displacement information improves 
the algorithm performance, when face is partially oc
cluded. In such cases, landmark locations can then be 
predicted from neighboring landmarks.

The landmark prediction process is conducted as 
follows: initial graph is constructed with mean weights 
computed over training set. Two separate GCNs are 
used for iterative graph transformation. GCN-Global is 
used to predict perspective transformation of the initial 
graph. GCN-Local is then applied multiple times to 
predict offsets for each of the landmarks for precise 
graph refinement.

The authors show, that in case of significant face 
occlusion their algorithm is better than the competi
tion. In addition, the learned graph is good at captur
ing semantical information about human face, greater 
weights eij are learned for landmarks that appear phys
ically closer to each other. For instance, edges between 
eyebrows have greater weight than edges between eye
brow and chin landmarks.

PropagationNet [54] is a heatmap-based algorithm, 
which uses a stack of 4 Hourglass modules as a back
bone. The authors note importance of face boundary 
information for landmark prediction. Previous LAB 
approach used heavy generative adversarial network 
for boundary estimation. The authors of Propagation- 
Net propose much simpler and faster approach: several 
convolutional blocks transform landmark heatmaps 
into boundary heatmaps after each Hourglass module. 
Boundary heatmaps serve as attention mask for inter
mediate predictions in Hourglass module to improve 
the final prediction accuracy. In addition, Hourglass 
module has modifications from FAN, and is extended 
with CoordConv [48] and Anti-aliased CNN [55].

Also, the authors introduce Focal Wing Loss, an 
extension of Adaptive Wing loss, that assigns greater 
weights to image scenes less presented in the current 
training batch. The examples of image scenes are large 
head pose, exaggerated expression, etc. The focus 
function for class c and sample n is defined as:

1, if Lli^c) = o
„,N , otherwise ' '

yN Ac) ' 
2-n=i ¿n

(c\
where s„ =0, when the sample n does not belong to 

GA
class c; and 4 =1, otherwise. Image scene annota
tions exist in WFLW, but not in 300W and COFW. The 
authors have annotated images of 300W and COFW 
by themselves. To form the final loss, image focus 
coefficient <4 1 is multiplied by conventional Adaptive 
Wing loss.

SA AT [14] is a heatmap-based approach, which 
uses a stack of 2 Hourglass modules as a backbone. 
The authors propose augmenting the training set with 
adversarial images. The network architecture is left 

unchanged. In contrast to GEAN, only training pro
cedure is modified, no artificially changed images are 
generated at test-time. Conditional GAN is used to 
perform the adversarial attack.

LDDMM-Face [56] is a shape model approach, 
which uses HRNet-18 as a backbone. The primary fo
cus of the work is on cross-dataset and sparse-to-dense 
annotation. Sparse-to-dense means, that the network 
can be trained on sparse face landmarks, and then it 
predicts dense landmark annotations. The authors esti
mate shape model deformation via large deformation 
diffeomorphic metric mapping (LDDMM) [57], [58] 
method. While cross-dataset landmark annotation is 
out of scope of this survey, this method is also capable 
of achieving good results for classical face landmark 
datasets.

AnchorFace [59] is a direct regression method. 
Two modified backbones have been considered: 
ShuffleNet-V2 (with faster inference), HRNet-18 (with 
better accuracy). HRNet results are present only for 
WFLW dataset. The authors tackle the problem of 
landmark prediction for images with large pose. For 
that they propose to configure a set of anchor templates 
for faces with different poses. Anchor templates are 
configured either manually or via KMeans clusteriza
tion on the dataset. Then the templates are refined with 
a network that predicts offsets and confidence of each 
of the anchor templates.

PIPNet [60] is a combined heatmap and direct 
regression approach. Several backbones have been 
considered: MobileNetV2, MobileNetV3, ResNet-18, 
ResNet-101, etc. In PIPNet it has been noted, that 
heatmap-based methods have high computational cost, 
but good accuracy. To alleviate the cost, the authors 
propose 3-head network. First head predicts coarse 
landmark heatmaps at lower than usual resolution. Sec
ond head predicts regression offsets. Thus, fine-tuning 
heatmap-based predictions. Third fine-tunes landmark 
predictions further by regressing offsets relative to the 
neighboring landmarks. All the heads share the same 
backbone and are computed in parallel. Additionally, 
“self-learning with curriculum” method has been intro
duced, where the authors try to learn on 300-W and 
then self-leam on other facial landmark datasets.

ADNet [61] is a heatmap-based approach. It uses 
a stack of 4 Hourglass modules as a backbone. The 
work is based on LAB and PropagationNet. Facial 
landmark datasets are annotated by humans. Thus, 
there exists some annotation error. It turns out, that 
error in tangent direction (relative to face boundary) 
is much higher, than in normal direction. Loss func
tions of existing algorithms do not account for such 
difference in annotation error. To mitigate the problem, 
anisotropic direction loss (ADL) is introduced, where 
higher weight is assigned to normal error. Also, Point- 
Edge heatmaps are presented, that are used as attention 
mask. Point-Edge heatmaps are predicted after each 
Hourglass module and have greater than zero values 
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around face boundary corresponding to a landmark. 
This is shown in Fig. 11a. Note landmark center 
accentuation shown in red. Sum of all Point-Edge 
heatmaps forms face boundary information (Fig. lib). 
Landmark locations are obtained through soft-argmax. 
The final loss function that is used to train the model 
consists of a sum of AWing loss for Point and Edge 
heatmaps, as well as ADL loss for landmark heatmaps.

(a) (b)

Figure 11: ADNet learns additional semantical infor
mation about face in a form of Point-Edge heatmaps. 
Each of the heatmaps corresponds to face landmark 
and a part of face boundary (a). Sum of all Point-Edge 
heatmaps forms face boundary (b). Such heatmaps are 
predicted after each Hourglass module and are used 
as attention masks to improve overall network perfor
mance.5

HIH [62] and SubpixelHeatmap [63] are heatmap
based approaches. Both use a stack of 2 Hourglass 
modules as backbones. The algorithms focus on reduc
ing heatmap quantization error. Input image and land
mark annotations are of resolution 256 x 256. How
ever, the heatmap is typically of size 64 x 64 per land
mark, which is 1/ 16th of the source image resolution. 
The landmark location is then found using argmax. 
The process of mapping floating point landmark loca
tion to a discrete grid is called quantization.

