
Electronic Journal of SADIO

http://www.dc.uba.ar/sadio/ejs

vol. 1, no. 1, pp. 88-101 (1998)

Telescope: An Object-Oriented Architecture

for Visualization Systems

Ricardo Orosco

Universidad Autónoma de Madrid, Depto. Ingeniería Informática Campus Cantoblanco, (28049) Madrid,

España, Univ. Nacional Centro Prov. Bs. As, Fac. Ciencias Exactas, ISISTAN, Grupo de Objetos y

Visualización, Tandil, Argentina and Comision Investigaciones Científicas (CIC) Prov. Buenos Aires,

Argentina. E-Mail: orosco@acm.org

Abstract

The construction of information visualization systems is a difficult task. The

provision of an object-oriented software architecture for this kind of systems can help to

reduce this difficulty. However, this approach is not currently used in most visualization

systems. In this work, Telescope, an object-oriented architecture for visualization

systems, is presented. Its main goal is to facilitate this construction, taking advantage of

the benefits of the object-oriented paradigm (reusability, extensibility, and

maintainability). The Telescope architecture is based on six main components, which are

common to all information visualization systems: data representation, data abstraction,

data objects- graphical objects mapping, presentation, interaction and visualization state.

CityVis, a visualization system for city data, developed using Telescope architecture is

described, showing the implementation of each Telescope component. Also, the

implementation of several features in visualization systems, such as visualization

techniques and management of abstraction levels and revealed information is described.

Finally, current work and conclusions of the project are explained.

R. Orosco, Telescope: An OO Architecture for Visualization Systems, EJS, 1(1) 84-97 (1998) 85

1. Introduction

The understanding of great quantities of data is a very difficult task [Duce 93]. Furthermore, in many

cases, data have a multidimensional nature that increases this difficulty. One of the most common ways to

understand data is by means of the use of graphical representations or visualizations of them, through the

so-called information visualization systems. These systems have the goal of allowing the analyzer (i.e., the

system user) to perform data exploration processes, so to obtain more information about the visualized

data (e.g. to find items satisfying particular requirements or to detect patterns in a set of items).

Nevertheless, the construction of information visualization systems is difficult and complex [Kazman 96].

There are several factors contributing to this difficulty:

- great variety of domains. (E.g. numerical data, geographical data, financial data, software, etc.)

Each one of these domains has its own requirements and characteristics.

- different kinds of visualizations. The analyzer can perform several types of visualization processes

[Bergeron 93]: exploratory (when the user does not know what is looking for), analytical (the user knows

what is looking for in the data, trying to determine if it is there) or descriptive (when the phenomenon

represented in the data is known, but the user needs to present a clear visual verification of it).

- diversity of user tasks and goals. Users can perform visualizations with different goals (e.g. find

patterns in data, search for items satisfying some criteria, comprehension of the data space, etc.), and/or

use different visualization techniques according to their purposes.

- low reusability degree of previous visualizations. This fact is a consequence of the hand-crafted

nature of visualization systems (generally, they are built using a high-level programming language, such as

C++ or FORTRAN) or because they are oriented to some particular domain.

In order to reduce this difficulty, the provision of a software architecture can help in the visualization

systems construction. Particularly, object-oriented frameworks are useful in providing a generic solution

for given application domains. A framework implements, in terms of object classes, the generic behavior

of an application domain, while the particular features of each application are implemented through

subclasses. However, neither software architectures nor object-oriented frameworks are currently used in

information visualization systems. Most of current works on this area consist in the development of new

visualization techniques (e.g. [Furnas 86], [Robertson 93], [Chuah 95], [Ahlberg 95], [Keim 94]), or in

the provision of assistance to the user in the data exploration process (e.g. [Rennison 94], [Lucas 96],

[Andrienko 97]). VANISH [Kazman 96] is one of the few works in visualization construction, although its

usability is limited to hierarchically organized data.

