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Abstract

The Multi-threaded Paging problem (MTP) was introduced as a gener­
alization of Paging for the case where there are many threads of requests. 
This models situations in which the requests come from more than one 
independent source. At each step it is necessary to decide which request 
to serve among several possibilities, and also (as in normal Paging) which 
page of fast memory to remove on a page fault. In the fair version of 
the problem any algorithm must guarantee that the next request of each 
thread will be served within a predetermined finite time.

In this paper we reduce the existing gaps between the known lower 
and upper bounds for the competitiveness of on-line algorithms for the 
fair version of MTP. We treat some particular situations, with finite and 
infinite input sequences. We prove higher lower bounds and present a new 
on-line algorithm. We close the gap for the case in which the cache can 
hold only one page; surprisingly, we obtain different bounds for even and 
odd number of sequences; we prove that any lazy algorithm achieves the 
on-line lower bound when the number of sequences is odd.
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1 Introduction
The Paging problem consists of managing a two-level memory, one of them with 
limited capacity and fast access (the cache) and the other one with slow access 
but potentially unlimited capacity. A Paging algorithm is faced with a sequence 
of page references. At each step the algorithm must ensure that the requested 
page is in fast memory, perhaps evicting another page to make room for the 
incoming one. A page fault occurs each time a page must be brought into fast 
memory. The goal of the Paging algorithm is to minimize the total number 
of page faults over the sequence of requests. An on-line algorithm for Paging 
must decide which page to evict without knowledge of future requests, while an 
off-line algorithm can decide based on the whole sequence. On-line algorithms 
for Paging have been studied from a competitive analysis point of view in [10], 
comparing their performance to that of the optimal off-line algorithm. In that 
work it is shown that, if the cache can hold k pages, no deterministic on-line 
algorithm can be better than k-competitive, that is, guarantee less than k times 
the optimal off-line number of page faults on every input; besides, it is shown 
that known on-line algorithms such as Least-Recently-Used (LRU) and First- 
In-First-Out (FIFO) achieve that bound.

The Multi-threaded Paging problem (MTP) was introduced as a generaliza­
tion of Paging for the case in which there is not just one sequence of requests but 
possibly many threads [5, 6]. This models situations in which the requests come 
from more than one independent source, as in multi-tasking systems where all 
processes independently present their requests of memory pages to the manager 
of fast memory. At each step it is necessary to decide which request to serve 
among several possibilities, and also (as in normal Paging) which page of fast 
memory to remove on a page fault. The total number of page faults depends 
therefore not only on the strategy used to determine how each request is served 
but when (in which order) this is done. Moreover, in some cases even the set of 
requests that will eventually be served depends on the particular algorithm that 
is used. As it can be seen, in MTP there is no notion of “sequence of requests” 
but a more complex pattern that is not captured by the most general classes of 
on-line problems proposed in the literature (like Metrical Task Systems [4] or 
Request-Answer Games [2, 9]).

Two versions of MTP were presented in [6]. In the first one, the goal is just 
to minimize the number of page faults done while serving a set of w sequences of 
requests. In the second one, fairness restrictions are imposed, so any algorithm 
must guarantee that the next request of each thread will be served within a 
predetermined finite time. For each one of these two problems, finite and infinite 
sequences of requests can be considered. In [6] it was proved that the only- 
case in which there exist competitive on-line algorithms for the fair version is 
when fairness restrictions are so tight that enforce serving one request of each 
thread in a cyclic way. For that case, a (k + w)-competitive on-line algorithm 
was proposed, and a lower bound of k for the competitiveness of any on-line 
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algorithm was obtained.
In this paper we address some of the problems that were left open when 

MTP was introduced. More precisely, for some particular situations of the fair 
version of MTP we reduce the existing gaps between the known lower and upper 
bounds. We treat several cases: The first one is the case in which the cache can 
hold only one page (k = 1) and the number of sequences is even; we raise from 
1 to w + 1 the known lower bound, and therefore the on-line algorithm from [6] 
is strongly competitive (optimal). In the second case again we have k = 1, 
but now we consider an odd w; in this case the new lower bound is w, and we 
prove that any algorithm that does not unnecessarily evict pages achieves that 
bound. The third case is when w < k; we present a (k + l)-competitive on-line 
algorithm, reducing the existing gap to 1.

The case k = 1 models the scheduling problem in which a machine serves 
w sequences of tasks, where the cost of each task is insignificant or zero, and 
the cost of switching tasks is unitary. This is an extreme situation of the more 
general case k <w. We treat that extreme situation and the opposite case, that 
is, the case w < k.