HIH. The authors tackle the problem by splitting 
heatmaps into integer and decimal. Integer heatmap is 
predicted via the usual heatmap-based facial landmark 
prediction pipeline. Then another decimal heatmap 
block predicts a precise offset to the quantized land
mark locations. Two ways to predict the offset have 
been considered: based on Convolutional Neural Net
works and Transformers [64], denoted as HIHc and 
I III 1/ correspondingly.

SubpixelHeatmap. To alleviate the above
described quantization problem, the authors propose a 
different approach, namely local soft-argmax compu
tation. For a given heatmap Hk, k'h landmark location 
is first found as usual via: (y^yj?) = argmaxH* and 
then refined via local soft-argmax over the neighboring 
patch dxd:

(Ay^Ayj.21) ^softmax) (8)
m,n

where t = 10 is the temperature, d = 5 is the suggested 
region size. Then the final landmark location is found

5Based on this source. Contains representative samples of Point- 
Edge heatmaps. Distributed under CC BY-NC-SA 4.0 License.

, .[1] , . .[1] , .[2] , . .[2] n , .[1] .[2] using: (yj. + Ayj. -1,ylk + Ayj.-I), where ylk ,ylk 
denote landmark position on X and Y axes correspond
ingly, and l = d/2. The authors compare this approach 
to global soft-argmax (i.e., computed over the whole 
image) applied to pose estimation in [65], and state 
that local soft-argmax yields much better results.

Also, the authors apply test-time augmentation to 
improve network performance. They feed 2 images 
with different random augmentations (To, Ti) through 
the network 0 aggregating the final heatmap as fol
lows: H = Tol^To(.Xi), 0)) + 0),
where 0 is the network 0 parameter matrix. In addi
tion, Hourglass architecture has been modified follow
ing FAN algorithm.

4.4 Facial Landmark Detection Algorithms: 
Summary

In this section we present and discuss facial landmark 
detection algorithm performance on the most widely 
used datasets: 300W, AFLW, COFW and WFLW. We 
summarize backbones used, and inference times on 
desktop and mobile devices. We present brief sum
mary of contributions of each facial landmark detec
tion method. We conclude this section with analysis 
of algorithm performance by years and per algorithm 
type.

Tables 4 to 8 present facial landmark detection 
method metrics on the most common datasets. The 
the best result is shown in red, second best is shown in 
blue. Metrics in the tables include NME (%), Failure 
Rate (FR, %) and CED-AUC. Table 9 has method back
bones and inference times listed. Different hardware 
was used for algorithm inference speed measurements. 
So instead of defining first and second fastest, we show 
all algorithms that perform faster than 60 frames per 
second (17 ms) in green. Note, that in addition to 
face detection, other algorithms will need to be exe
cuted, that is why the threshold is so strict. The tables 
are filled based on the results presented in the corre
sponding papers. If the result was published later, the 
metric’s source is shown in square brackets. Table 10 
has a brief suimnary of algorithm novelties proposed 
in each paper.

We present 300W dataset results normalized by both 
inter-ocular distance in Table 4 and inter-pupil in Ta
ble 5. Metrics are split into coimnon, challenge, and 
full as per protocol. Can be noticed, most novel al
gorithms use inter-ocular distance normalization. As 
is shown in Table 4, error on challenging subset is 
still quite high (3.99 %) and is significantly higher 
than the best common subset error (2.53 %). From 
Table 5 we note that Wing neural-network-based al
gorithm with ResNet-50 backbone is 1.7 times better, 
than regression-tree-based ERT.

AFLW results are shown in Table 6. NME (%) 
normalized by face bounding box diagonal is used to 
present the results. Errors are on average smaller than 
on 300W possibly as AFLW has fewer landmark to
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Table 4: Face landmark detection normalized mean error (NME) on 300-W dataset. Inter-ocular normalization is 
used. The best result is shown in red, second best in blue. Note, that significant qualitative improvement has been 
achieved over the past few years, but still Challenge subset error is quite high.

Model Year Common Challenge Full

DeFA [39] 2017 5.37 9.38 6.10
SAN [40] 2018 3.34 6.60 3.98
LAB [5] 2.98 5.19 3.49
AVS [16] 3.21 6.49 3.86
PFLD 0.25X [46] 3.03 5.15 3.45
PFLD IX 3.01 5.08 3.40
PFLD 1X+ (extra data) 2019 2.96 4.98 3.37
AWing-1HG [7] 2.81 4.72 3.18
AWing-2HG 2.77 4.58 3.12
AWing-3HG 2.73 4.58 3.10
AWing 2.72 4.52 3.07
MobileFAN (0.5) [49] 4.22 6.87 4.74
MobileFAN 2.98 5.34 3.45
GE AN (extra data) [50] 2.68 4.71 3.05
HRNetV2 [38] 2020 2.87 5.15 3.32
LUVLi [6] 2.76 5.16 3.23
DAG [52] 2.62 4.77 3.04
PropagationNet [54] 2.67 3.99 2.93
SAAT [14] 2.87 5.03 3.29
LDDMM-Face [56] 3.07 5.40 3.53
AnchorFace [59] 3.12 6.19 3.72
PIPNet (MobileNetV2) [60] 2.94 5.30 3.40
PIPNet (MobileNetV3) 2.94 5.07 3.36
PIPNet (ResNet-18) 2021 2.91 5.18 3.36
PIPNet (ResNet-101) 2.78 4.89 3.19
ADNet [61] 2.53 4.58 2.93
HIHC [62] 2.95 5.04 3.36
HIHr 2.93 5.00 3.33
SubpixelHeatmap [63] 2.61 4.13 2.94

Table 5: Face landmark detection normalized mean error (NME) on 300-W dataset. Inter-pupil normalization is 
used. The best result is shown in red, second best in blue. Note substantial error decrease of recently introduced 
neural-network-based approaches over regression tree-based (ERT) algorithm.