In this work, Telescope, an object-oriented architecture for the structuring and building of

visualization systems is presented. Its main goal is to facilitate the construction of visualization systems,

taking advantage of the benefits of the object-oriented paradigm (such as reusability, extensibility, and

maintainability). The design of Telescope was motivated by several goals:

- generality, allowing the construction of visualizations in different domains;

- allow the easy incorporation of new visualization techniques, in order to support a wide variety of

user tasks and goals;

- reusability of previous visualization systems (or part of them), to reduce the time and difficulty of

visualization systems construction; and

- extensibility, allowing the incorporation of new functionality in the visualization.

This paper is organized as follows: section §2 enumerates the main components of an information

visualization system, and some of the software architectures reported in the bibliography. Section §3

describes the structure of Telescope. Section §4 presents CityVis, an information visualization system for

city data, implemented using the Telescope architecture. Section §5 describes the implementation of

several features of visualization techniques in CityVis, such as visualization techniques and abstraction

levels management. Finally, section §6 explains conclusions and future work.

2. Information Visualization Systems components

R. Orosco, Telescope: An OO Architecture for Visualization Systems, EJS, 1(1) 84-97 (1998) 86

According to [Duce 93], a visualization process consists of three phases, each one corresponding to

one of the major transformations performed over the visualized data:

1. ‘Data Access’: accessing and structuring of the visualized data (generally stored in a database);

2. ‘Mapping’: conversion of data in a graphical representation, and the assignment of visual

properties to the graphical objects (e.g. color, texture, etc.); and

3. ‘Rendering’: creation of the presentation.

Most of current visualization systems (e.g. AVS [Upson 89], Iris Explorer [Edwards 92]) present

components for each of these phases. However, in order to provide an adequate support for the full

visualization process, others components must be identified.

- In most cases, a visualization process often performs a semantic processing of the data to be

visualized, such as a filtering phase. In consequence, may be necessary to add an ‘Abstraction’ component

before the creation of the graphical objects (Mapping).

- An information visualization system can be described as a graphical presentation of data, and direct

manipulation tools for exploring relationships among these data [Fishkin 95]. Therefore, an ‘Interaction’

component must be included in every visualization architecture.

- Finally, because visualization systems must support data exploration processes, it is necessary to

keep information about user operations and current state of visualization process. Accordingly, it is

necessary to include a ‘Visualization State’ component.

In general, current visualization systems present some of these components, although not necessarily

all of them. Most of these systems are centered on only one or two of these components. For example,

SDM [Chuah 95] is focused in manipulation aspects, Visage [Lucas 96] in presentation construction,

Galaxy of News [Rennison 94] in data structuring, and Pad++ [Bederson 94] in provision of abstraction

levels (through the use of zooming).

The design of software architectures for visualization systems including all of these components has

Database

Data

Representation

Data Abstraction

Abstractor1 Abstractor2 Abstractorn

Data Objects -

Graphical Objects

Mapping

Mapping1 Mapping2 Mappingn

Data Objects

Visualized Data Objects

Visualization

State

Selected

Items

User Model

Interaction

ModelVisualization

Presentation Interaction

Graphical Objects

Fig 1. Telescope components

R. Orosco, Telescope: An OO Architecture for Visualization Systems, EJS, 1(1) 84-97 (1998) 87

not been sufficiently explored. VANISH [Kazman 96] is one of the few works in this area; it consists of an

adaptation of the Arch/Slinky metamodel [SIGCHI 91], designed for user interfaces architectures.

Although it allows an easy and quick prototyping of visualizations, its range of applicability is limited to

hierarchically organized data.

Cognitive Coprocessor [Robertson 93] is another visualization system architecture, whose main goal

is to minimize the information access cost. It is used in the Information Workspace system, along with

three-dimensional workspaces (Rooms 3D) and specialized browsers (Cone Tree, Perspective Wall,

Calendar Visualizer). Its design is mainly focused on the satisfaction of temporal constraints, both for the

provision of animation capabilities and to allow immersive navigations.