Fiat and Karlin [7] have considered a version of Paging in which the in­
put corresponds to a multi-pointer walk on an access graph [3]. Within that 
framework, there are multiple threads of requests, but they are seen as a unique 
sequence corresponding to an interleaved execution of the different threads. The 
way in which the threads are interleaved in [7] is decided in an earlier stage of 
the process. On the contrary, in MTP the algorithms are free to decide (up 
to a certain limit, in the case of fairness restrictions) how to do that. In other 
words, the algorithms for MTP act not only as fast memory managers but also 
as schedulers, while in the cited work the scheduling is implicitly supposed to 
be done somewhere else.

Recently, Alborzi et al. [1] have proposed a multi-threaded version of the 
1-server problem. They consider a metric space in which a server moves at 
constant speed to satisfy requests generated by many clients; each request is 
satisfied when the server arrives to the location of the request, and then the 
corresponding client presents a new request in another place of the metric space. 
Although the 1-server problem is a generalization of Paging with k = 1, only- 
finite input sequences are considered in [1], and fairness restrictions are not 
stated.

The remainder of this paper is organized as follows: In Section 2 we formally 
present the fair version of MTP, with finite and infinite input sequences, and 
detail the known results about it. In Section 3 we treat the case k = 1 and 
even w. In Section 4 we complete the case k = 1 by considering an odd w. In 
Section 5 we analyze the case w < k. We conclude in Section 6 by presenting 
some remarks.
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2 Preliminaries
2.1 Description of the Problem
Imagine that w independent processes simultaneously present their requirements 
of pages of secondary memory that must be brought into fast memory. At each 
moment, the scheduler and fast memory manager can see only one request per 
process, precisely the first unserved request of the sequence of requests that the 
process presents. Serving the current request of a particular process allows the 
system to see the next request of that process. The system must decide at each 
step which request should be served, apart from deciding which page of fast 
memory to evict to make room for the incoming page if that is the case.

MTP allows the modeling of the above problem as follows. In the finite 
version, called Finite-MTP (FMTP), algorithms are faced to a certain number of 
finite sequences of requests that have to be served completely, that is, algorithms 
have to arrive to the end of each one of the sequences. FMTP is given by 
the universe or set of pages U and two positive integers k and w, the size of 
the cache and the number of sequences respectively. C = Pk(U) is the set of 
configurations, where Pk(U) is the power-set of U restricted to subsets of size 
k. a G {U*)w is the input tuple, a = ai,a2, ■ ■ -crw, where each rr, is a sequence 
of requests. We can view a as a set of sequences of requests; each request is an 
element of the universe U. The tuple of the J-th requests is called the J-th row 
of requests.

We can imagine that we have a pointer to the current position in each se­
quence a, . In a certain configuration c, the system can advance the pointer of 
some sequence a, such that tq, the currently pointed page of cq, is present in 
c. Given an input tuple a and an initial configuration, a schedule for a is a 
sequence of pairs < ij,Cj >, where 1 < ij < w, such that the currently pointed 
request of cq. may be served in configuration Cj. The cost of such schedule is 
the summation over the sequence of the Hamming distance between successive 
configurations. At any stage of a schedule, any sequence cq whose last request 
has not been served is called active.

An algorithm for FMTP receives a tuple of sequences a as input and produces 
as output a schedule for n. An on-line algorithm must produce the schedule with 
the restriction that each configuration must be determined only as a function of 
the current tuple of requests and all the requests already served by the algorithm. 
On the contrary, an off-line algorithm can decide based on the entire input. An 
algorithm for FMTP is c-competitive if and only if there exists a constant D 
such that for any input tuple a, we have Ca(o) < c-Copt(o) + D, where Ca(o) 
is the cost incurred by the algorithm, and Copt(o) is the cost incurred by an 
optimal off-line algorithm.

The definition of FMTP is modified to get the infinite version of the problem, 
Infinite-MTP (IMTP). In IMTP the sequences of requests are infinite, that is, 
the input to an algorithm is a G (Uw)w instead of a G (U*)w, where denotes 
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the set of infinite words over an alphabet S. In this case, although the sequences 
are infinite, the system is observed after a finite number £ of steps, when we 
compare the cost incurred by the distinct algorithms with the cost of an optimal 
off-line algorithm that advances at least the same number of steps. Notice that 
the value of I is not known by on-line algorithms.