Model Year Coimnon Challenge Full

ERT [26] 2014 - - 6.40 [29]
LAB [5] 3.42 6.98 4.12
Wing (CNN-6) [29] 2018 3.35 7.20 4.10
Wing (CNN-6/7) 3.27 7.18 4.04
Wing (ResNet-50) 3.01 6.01 3.60
PFLD 0.25X [46] 3.38 6.83 4.02
PFLD IX 2019 3.32 6.56 3.95
PFLD 1X+ (extra data) 3.17 6.33 3.76
AWing [7] 3.77 6.52 4.31
DAG [52] 2020 3.64 6.88 4.27
PropagationNet [54] 3.70 5.75 4.10
ADNet [61] 2021 3.51 6.47 4.08
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be annotated (21 vs 68 in 300W), and due to different 
normalization. Face diagonal is larger than inter-ocular 
distance.

Table 6: Face landmark detection normalized mean er
ror (NME) on AFLW. Normalization by face bounding 
box diagonal is used. The best result is shown in red, 
second best in blue.

Model Full Frontal

ERT 4.35 [40] 2.75 [40]
SAN 1.91 1.85
LAB 1.85 1.62
LAB (extra data) 1.25 1.14
Wing (CNN-6) 1.83
Wing (CNN-6/7) 1.65
Wing (ResNet-50) 1.47
PFLD 0.25X 2.07
PFLD IX 1.88
AWing 1.53 1.38
GEAN (extra data) 1.59 1.34
HRNetV2 1.57 1.46
LUVLi 1.39 1.19
AnchorFace 1.56 1.38
PIPNet (MobileNetV2) 1.52 -
PIPNet (MobileNetV3) 1.52 -
PIPNet (ResNet-18) 1.48 -
PIPNet (ResNet-101) 1.42 -
SubpixelHeatmap 1.31 1.12

COFW results are presented in Table 7. The re
sults in papers are presented either normalized by 
inter-pupil or inter-ocular (majority) distance, but not 
both, which makes direct comparison more difficult. 
NME (%) and Failure Rate (FR, %) are used to present 
the results. Interestingly, novel approaches have FR 
equal to 0.0, which means that no images in the test 
set have NME above 10% as follows from Eq. 2.

WFLW is the most recent and interesting dataset 
in this survey. Results are presented in Table 8. We 
show NME (%), failure rate (FR, %) and CED-AUC 
(denoted as AUC in the table) for the whole test set. 
Note, that lower values of NME and FR are better. 
In contrast, higher AUC values are better. We also 
present errors on all types of challenging image cat
egories present in WFLW dataset: Pose, Expression 
(Expr.), Illumination (Ill.), Make-Up (M.U.), Occlu
sion (Occ.) and Blur. In Fig. 12 box plots for different 
image categories are shown. The plot is based on 
NME for all algorithms present in Table 8. We note 
significant difference in NME for different subsets. 
The most significant challenge to the landmark detec
tion datasets comes from large pose (best error is still 
at 6.56 %), followed by occlusion (4.36 %) and blur 
(4.21 %). In contrast, from make-up (3.62 %), illumi
nation (3.87 %) and expression (3.87 %) comes the 
least challenge. Unlike COFW, failure rate is still quite 
high (1.55 %) on the test set. While a factor of 1.6

Table 7: Face landmark detection normalized mean 
error (NME) and failure rate (FR) on COFW. The best 
result is shown in red, second best in blue.

Model NME (%) FR (%)

Inter-pupil normalization
Wing 5.44 [7] 3.75 [7]
AWing 4.94 0.99
PropagationNet 3.71 0.20
ADNet 4.68 0.59

Inter-ocular normalization
LAB 5.58 2.76
LAB (extra data) 3.92 0.39
Wing (ResNet-50) 5.07 [60] -
MobileFAN (0.5) 3.68 0.59
MobileFAN 3.66 0.59
HRNetV2 3.45 0.19
PIPNet (MobileNetV2) 3.43 -
PIPNet (MobileNetV3) 3.40 -
PIPNet (ResNet-18) 3.31 -
PIPNet (ResNet-101) 3.08 -
HIHc 3.29 0.0
HIHr 3.28 0.0
SubpixelHeatmap 3.02 0.0

improvement has been achieved on large pose subset 
over the past 3 years, further improvement is welcome. 
We see this dataset as the one posing the most interest 
for novel research.

Due to complexity of manual dense facial landmark 
annotation, the datasets are quite small. Thus, addi
tional training data has a signiLeant impact on model 
accuracy. We group additional data used into 3 main 
groups: 1) backbone pretraining on ImageNet; 2) us
age of extra image labels (such as image scene); 3) pre
training on other face-related datasets. SAN, DAG, 
PIPNet, Wing (ResNet-50 only) state that they use 
ImageNet-pretrained backbones. Hence, they are re
lated to the first group. Second group with PFLD, 
PropagationNet, annotates images manually with cate
gories (i.e., significant pose, emotion) to assign higher 
weights to rare categories. Also, PropagationNet and 
ADNet (focal loss modification only) use weighted 
loss based on image classes directly available from 
WFLW dataset. The final third group of algorithms 
uses extra face-related data during training. GEAN 
uses pretrained face recognizer to perform an adver
sarial attack on; certain modifications of LAB use pre
trained boundary module on 300W dataset and report 
results on COFW and AFLW; PFLD (1X+ modifica
tion only) is pretrained on WFLW and then reported 
on 300W. We denote face-data-based pretraining (3rd 
category) with extra data label. We do not highlight 
such results as the best result; however, the data is 
still present in Tables 4 to 8. Note the significant posi
tive impact of LAB boundary module pretraining for 
AFLW and COFW dataset performance in Tables 6
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Test set Subsets (NME %, J.)

Table 8: Face landmark detection normalized mean error (NME), failure rate (FR), CED-AUC on WFLW. Normal
ization by inter-ocular distance is used. Results are presented both for the whole test set and for subsets that focus 
on unusual Pose, Expression (Expr.), Illumination (Ill.), Make-Up (M.U.), Occlusion (Occ.) and Blur. The best 
result is shown in red, second best in blue.