3. Telescope framework

The Telescope framework was designed taking into account the six components identified in the

previous section. Fig. 1 summarizes the Telescope structure, describing the main relationships among its

components.

Data Representation: storage and access to the data items to be visualized. Because data objects are

generally stored in a database, this component must provide an interface to this storage (which can be

implemented in a language such as SQL). Additionally, once the data was accessed, they must be

organized according to the current visualization tasks and goals, to allow a quick access to the information

during the exploration process.

Data Abstraction: this level determines which elements will be visualized, and classifies them into

sets of related items. It is implemented by abstractors [Campo 97a], which are entities capable to access

the data objects and determine which of them will be presented. The input of each abstractor is a set of

data objects, organized in a convenient way, and its output is another set of items (e.g. in the filtering case,

the output is a subset of the input), containing the data to be presented in the visualization. The

determination of the visualized items may be performed based on several factors, such as visualization

state, zoom level or current task.

Data Objects - Graphical Objects Mapping: this component performs the association between the

data objects (and their properties) and the correspondent graphical objects. These associations are

described by the system-designer in a mapping specification, which also can be interactively modified by

the user at run-time. Besides, the mapping specification can dynamically change at any time, as a

consequence of changes performed by the system (for example, the presentation of an item may differ

according to current zoom level - semantic zooming -).

Visualization: it comprises graphical data presentation and user interaction. It is sub-divided into two

components:

Presentation: it consists of presentation building, according to the graphical objects specified in

the mapping.

Interaction: it consists of all aspects related to the user interaction: item selections and

manipulations, user navigation, etc.

Visualization State: it contains the current visualization state, which can include the current selected

items, user model, interaction model, etc. This state may be accessed by other system components in order

to perform their tasks (e.g. the presentation component may consult which are the current selected items,

to display the presentation focus).

3.1. Telescope software architecture

Each Telescope’s component is implemented by means of classes (generally abstract classes)

providing its generic behavior. Each visualization application developed using Telescope must implement

the particular behavior for each component, as shown in section §4.1. Fig. 2 shows relationships among

the main classes of each component.

The visualization component consists of a set of Views, hierarchically organized. Each view contains

a graphical presentation (an instance of a GraphicalObject subclass), and an interactor for each allowed

operation on it (for example, a SelectInteractor is used to perform item selections).

R. Orosco, Telescope: An OO Architecture for Visualization Systems, EJS, 1(1) 84-97 (1998) 88

Views have associated a Mapping that performs the conversion between data objects and graphical

objects. These mappings can be customized by the user at run-time or modified by the system according to

changes in the visualization state. The Mapping class can be specialized through subclasses, for example

to implement distortion-based visualization techniques (as described in section §5.1.1)

Additionally, each view gets the information to be displayed through an associated model. This

model consists of an abstractor (instances of an Abstractor subclass), which determines objects and

properties to be effectively visualized. This abstractor has a reference to the data object (which may be

stored in a database), which contains the actual values to be visualized.

The visualization state component is mainly implemented by means of a VizState class, which

manages all the information related to the current state of the visualization process. It also contains an

instance of VizStateControl class, allowing to the user to control and manipulate interactively this state.

4. CityVis

CityVis [Orosco 97a] is an information visualization system for city data, implemented in Visual

Works - Smalltalk, using OpenGL [Neider 93] as 3D graphics platform. Its main goal is to support the

exploration of city information, providing techniques to assist the user in this process. Among its main

features, the following ones can be included:

• 2D and 3D presentations, allowing the user to switch between the two types of presentations or to

combine them. This feature enables the user to choose the best presentation paradigm for each

task.

• Immersive navigation in the visualized space.

• Provision of different abstraction and zooming levels, according to the user viewpoint.

• Presentation organized in layers, allowing the differentiation of several topics in the visualization.

The system visualizes different kinds of information associated to the city (hotels, apartments,

restaurants, transportation, statistics, etc.), that may be combined by the user to build the desired

visualization.

Fig. 2. Class relationships in Telescope

TopView

state
View

container

model
mapping

graphicPresentation

GraphicalObject
color

size
position

renderingMode

transparency

Interactor

view
graphicObject

Mapping

associations

DataObject

prop1

prop2

prop3
.

Abstractor

subject

vizState

userModel

VizState

selectedItems

stateControl

interactionModel

VizStateControlData Objects - Graphical

Objects Mapping

Data Representation

Data Abstraction

Visualization State

Visualization

R. Orosco, Telescope: An OO Architecture for Visualization Systems, EJS, 1(1) 84-97 (1998) 89

• Possibility of saving and restoring information deduced during the exploration process. The user

can perform an exploration process, save its results, and latter resume the operation. Also, it

allows the reuse of revealed information in future explorations.

• Possibility of user customization of presentations. The system-designer provides a default

mapping for the presentation of each data item class, but the user can modify it at any time during

the visualization.

• Provision of assistance techniques for the exploration process. These techniques attempt to

alleviate the user’s work in the exploration, using both user and interaction models.

Fig. 3 is a snapshot of CityVis, showing a 3D user navigation within the city information space.

4.1. CityVis implementation

CityVis was developed using the Telescope framework, incorporating capabilities for city data

visualization, through specialized classes for the management of this kind of data.

The CityVis visualization component is implemented by specialized views for each class of

visualized data object. For example, views for streets, places, hotels, restaurants, transports, apartments,

etc. are provided. In a similar way, for user interaction and item manipulation, different classes of

interactors are provided (e.g. select and move-interactors).

Also, several mapping specifications are provided, indicating the associations between data objects

and the graphical objects that must be used as their representations. For example, in fig. 3 apartments on

sale are shown on the map, where each apartment (the data object) is represented by a 3D box (the

graphical object), and the apartment price is represented by the box color (items with red color has a high

price than blue items).

The information presented to the user is determined by means of abstractor objects. In CityVis, there

is a specialized abstractor (a CityAbstractor class) for the global management of the city information to be

shown, and different abstractors (instances of CityTopicAbstractor class) for the management of related

information (e.g. topics such as hotels, apartments, map, etc). Additionally, there are other abstractors that

manage information revealed during the exploration process (e.g. statistics, as described in section §5.2.)

Finally, a CityVisState class, containing all the information about the current visualization and

exploration process manages the current state of the visualization.

5. Implementation of Visualization Systems Features

In this section, the implementation of several features included in most information visualization

systems is described. These features are:

- incorporation of different kinds of visualization techniques;

Fig. 3. CityVis - 3D Visualization of a city map

R. Orosco, Telescope: An OO Architecture for Visualization Systems, EJS, 1(1) 84-97 (1998) 90

- management of revealed information during the exploration process; and

- automatic management of different abstraction levels.

All descriptions are based on their current implementation in CityVis.

5.1. Visualization Techniques

Currently, three kinds of visualization techniques are implemented in CityVis: distortion-based

techniques, layering techniques and assistance techniques.

5.1.1. Distortion Techniques

These techniques consist of a distorted graphical presentation, with the goal of emphasize those items

of current interest to the user (the focus). Fisheye [Furnas 86], Stretching [Sarkar 93], and Bifocal Display

[Spence 82] are some of the most common distortion-based techniques.

CityVis implements this kind of techniques by means of specialized mappings for each technique.

Before the mapping returns the graphical object to be displayed, the object is distorted according to the

technique implemented by this mapping. For example, a fisheye distortion is implemented by a

FisheyeMapping class (subclass of Mapping), in which the method getObject: returns the distorted

graphical object to be used in the presentation:

getObject: aDataObject

 “returns graphical object associated to aDataObject”

“1: gets the associated graphical object”

graph_obj := super getObject: aDataObject.