Model NME %, J. FR %, J. AUC f Pose Expr. Ill. M.U. Occ. Blur

LAB 5.27 7.56 0.5323 10.24 5.51 5.23 5.15 6.79 6.32
Wing (tested in [7]) 5.11 6.00 0.5504 8.75 5.36 4.93 5.41 6.37 5.81
AVS 4.39 4.08 0.5913 8.42 4.68 4.24 4.37 5.60 4.86
AWing 4.36 2.84 0.5719 7.38 4.58 4.32 4.27 5.19 4.96
MobileFAN (0.5) 5.59 6.72 0.4682 9.68 5.98 5.45 5.33 6.49 6.31
MobileFAN 4.93 5.32 0.5296 8.72 5.27 4.93 4.70 5.94 5.73
HRNetV2 4.60 - - 7.94 4.85 4.55 4.29 5.44 5.42
LUVLi 4.37 3.12 0.577 - - - - - -
DAG 4.21 3.04 0.5893 7.36 4.49 4.12 4.05 4.98 4.82
PropagationNet 4.05 2.96 0.6158 6.92 3.87 4.07 3.76 4.58 4.36
LDDMM-Face 4.63 3.68 0.5509 - - - - - -
AnchorFace 4.62 4.20 0.5516 - - - - - -
AnchorFace (HRNet-18) 4.32 2.96 0.5769 - - - - - -
SAAT 5.11 5.63 0.5633 - - - - - -
PIPNet (MobileNetV2) 4.79 - - 8.76 4.86 4.56 4.60 6.04 5.53
PIPNet (MobileNetV3) 4.65 - - 8.22 4.75 4.49 4.46 5.72 5.31
PIPNet (ResNet-18) 4.57 - - 8.02 4.73 4.39 4.38 5.66 5.25
PIPNet (ResNet-101) 4.31 - - 7.51 4.44 4.19 4.02 5.36 5.02
ADNet 4.14 2.72 0.6022 6.96 4.38 4.09 4.05 5.06 4.79
ADNet (focal loss) 3.98 2.00 0.6250 6.56 4.02 3.87 3.62 4.36 4.21
HIHC 4.18 2.96 0.597 7.20 4.19 4.45 3.97 5.00 4.81
HIHr 4.21 2.84 0.593 7.20 4.28 4.42 4.03 5.00 4.79
S ubpixelHeatmap 3.72 1.55 0.631 - - - - - -

and 7 correspondingly.

In Table 9 we present algorithm backbones, number 
of network parameters, floating-point operations, and 
inference times on desktop computers (CPU, GPU) 
and mobile phones. Hourglass and CU-Net backbones 
are typically stacked. We use Ax Hourglass to denote 
a stack of N Hourglass modules. Number of parame
ters translates to device memory consumption, which 
is especially important for mobile and edge devices. 
Gigaflops (GFlops) is a number of floating-point oper
ations needed for network inference, which determines 
a requirement for device performance. We also present 
an estimate of algorithms’ inference time on desktop 
Central Processing Unit (CPU), Graphical Process
ing Unit (GPU) and mobile phones, as measured by 
the authors themselves. Note that different hardware 
has been used for the experiments, affecting measure
ments. Unfortunately, most of the algorithms report 
only GPU inference speed, and 11 out of 22 reviewed 
algorithms do not report any speed measurements at 
all. While state-of-the-art approaches seem to be very 
computationally intensive, there are still lightweight 
models that are quite accurate. Hourglass backbone is 
the most pervasive across modern landmark detection 
methods (used in 9 out of 22 cases). Only one algo
rithm (PFLD) has been adapted to a mobile device and 

can run there at real-time speed. We expect several 
of the fastest algorithms, like Wing (CNN6), Mobile - 
FAN (0.5), PIPNet (ResNet-18), and possibly AWing 
(1 x Hourglass) to be applicable to mobile devices as 
well. In general, we would like to see a larger number 
of fast approaches in future.

The final Table 10 presents a summary of facial land
mark detection methods, where we show algorithm 
type, main contribution and notes on algorithm appli
cability and performance. We use the following abbre
viations for algorithm type: D is direct regression, H is 
heatmap-based regression, SM is shape model, H + D 
indicates combined methods that use both heatmap 
and direct regression at different stages. Note that all 
of the recent neural-network-based facial landmark 
detection algorithms clearly show, that information ex
plicitly present in the dataset is insufficient. To solve 
this problem several approaches are proposed:

• use of an auxiliary representation, which contains 
structural information about the face, such as: 
3D face mesh (DeFA); deformable shape model 
(LDDMM-Face); graph-based message passing 
(LAB); yaw, pitch, roll rotation angles (PFLD); 
landmark visibility (LUVLi); face representation 
as a graph model (DAG); offsets to anchors de
fined for faces with different poses (AnchorFace)
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Table 9: Comparison of neural network backbones, computational complexity and inference speed of facial landmark 
detection algorithms. The smallest number of parameters and floating-point operations (flops) is shown in red, 
second best in blue. Inference times of less than 17 ms (or more than 60 frames per second) are shown in green.

Model Backbone # Params (M) # GFlops CPU (ms) GPU (ms) Mobile (ms)

ERT - - - 1 -
DeFA CNN - - - -
SAN ResNet-152 - - - 343 [46]
LAB 4 x Hourglass 25.1 [49] 18.85 [54] 2600 [46] 60
Wing CNN-6 3.8 - 6.7 2.5
Wing CNN-6/7 12.3 - 50 5.9
Wing ResNet-50 25 5.5 [60] 125 33.3
AVS ResNet-152 35.02 [62] 33.87 [62] - -
PFLD 0.25X MobileNetV2 - 1.2 1.2 7.0
PFLD 1X/1X+ MobileNetV2 - 6.1 3.5 26.4
FAN 4 x Hourglass 24 33.3
AWing-IHG lx Hourglass - 8.3
AWing-2HG 2 x Hourglass - 15.7
AWing-3HG 3 x Hourglass - 22.1
AWing 4 x Hourglass 24.15 [54] 26.79 [59] 29.0
MobileFAN (0.5) MobileNetV2 1.84 0.45 4.0
MobileFAN MobileNetV2 2.02 0.72 4.2
GEAN 4 x Hourglass - - 58.8
HRNetV2 HRNet-18 9.3 4.3 -
LUVLi 8xCU-Net - - 17
DAG HRNet-18 - - -
PropagationNet 4 x Hourglass 36.30 42.83 -
SAAT 2 x Hourglass - - -
LDDMM-Face HRNet-18 - - -
AnchorFace ShuffleNet-V2 - 1.71 22.2
AnchorFace HRNet-18 - 5.30 -
PIPNet MobileNetV2 4.2 0.5 33.9 8.3
PIPNet MobileNetV3 4.5 0.4 35.2 12.5
PIPNet ResNet-18 12.0 2.4 28.0 5.0
PIPNet ResNet-101 45.7 10.5 113.6 17.9
ADNet 4 x Hourglass 13.37 17.04 - 95.29
HIHC 2 x Hourglass 14.47 10.38 - -
HIHr 2 x Hourglass 28.18 10.29 - -
SubpixelHeatmap 2 x Hourglass - - - -

or offset regression from neighboring landmarks 
(PIP);