“2: distorts the graphical object”

self distort: graph_obj.

“3: returns the distorted graphical object”

^graph_obj

The implementation of the distort: method depends on each technique, because each one of them

performs distortions over different attributes. For example, in fisheye views, the distorted attributes are

position and size.

Fig. 4. Distorted view in CityVis

R. Orosco, Telescope: An OO Architecture for Visualization Systems, EJS, 1(1) 84-97 (1998) 91

distort: aGraphicalObject

“gets original object position”

pos := aGraphicalObject position.

“d = distortion factor”

aGraphicalObject position: ((1 + d) * pos) / ((d * pos) + 1).

“gets original object size”

size := aGraphicalObject size.

aGraphicalObject size: ((1 + d) * pos) / ((d * pos) + 1).

In this way, adding a new distortion technique consists only in the implementation of a specialized

mapping, and the correspondent distortion functions. Fig. 4 shows a snapshot of a distorted map in

CityVis.

5.1.2. Layering techniques

These visualization techniques are generally used to compose different topics of information, based

on the ‘transparent paper’ metaphor. For example, in CityVis there are different layers for the city map,

transports, hotels, restaurants, apartments, etc. The user can manipulate these layers, adding and/or

removing some of them at any time during the visualization, to display only the information relevant for

the current task. Some of the most common layering techniques are Livemap [Silvers 95] and Back to the

Future [Belge 94].

CityVis implements layering techniques through different views for each layer, each one with an

associated abstractor (a CityTopicAbstractor, as it is shown in fig. 5) that determines the visible

information in the layer. The management of visible topics at run-time is done automatically by the

CityAbstractor (generally in response to user requests), which determines if each CityTopicAbstractor is

enabled or not. Fig. 6 displays a snapshot of the CityVis layering, showing the city map, subway lines,

restaurants and hospitals layers.

mapping

graphicPresentation

CityAbstractor

subject

vizState

Data Abstraction

Visualization

container

View

LayerView

components
model

CityTopicAbstractor
enabled

components

Fig 5. Class relationships in layering technique implementation

R. Orosco, Telescope: An OO Architecture for Visualization Systems, EJS, 1(1) 84-97 (1998) 92

5.1.3. Assistance Techniques

In the last years, several visualization techniques providing some degree of user assistance in the

information visualization process have been developed (e.g. Galaxy of News [Rennison 94], Information

Workspace [Robertson 93], IRIS [Andrienko 97]). AutoFocus [Orosco 97b] is an example of assistance

technique implemented as part of CityVis. Its goal is to assist the user in the exploration process,

providing help in the focus specification and using 3D presentations conveying more information. The

assistance in the focus specification is implemented by a statistical inference mechanism, that attempts to

detect the criteria used by the user in item selections. Once these criteria has been estimated by the system,

item presentations are updated accordingly to them, reflecting the relevance of each item with respect to

the currently defined focus (using an item opacity proportional to the importance of each item). In this

way, a quick approximation to the desired final focus is obtained, facilitating the task and reducing the

user workload. Particularly, CityVis uses AutoFocus to assist the user in the searching of apartments on

sale.

This kind of techniques can be implemented through the incorporation of a specialized abstractor (a

CriteriaInferenceAbstractor) that performs the inference process. Additionally, the visualization state

(CityVisState) is extended, adding a criteria list (instances of Criteria class), which represents criteria

inferred by the system. Each of these criteria contains all the information about it, such as its values, its

certainty and/or its associated attribute. Fig. 7 shows the main relationships among classes in the

AutoFocus implementation, while fig. 8 shows a snapshot of AutoFocus operation.

The AutoFocus operation consists of two steps: first, the user criteria are estimated, and then the

relevance of each item with respect to the current focus is computed. The first step is performed when a

new item is selected (or deselected); in this case, the visualization state receives a message indicating the

item selection:

addSelectedItem: anItem

selectedItems add: anItem.

criteria := criteriaInference inferCriteriaWith: selectedItems.

stateControl setControlsWith: criteria.

Once this message is received, the state updates the selected item list, and then informs to the

CriteriaInferenceAbstractor that it is necessary to recalculate the criteria (through the method

inferCriteriaWith:). When the new criteria has been calculated, the state updates the widget controls for

each criteria (e.g. range-sliders or range-buttons).

The method inferCriteriaWith: implements the process of criteria deduction. A simplified version of

its code is:

Fig 6. Layering techniques in CityVis.

R. Orosco, Telescope: An OO Architecture for Visualization Systems, EJS, 1(1) 84-97 (1998) 93

inferCriteriaWith: items

crit := OrderedCollection new.

visual_attrs := items getVisualAttrs.

visual_attrs do: [:va | crit add: (self infer: va with: items)].

self removeDependencies.

^crit.

In this code, firstly the data attributes that may be used by the user in the selection are obtained,

through the associated visual attributes shown in the presentation (using the method getVisualAttrs). Once

these attributes are obtained, the system attempts to infer one criterion for each one of them. This task is

done by the method infer:with:, which performs a statistical analysis of the values for each attribute in the

selected items, determining the composition of the criteria (mainly, its values and its certainty). The

implementation of infer:with: depends on the type of the attribute (e.g. the analysis used in attributes with

continuous values is different from the one used in a boolean case). Finally, after one criterion for each

attribute is deduced, the system attempts to detect redundant criteria, through a dependency analysis of the

domain attributes (this step is performed by the removeDependencies method)

In the second step, each ApartmentAbstractor determines the current relevance of its associated item

with respect to the current focus, using the criteria deduced in the first step, through the method

relevance:. The relevance of each item is measured by a closeness function computing the distance from

this item to each criterion.

relevance

crit := vizState criteria.

closeness := 0.

crit do: [:c |

closeness := closeness +((c critCloseness: self) normalized)].

^closeness

The item closeness is the sum of the individual closeness of each deduced criterion (which are

computed by the critCloseness: method). The relevance is then mapped to the transparency of the

graphical presentation, as is indicated in the mapping associated to the correspondent ApartmentView.

TopView

state
ApartmentView

superview

model
mapping

graphicPresentation

GraphicalObject

color

size
position

renderingMode

transparency

SelectInteractor

view
graphicObject

Mapping

associations

CityApartment

address

name
bedrooms

type

ApartmentAbstractor

subject

vizState

relevance

CriteriaInference

criteria

VizState

selectedItems

stateControl

criteriaInference

VizStateControl

Criteria

values
certainty
attributes

Data Objects - Graphical

Objects Mapping

Data Representation

Data Abstraction

Visualization State

System Knowledge

Visualization

Fig. 7. Class relationships in AutoFocus implementation.

R. Orosco, Telescope: An OO Architecture for Visualization Systems, EJS, 1(1) 84-97 (1998) 94

5.2. Management of Revealed Information

CityVis allows the management of new information revealed during the exploration process. The user

can define new relations over objects, and store them as a new topic. For example, it is possible to define

a new topic ‘transport’ as the union of the bus, subway and train items. Once this new topic has been

defined, it can be used in future exploration processes.

Another possibility in CityVis is to build statistics about the visualized information. Particularly,

CityVis allows to determine zones with a high concentration of given items. For example, the user may

desire to know which is the city zone with a high concentration of hotels and restaurants; in this case, the

system generate a statistic based on these items, which is displayed through a semi-transparent layer

indicating the density of these items in the desired zone (fig. 9 shows an example of statistic layer). This

statistic is saved as a new layer, which may be used in future explorations, where the user do not need to

access to the items used to build it.

Specialized abstractors manage both kinds of revealed information. In the first case, a

RelationshipAbstractor performs modifications to the data organization, while in the second one, an

StatisticsAbstractor generates new data objects based on a previous set of objects.