• boundary representation either explicitly (LAB) 
or via attention module (PropagationNet, AD- 
Net);

• hard example mining during training. Different 
variations on the theme have been presented in 
Wing, PFLD and PropagationNet papers;

• aggregating predictions for multiple input images: 
with style modification (SAN); after adversarial 
attack (GEAN); or with several different augmen
tations (SubpixelHeatmap). As it has been noted, 
minor changes in image might result in major 
shift in landmark prediction, averaging such pre
dictions results in improved accuracy;

• train set augmentation using style (AVS) or ad
versarial attacks (SAAT);

• reduction of very large errors (outliers) and in
creased contribution of small to medium-sized 
errors (to better refine predictions): Wing, AWing 
and derivate works;

• subpixel heatmap precision (reducing heatmap 
quantization error): weighted argmax (LU- 
VLI), joint heatmap and direct regression (PIP
Net), global soft-argmax (ADNet), CNN- or 
Transformer-based refinement (HIH), local soft- 
argmax (SubpixelHeatmap).

In Figs. 13 to 16 we present visual summary of the 
above-described tables, and discuss algorithms and 
datasets. Note, that for consistent comparison between
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Table 10: Face landmark detection method brief summary. The following abbreviations are used for algorithm type: 
D for direct regression, H for heatmap, SM for shape model, H + D indicates combined heatmap and direct methods.

Model Type Main Contribution Notes

ERT D First use of Ensemble of Re- Fast on CPU. Mediocre quality
gression Trees

DeFA SM 3D face mesh for faces with Can train on datasets with different annotation 
large pose and occlusion schemes

SAN H Style neutralization Good for landmark prediction under extreme
lighting. Has slow inference

LAB H + D Boundary intermediate repre- Boundary module can be trained on datasets with 
sentation different annotation schemes

AVS H Dataset augmentation via Idea is applicable to many methods
styled image generation

Wing D Special loss for direct regres- Training reduces small-to-medium errors. Can be
sion adapted to any direct regression model

PFLD D Novel train loss and face angle Good speed/quality ratio. The only method tested
prediction scheme on a mobile device

FAN H Binarized convolutions for Lacks testing on widespread face landmark
landmark prediction datasets. Used in derivative works

AWing H Special loss for heatmap re- Produces sharper heatmaps
gression

MobileFAN H Network distillation One of the fastest heatmap regression methods.
Not tested on mobile devices

GEAN H Train/test-time augmentation Consolidates knowledge from face recognition
using adversarial attack on model and landmark detection datasets. Requires 
face landmarks multiple passes over the main network

HRNetV2 H Improvement of HRNet archi- HRNet reduces required computation over stan-
tecture dard Hourglass

LUVLi H Prediction uncertainty estima- Predicts landmark location and confidence jointly,
tion Learning prediction confidence requires special

dataset annotation. Application of CU-Net back
bone for face landmark prediction

DAG D Topology-Adapting Graph Captures face structural information. Good pre-
Convolutional Network cas- diction for complicated pictures 
cade

PropagationNet H Boundary attention module. SOTA on 300W
Focal Wing Loss

SAAT H GAN and adversarial-attack- The idea can be applied to any method
based training image genera
tion

LDDMM-Face SM LDDMM shape model with Good dense landmark prediction after training on 
deep neural networks sparse landmark annotation

AnchorFace D 2-step prediction: anchor es- While the backbone is lightweight, inference time
timation; refinement with re- is still high 
gression offsets and confi
dence scores

PIPNet H + D Coarse heatmap refined via di- In theory, faster inference time with good quality, 
rect regression In practice, time is still high

ADNet H Point-edge heatmaps. Sepa- SOTA on multiple datasets
rate tangent/normal errors

HIH H Reducing heatmap quantiza- Simpler implementations (like SubpixelHeatmap)
tion error via nested heatmaps seem to work better

SubpixelHeatmap H Reducing heatmap quantiza- SOTA results on many benchmarks. Requires
tion error via local soft- multiple passes over the network 
argmax
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Figure 12: Box plots that show Normalized Mean 
Error (NME, %) on WFLW dataset for algorithms 
from Table 8. The results are shown for whole test 
set (All), as well as for subsets that focus on unusual 
Pose, Expression (Expr.), Illumination (Ill.), Make-Up 
(M.U.), Occlusion (Occ.) and Blur. Images with large 
pose, occlusion and blur are more challenging, than 
others.

datasets we have selected results with inter-ocular nor
malization, such results are present for 300W, COFW 
and WFLW datasets. Unfortunately, AFLW proto
col specifies only face box diagonal normalization, 
which makes impossible direct comparison with other 
datasets. Because-of that we compare it separately. As 
usual, we do not include results with extra training 
data used.

In Fig. 13 we show the best normalized mean error 
achieved by each type of algorithms: direct, heatmap
based, combined heatmap and direct, shape-model- 
based. All of these algorithms are based on neural 
networks. Direct and heatmap-based approaches have 
nearly the same performance on 300W (Full) dataset, 
with a slight advantage of heatmap-based approaches. 
In contrast, heatmap-based approaches show WFLW 
performance significantly better, than direct regression 
algorithms. The best direct NME of 4.21 % is achieved 
by DAG algorithm (direct prediction based on graphs), 
the best heatmap-based NME is much lower at 3.72 %. 
This is also state-of-the-art result, that is achieved by 
SubpixelHeatmap. Note, significantly higher COFW 
error for direct approaches. This happens because only 
a single direct regression algorithm has been tested 
on COFW, that is Wing algorithm. The approach is 
quite old. Hence, this error spike should be consid
ered as an outlier. Next, we take a look at combined 
heatmap-direct approaches. There are only two of 
them, LAB (which is quite old) and PIPNet. PIPNet 
proposed to predict coarse heatmap and then refine it 
via direct regression. While the idea is quite promising, 
the algorithm offers worse performance than direct or 
heatmap-based approaches. Finally, neural-network
based shape model algorithms offer the worst perfor

mance. Such approaches are quite useful, when net
work training is performed on images with different 
annotation schemes, or when 3D face mesh is required. 
Note, in this survey only DeFa algorithm produces 
3D mesh. However, for most other use cases such 
approaches should not be considered.