Fig. 8. AutoFocus snapshot. In this case, items

with similar properties to selected items are

displayed in a more emphasized way, while

dissimilar items are displayed with a higher

transparency degree.

Fig. 9. Statistics layer in CityVis.

R. Orosco, Telescope: An OO Architecture for Visualization Systems, EJS, 1(1) 84-97 (1998) 95

5.3. Abstraction Levels Management

The management of abstraction levels is one of the main features in all data visualizations. However,

the construction of techniques performing an automatic control of the abstraction or detail level is not

easy. In addition, most of current implementations have little reusability, because the knowledge about

this management is hard-coded into the visualization system.

One of the most common techniques managing detail levels based on the user viewpoint is Semantic

Zoom [Muthukumarasamy 95], which is currently available in CityVis. In this case, the management of

abstraction levels is performed automatically by the abstractors, which determine those items that must be

visible at the current zoom level, filtering those elements that must not be visible at this level. For this,

each abstractor contains a reference to an AbstractionScale object (as it is shown in fig. 11), which

contains the information about the scale used. A more detailed description of the implementation of the

automatic abstraction levels management can be found in [Campo 97b].

Fig. 10 shows a map view in a higher abstraction level than in previous figures, where only main

streets and places are shown.

6. Conclusions and Future Work.

In this work, Telescope, an object-oriented architecture for visualization systems is described. The

architecture emphasizes the division among the main components in visualization systems, trying to

provide an adequate support for the reusability and extensibility of these systems, therefore facilitating the

construction task.

A visualization system, CityVis, was developed to demonstrate the suitability of Telescope to the

domain of geographical data. Also, several types of visualization techniques were added to CityVis,

showing the facilities provided by Telescope for the incorporation of new functionality and/or

visualization techniques to existing visualization systems. Other features of information visualization

systems were described, such as the management of abstraction levels and revealed information. In all of

these cases, the implementation of these features is simple and allows a quick prototyping of visualization

systems. Additionally, the extensibility of Telescope is high, due to the clear localization of possible

changes and extensions.

Future work in Telescope includes the development of other applications in new domains, mainly

those dealing with abstract data (e.g. WWW networks or bibliographical databases). Also, the

implementation of new visualization techniques and the provision of a better support for the user

interaction is currently being explored.

Acknowledgments

Fig. 10. Higher abstraction level in CityVis

R. Orosco, Telescope: An OO Architecture for Visualization Systems, EJS, 1(1) 84-97 (1998) 96

The author would like to acknowledge Dr. Marcelo Campo by his insight and ideas in the design of

Telescope. The author would also like to thank to Dr. Roberto Moriyon for his continuous support and

advice provided during the development of this project. Finally, thanks to Alvaro Ortigosa for his

comments on drafts of this paper.

References

[Ahlberg 95] Ahlberg, Christopher. Wistrand, Erik. “IVEE: An Environment for Automatic Creation of

Dynamic Queries Applications” Proc. CHI ‘95 Conf. Companion, pp 15-16 05/1995.

[Andrienko 97] Andrienko, G. Andrienko, N. “IRIS: a Knowledge-Based System For Visual Data

Exploration” Proc. CHI ‘97, 1997.

[Bederson 94] Bederson, B. Hollan, J. “Pad++: A Zooming Graphical Interface for Exploring Alternate

Interface Physics” Proc. UIST ‘94, pp 17-26.

[Belge 94] Belge, M. Lokuge, L. Rivers, D. “Back to the Future: A Graphical Layerong System

Inspired by Transparent Paper” SunSoft, Chelmsford, MA, 1994

[Bergeron 93] Bergeron, D. “Visualization reference models”. Proc. of Visualization ‘93. IEEE

Computer Society Press, 1993.

[Campo 97a] Campo, M. “Compreensao Visual de Frameworks através da Introspecao de Exemplos”

Phd. thesis, UFRGS, Brasil., 1997 (in portuguese)

[Campo 97b] Campo, M. Orosco, R. Teyseyre, A. “Automatic Abstraction Management in Information

Visualization Systems”, Proc. V Intl. Conference on Information Visualization, London,

August, 1997.