D H H+D SM
Algorithm Type

Figure 13: The best normalized mean error for each 
algorithm type: direct (D), heatmap-based (H), com
bined heatmap and direct (H+D), shape-model-based 
(SM). Heatmap-based approaches offer the best qual
ity. Note, similar performance of direct and heatmap
based approaches on 300W.

In Fig. 14 we show the best inference time achieved 
by algorithms of each type. We do not visualize re
sults for shape-model-based approaches as no timings 
have been presented in the corresponding papers. As 
expected, the fastest approaches use direct regression. 
They typically have more lightweight backbones. Also, 
they do not need to predict large heatmaps for each of 
the landmarks, which saves computation. Heatmap
based approaches have the best GPU inference tune 
at 4.0 ms (achieved by MobileFan (0.5)), which is 
worse than 1.2 ms achieved by direct approach (PFLD 
0.25X). While the timings seem to be quite small, note 
that both approaches offer significantly lower accuracy, 
than state-of-the-art algorithms. State-of-the-art algo
rithms still execute around 100 ms on GPU. Only GPU 
timings are available for heatmap-based approaches. 
Finally, we show tunings for combined heatmap and 
direct regression methods. The best results achieved 
by PIPNet with ResNet-18 backbone. While the back
bone is quite lightweight, inference time of 28.0 ms on 
CPU and 5.0 ms on GPU for this model is quite high. 
We would have expected the tunings to be lower here.

In Fig. 15 we show the best algorithm performance 
grouped by dataset and year. To begin with, we dis
cuss 300W dataset results, which are presented for 
Full and Challenge sets. We note that no progress has 
been made in 2021 in comparison to 2020. We ex
pect error of all algorithms to stop decreasing at some 
point, as both training and test sets contain annotation 
errors. Thus, it would be interesting to see, whether
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D H H + D
Algorithm Type

Figure 14: The best inference time for each algo
rithm type: direct (D), heatmap-based (H), combined 
heatmap and direct (H+D). Results are shown for dif
ferent inference devices: CPU, GPU and Mobile. Di
rect regression algorithms have the best speed. Mixed 
H+D algorithm time is unexpectedly high.

any progress is made in 2022, or the remaining algo
rithm error is due to incorrect annotation. On COFW 
significant progress has been made over years. And 
WFLW dataset is still the most challenging. WFLW 
dataset has been introduced in 2018, and the largest 
improvement has been achieved in the following year, 
which is especially obvious on Pose subset, that has 
the highest normalized mean error. As discussed be
fore, annotation of faces with unusual Make-Up has 
the least challenge to facial landmark algorithms, but 
NME has decreased even on this subset. Moving over 
to AFLW, in Fig. 16 we show AFLW performance over 
years. The performance is still being Unproved. We 
have deliberately left NME for algorithm from 2014 
to note the significant progress made in 7 years.

To conclude this section, we would like to note 
the best algorithms on different datasets: Subpixel- 
Heatmap, ADNet, PropagationNet. All of these algo
rithms are heatmap-based. The key ideas proposed 
in them are complimentary, for instance, Subpixel- 
Heatmap has offered a way to decrease heatmap quan
tization error. Recall, that input image and landmark 
annotations are of resolution 256 x 256, while the 
heatmap is only 64 x 64. The authors of ADNet have 
presented Point-Edge heatmaps as attention masks, 
and PropagationNet has presented Focal Wing Loss 
modification. However, inference time of ADNet is 
still quite high at 95.29 ms on GPU. We expect Prop
agationNet to be even slower, based on presented in 
Table 9 number of floating point operations. Subpix- 
elHeatmap neural network is inferred for each image 
several times, which will also be slow. Thus, we would 
like to see faster algorithms in future, and those that 
are easily applicable to mobile devices.

5 Facial Landmark Detection: Applica
tions

5.1 Mobile-Friendly Joint Face and Land
mark Detection

As we have noted previously, face landmark detection 
is one face processing pipeline steps. To actually get 
a dense landmark annotation, face has to be detected 
first and cropped based on its bounding box. In this 
section we present some of mobile-friendly face detec
tion methods. Interestingly, these methods also predict 
coarse (5 or 6) face landmarks, such as eyes, mouth, 
nose.

Multi-task Cascaded Convolutional Networks 
(MTCNN) [66]. The neural network is trained jointly 
to detect faces and landmark locations (five of them, 
to be precise: eyes, tip of the nose, mouth comers), 
which improves quality on both tasks. The network is 
built in a form of a three-network cascade: Proposal 
Network (P-Net), Refine Network (R-Net), Output 
Network (O-Net). Each network predicts face bound
ing rectangle, probability that a particular rectangle 
contains a face, and five landmarks. P-Net is a fast 
fully convolutional network, which processes the orig
inal image in multiple resolutions (the so-called image 
pyramid). This network outputs a lot of coarse face 
rectangle predictions, which are then filtered out by the 
Non-Maximum Suppression (NMS) algorithm. Sub
sequently, R-Net refines the predicted rectangles. It 
does so without reprocessing the whole image, which 
saves computation time. NMS is then applied again. 
Last, O-Net makes the final refinement. This is the 
slowest network in the cascade, but it processes a small 
number of face rectangles. According to the authors, 
to improve quality it is important to solve the follow
ing tasks at the same time: 1) classify bounding rect
angle as a face or not a face; 2) perform regression 
over bounding rectangle coordinates; 3) localize face 
landmarks. Each task has a weight a assigned: for 
P-Net and R-Net cq = 1, cq = cq = 0.5, for O-Net 
cq = 1, a2 = 0.5,0C3 = 1 correspondingly. At training 
time online hard-example mining has been used, mean
ing that training is performed on complicated examples 
while skipping those, on which network prediction is 
quite accurate already. In the paper the authors se
lect around 70% of hardest examples in each training 
batch.