[Chuah 95] Chuah, M. Roth, S. mattis, J. Kolojejchick, J. “SDM: Selective Dynamic Manipulation of

Visualizations”. Proc. UIST ‘95, pp 61-70, 1995.

[Duce 93] Duce, D. A. “Visualization” Visualization ‘93 Conf.

[Edwards 92] Edwards, G “Visualization - the second generation” Image Processing, 1992

[Fishkin 95] Fishkin, K. Stone, M. “Enhanced Dynamic Queries via Movable Filters”. Proc. CHI ‘95,

pp 415-420. 05/1995.

[Furnas 86] Furnas, George. “Generalized fisheye views” Proc. ACM SIGCHI Conf. on Human Factors

in Computing Systems, pp 16-23, 1986.

[Kazman 96] Kazman, Rick. Carriere, Jeromy. “An Adaptable Software Architecture for Rapidly

Creating Information Visualizations" Proc. Graphics Interface ‘96, Toronto, 05/96.

[Keim 94] Keim, D. Kriegel, H.P. “VisDB: Database Exploration Using Multidimensional Visualization”

IEEE CG&A, 09/94, 1994.

[Lucas 96] Lucas, Peter. Roth, Steven. Gomberg, Cristina “Visage: Dynamic Information Exploration”

Proc. CHI 96 Conf. Companion, pp 18-20, 1996.

[Muthukumarasamy 95] Muthukumarasamy, J. Stasko, J. “Visualizing Program Executions on Large

Data Sets Using Semantic Zooming” Georgia Institute of Technology, 1995, Tech. Report

GIT-GVU-95-02.

[Neider 93] Neider, J. Davis, T. Woo, M. “OpenGL Programming Guide” Addison-Wesley, 1993, 516

pp.

[Orosco 97a] Orosco, R. Moriyon, R. “CityVis: an Intelligent Information Visualiza-tion System for

City Data” Tech. Report, Dept. Ing. Informatica, UAM, in preparation.

[Orosco 97b] Orosco, R. “AutoFocus: User Assistance in Information Visualization” Hypertext,

Information Retrieval and Multimedia ‘97 (HIM ‘97) Conf., Dortmund, Germany, October,

1997, 18 pp.

[Rennison 94] Rennison, Earl. “Galaxy of News: An Approach to Visualizing and Understanding

Expansive News Landscapes” Proc. UIST ‘94, pp. 3-12, 1994.

R. Orosco, Telescope: An OO Architecture for Visualization Systems, EJS, 1(1) 84-97 (1998) 97

[Robertson 93] Robertson,G. Card, S. Mackinlay, J. “Information Visualization using 3D Interactive

Animation” Comm. of the ACM, 36(4), 04/93, pp 57-71, 1993.

[Sarkar 93] Sarkar, M. Snibbe, S. Tversky, O. Reiss, S. “Stretching the Rubber Sheet: A Metaphor for

Viewing Large Layouts on Small Screens” Proc. UIST 93, pp 81- 91, 11/1993.

[SIGCHI 91] UIMS Tool Developers Workshop. “A Metamodel for the Runtime Architecture of an

Interactive System” SIGCHI Bulletin, 24(1), 1991, pp 32-37.

[Silvers 95] Silvers, Robert. “Livemap - A System for Viewing Multiple Transparent and Time-Varying

Planes in Three Dimensional Space” Proc. CHI 95 Conference Companion, pp 200-201,

05/1995.

[Spence 82] Spence, R. Apperley, M. “Database navigation: An office environment for the

professional” Behav. Inf. tech., 1,1. pp 43-54, 1982

[Upson 89] Upson, C. “The Application Visualization System: a computational environment for

scientific visualization” IEEE CG&A, July 1989