BlazeFace [67] is a novel approach to joint face 
and landmark detection. 6 landmarks are predicted: 
eye center, ear tragions, mouth center, and nose tip). 
The algorithm was specifically designed for inference 
on mobile devices. The authors claim sub-second 
detection time on mobile for Tensorflow [68] GPU 
implementation. The approach is based on Single 
Shot Detector (SSD) [69] with MobileNetV2 back
bone. The authors propose to modify MobileNetV2 
to improve performance to accuracy ratio. For that 
they increase complexity of Bottleneck block (main
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Figure 15: State-of-the-art normalized mean error (NME, %) on 300W (Full, Challenge), COFW, WFLW (All, 
Make-Up, Pose) by years. Score on 300W dataset doesn’t improve in 2021. Error on WFLW dataset, in contrast, 
significantly decreases with the tune. WFLW error is higher (especially on images with large pose), than that of 
300W and COFW, which makes it the most challenging dataset.

2014 2018 2019 2020 2021
Year

Figure 16: Algorithm Normalized Mean Error (NME, 
%) on AFLW dataset by year. We deliberately left 
NME from 2014 to illustrate significant progress over 
nearly a decade. Note that NME still decreases year 
over year.

building block of MobileNetV2 architecture) and de
crease the number of such blocks at the same time. 
Also, they have optimized SSD architecture for face 
detection by removing the ability to predict wide or 
tall bounding boxes, that are not common for faces. 
In addition, intra-frame jitter produced by the NMS 
algorithm has been reduced via a separate bounding 
box regression module. The network is proposed in 2 
configurations: one for pictures taken on back camera 
(typically smaller faces) and another for frontal cam
era photos (typically larger faces). While the network 
has good accuracy, the input resolutions are fixed to 
128 x 128 or 256 x 256, which is a disadvantage of 
the method. MTCNN, for example, can take images 

of arbitrary resolution as input. Note, that training has 
been performed on a closed dataset. Thus, it is not 
possible to reproduce the results.

A comprehensive review of other modern face detec
tion methods is presented in [70]. We see the following 
prospects for further research in the field of joint face 
and landmark detection:

• inference speed to accuracy ratio requires im
provement. Faster approaches often have lower 
quality;

• large annotated dataset is required to train the 
model. If the dataset is biased (unbalanced) in 
race or gender, face detection accuracy of under- 
represented groups will typically suffer.

5.2 Face Animation and Reenactment

Facial landmark detection is used in human or imag
inary character face animation algorithms. Applica
tions include actor animation in movies, creation of TV 
or game virtual newscasters (as a 3D model or directly 
via GAN image generation). Recent landmark detec
tion algorithms enable this without costly equipment 
by using a simple RGB camera.

According to research presented in a series of pa
pers, movie dubbing process from foreign languages 
is expensive and time-consuming. This is because lip 
movement for the original and dubbed audio tracks 
should match. Furthermore, the movement discrep
ancy leads to discomfort when watching movies, es
pecially for hearing-impaired people. As a solution, 
authors of [71] propose to change lip movement dur
ing the dubbing process. Their algorithm detects facial 
landmarks and substitutes mouth region with a 3D 
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model, adapted for the speaker. However, at this stage 
the substitution is still visible. Besides that, DeFA 
algorithm can build a 3D whole-face mesh for varied 
poses and emotions, as has been said previously.

Many of the recent neural-network-based algo
rithms do not use an intermediate 3D face model 
for realistic image generation, but generate images 
directly from facial landmark locations via Generative 
Adversarial Network (GAN). For instance, the authors 
of [72] by using MAML [73] meta-learning approach, 
GAN and the so-called perceptual loss [74], obtain 
high face reenactment quality (Fig. 17). Landmark 
information extracted from an image is one of the neu
ral network inputs. FAN algorithm is used to extract 
the landmarks. The algorithm has some disadvantages 
though. For instance, when actor, that drives the an
imation, has significantly different face shape from 
animated face, the resulting animation is unrealistic 
and contains artifacts. According to the authors’ re
port, this method outperforms the competition for face 
emotion transfer task in few- or one-shot problem state
ment. The authors note, that an improvement of facial 
extraction algorithm and addition of gaze direction 
might have improved the reenactment quality.

Figure 17: Reenactment scheme, (a) source character 
image (the one we want to reenact); (b) one of frames 
of driver actor; (c) extracted facial landmarks that are 
fed to the reenactment algorithm; (d) reenactment re
sult.6

In [75] authors are using Pix2PixHD [76] neural net
work to accomplish lip sync task. It has been proposed 
to synthesize the intermediate face representation us
ing its boundaries, face landmarks (using Dlib library) 
and sound-track-based representation.

In another work FReeNet [77] algorithm is pre
sented for reenactment between different (unknown 
during training) people. For that a special Unified 
Landmark Converter module has been introduced, 
which adapts facial landmark coordinates between dif
ferent people. Landmarks for the source and target 
people are extracted via PFLD algorithm. Then im
ages are generated via Cycle-GAN [42] and a special 
loss function. The use of landmark converter module 
has given the largest performance increase on the test 
sets.

A survey of emotion transfer and face reenactment 
methods can be found in [78] Section “Expression 
Swap”. Most recent algorithms, that focus on face 
animation of real people use generative adversarial 
neural networks (GANs). Currently, these approaches

distributed under Creative Commons - Attribution 3.0 license. 
Based on this source. 

have the following limitations, that require a solution 
in future, for instance:

• videos produced by neural networks lack tempo
ral stability. For instance, face animation might 
jitter, artifacts may appear on the screen;

• face animation under large pose might cause un
realistic face deformation;

• animation quality significantly suffers, if source 
character and animation driver have different face 
shape.

5.3 Driver Status Tracking

A large number of car accidents happens because-of 
sleepy or tired drivers. Expensive cars offer capa
bilities of emergency stopping when an obstacle is 
detected, and line-keep assist. Mainstream cars do 
not have such features. In both cases, it is better to 
track driver status and stop the car early, than to apply 
emergency brakes. Most of the research in the field 
is focused on implementing status tracking in an au
tonomous way (without Internet connection). Driver’s 
smartphone or low-power portative device (such as 
Raspberry Pi) is used to process video signal from 
a camera placed in a car’s cabin. Neural-network
based algorithms are among the most widely used 
approaches here.

In [79] the authors estimate driver tiredness via a 
neural network that takes facial landmarks as an input. 
Driver’s face and landmarks are detected with existing 
methods. In contrast, in [80] a MobileNetV2-based 
architecture is presented to estimate driver’s sleepiness 
directly from the video stream (without an intermedi
ate step of landmark detection), yet total training time 
is quite high. In [81] neural-network-based landmark 
detection is utilized to simplify dataset labelling, then 
a different network is trained to recognize driver’s sta
tus. In addition to fatigue, the authors also estimate 
driver’s distraction by tracking whether he looks in 
safe zones (such road, rear-view mirror, dashboard, 
etc.) or not. In [82] a system that tracks driver’s abil
ity to take over the driving from level 2 autonomous 
cars (partial driving automatization) is studied. The 
authors acquire driver’s video via an infrared camera. 
Decision whether the driver is distracted is based on 
the detected landmarks. These and similar algorithms 
are developed to make the roads safer.

Special hardware can also be used to track driver sta
tus [79], [80], for instance, tracking of driving wheel 
movement; wearable devices that perform Electrocar
diography (ECG) and heartbeat measurements. How
ever, both of these approaches are more expensive and 
cannot track driver’s distraction from the road.

Neural-network-based driver status tracking algo
rithms have the following limitations, for instance:

• achieving sufficiently fast inference on a mobile 
device is a challenge;
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• driver status tracking is often performed at night
time when driver is poorly illuminated. Facial 
landmark detection accuracy suffers in such con
ditions, especially given limited computation 
power.

This is why development of mobile networks and land
mark detection algorithms will definitely enhance the 
quality of driver status tracking systems.

5.4 Face Recognition and Emotion Classifi
cation

To begin with, we briefly talk about algorithms that 
perform one of the following tasks (often, the same 
algorithm can perform all of them): 1) face verifica
tion, when 2 pictures are given and the task is to say 
whether they contain the same person; 2) face recog
nition: given a photo and a known person database, 
algorithm should say who is on the photo or that the 
person is unknown; 3) clusterization, where the task 
is to group similar faces. The most efficient algo
rithms use face preprocessing, that is face detection 
and tight crop. Often for improving recognition quality 
the so-called “face alignment” should additionally be 
performed, that is a geometrical image transformation, 
when facial landmarks are moved to the canonical lo
cations. Many of the modern algorithms use MTCNN 
for joint face detection and localization of 5 landmarks. 
The topic of face recognition is well-described in, for 
example, [83]. We note in particular, high interest to 
face recognition directly on mobile devices [84], [85].

Also, we discuss emotion recognition. Our emo
tions mostly consist of lip, eyes, eyebrows or mouth 
movements. That is why in certain cases it is fruitful 
not to force the neural network to learn face parts dur
ing emotion recognition on its own, but to feed this 
information detected by another algorithm together 
with the original image [86], [87].

The field of face recognition has several problems 
that require a solution in future, for example:

• face recognition when photos represent a person 
of different ages;

• when face occlusion is significant, which is es
pecially important when medical masks have be
come common;

• faces with large pose and emotion;

• also, some of the backbones discussed here in a 
context of facial landmark detection are used for 
face recognition and emotion classification. Thus, 
improving neural network backbones is important 
as well.

6 Facial Landmark Detection: Vulnera
bilities

Modern computer vision algorithms (including neural 
networks) are amenable to the so-called “adversarial 
attacks”, first reported in the field of computer vision in 
[88]. The authors were able to drastically change neu
ral network prediction in classification task by adding 
especially crafted noise (invisible to human eye) to 
an image. The attack has been conducted by maxi
mizing network error on the target image via L-BFGS 
method. Images with adversarial noise are almost al
ways misclassified on MNIST dataset. It should be 
stressed that during the adversarial attack the network 
itself is not modified, only the images fed to it. More
over, adversarial examples often remain malicious to 
networks different from the one they were crafted for, 
given that another network was trained on the same or 
similar dataset. It should be noted, that adding random 
noise has much lower negative effect on the network’s 
classification accuracy, than adversarial attack noise. 
In [89] it has been shown that for a successful adver
sarial attack on the MNIST dataset, model as simple as 
logistic regression can be used to generate adversarial 
examples. The attack remains efficiently transferrable 
to architectures, that are more complicated.

If previous algorithms have attacked a digital im
age (stored in computer memory), in [90] it has been 
shown that attacks can be performed through a smart
phone camera. In [91] binary importance maps have 
been introduced, which hint where adversarial marks 
should be placed on a piece of paper to fool the net
work trained to classify handwritten digits. The first 
adversarial attacks were white-box, i.e., the network 
architecture and trained weights are known to the at
tacker. Follow-up works similar to [92] and others 
have shown that it is possible to perform black-box 
attacks without such knowledge. Despite the fact that 
numerous works are devoted to detecting or prevent
ing attacks from happening, new more advanced al
gorithms bypass all of the defense methods [93]. A 
survey of adversarial attack methods can be found 
in [94]. All of them are applicable to algorithms of 
face or facial landmark detection.

In the meantime, there exist special methods that 
can prevent the face from being found or correctly de
tected by using stickers or accessories in real world. 
In [95] it has been shown, that in a controllable environ
ment it is possible to fool face recognition algorithm 
or Viola-Jones face detector. The authors used special 
eyeglasses with a print on a frame. In [96] it has been 
proposed to fool MTCNN face detection algorithm 
with the use of stickers on cheeks or medical mask. 
In cases when the face cannot be detected, landmark 
localization cannot be performed either. Face recog
nition adversarial attack based on facial landmarks is 
presented in [51].
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7 Conclusion

From a detailed survey, we see the following facial 
landmark detection algorithm problems, that require 
a solution in future research: 1) despite a significant 
growth of methods’ quality, few of them focus on the 
real-world applicability in resource-constrained envi
ronments, such as mobile or edge devices; 2) many 
applications require high performance on mobile or 
portable devices, yet to the best of our knowledge, au
thors of only a single algorithm have targeted a mobile 
application directly in the original paper. Note that 
state-of-the-art algorithms have slow inference speed; 
3) while modem research already focuses on datasets 
in uncontrollable environments, a promising research 
direction is to enhance algorithms in even harsher con
ditions, for images with large pose and significant face 
occlusion, while still maintaining high landmark den
sity. Error of current generation of algorithms in these 
conditions is quite high. We see WFLW dataset as 
the one posing the most interest for further research. 
Also, it would be desirable to see more of the novel 
facial landmark detection algorithms to report their 
inference speed on desktop GPU, and if possible, on 
mobile devices.

We hope, that the described modem developments 
in all of the sections will lead the reader to new ideas 
of practical use and further research directions.
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