In a multi-threaded environment it is desirable to include fairness restric­
tions. In MTP these restrictions are modeled by considering, as part of the 
input of the problem, an integer t such that fair algorithms are restricted to act 
as follows: from the moment any request is seen till the moment that request 
is served, at most t other requests can be satisfied. Consequently, the notion of 
t-fair schedule is defined. This allows the definition of the Fair-MTP problem, 
the fair version of MTP. An algorithm for Fair-MTP must produce a t-fair 
schedule for the input tuple of sequences. Again there are finite and infinite 
versions of the problem, namely Fair-FMTP and Fair-IMTP.

2.2 Previous Results
In [6] it was proved that there is no competitive on-line algorithm for Fair-MTP 
with t > w > 2. This means that competitive on-line algorithms can exist in 
only two cases of Fair-MTP: w = 1 and t = w — 1. In the case of finite sequences 
of requests (that is, Fair-FMTP) there is no competitive on-line algorithm when 
w > 3, even with t = w — 1. This is because on-line algorithms can be forced to 
serve a first sequence of length 1; in practice this is equivalent to have t = w.

Among the cases where on-line competitiveness is possible, we can ignore 
the situation in which w = 1: with w = 1 fairness restrictions have no sense, 
and we are faced to regular Paging. On the other hand, the case t = w — 1 
requires further analysis. In this situation the algorithms (on-line or not) must 
apply round-robin, i. e., serve one request of each sequence in a fixed order 
which is repeated over and over again. This particular case of Fair-MTP is 
closely related to normal Paging, since after an algorithm has chosen the order 
in which to serve the requests, we can think that there is only one sequence to 
be served, as it is the case in normal Paging. Nevertheless, the two problems 
are different, as we can see:

• In Fair-MTP we can say that any algorithm has served the same set of 
requests only after each w new requests (after each row of requests), not 
at every step as in normal Paging.

• The algorithms (of any type) can choose between w! distinct orders of the 
sequences. A priori this is an advantage for off-line algorithms, because 
they can decide with information on the whole input tuple, while any 
choice made by an on-line algorithm can be fooled if the first two requests 
of all the sequences are to the same page. In other words, from a compet­
itive analysis point of view, off-line algorithms can really decide in which 
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order to serve the sequences, while the choice of an on-line algorithm is 
an illusion.

• The on-line algorithms can see the following w requests to serve, not only 
one of them. More precisely, on-line algorithms can make use of a looka­
head of size w. This is not a clear advantage for on-line algorithms, since 
this kind of lookahead can be easily neutralized by replacing each request 
with w requests to the same page.

A lower bound of k for the competitiveness of any on-line algorithm for Fair- 
MTP can be obtained by considering equal sequences, each one like the nemesis 
sequence used in the proof of the lower bound for normal Paging.

An on-line algorithm for Fair-MTP called Round-Robin-Flush-When-Full 
(RRFWF) was presented in [6]. The algorithm is based on Flush-When-Full 
(FWF), a very well known fc-competitive on-line algorithm for Paging [8], al­
though any deterministic marking algorithm for Paging can be used instead 
(for instance, LRU). FWF maintains a set of marked pages. Initially no page is 
marked. On each request, an unmarked page is evicted to make room for the 
requested page if necessary; in any case the requested page is marked. FWF 
works in phases, the first phase starting with the first request of the sequence 
and each new phase starting with the request that would have caused more than 
k pages to be marked (when the marks are deleted). It is easy to verify that 
FWF never faults twice on the same page during any given phase, which implies 
that its cost is at most k per phase; besides, if we consider all the requests of a 
phase plus the first request of the following phase, k + 1 distinct pages appear.

Algorithm RRFWF for Fair-MTP is described in Fig. 1. The algorithm 
works in “super-phases”; each super-phase consists of applying a phase of FWF 
to the sequence formed by taking in turn one request of each active sequence 
<7i,<72,.. .crw, and then serving the next request and all the other pending re­
quests in the same row; these additional requests are served by RRFWF in an 
arbitrary deterministic way. Clearly RRFWF is fair for any legal value of t. It is 
not difficult to show that it is (fc +w)-competitive for Fair-IMTP with t = w — 1. 
Algorithm RRFWF is (fc + w)-competitive also for Fair-FMTP with t = w — 1, 
but of course when w < 2 only.

3 The Case k = 1 and Even w
In this section we will analyze the case of Fair-MTP in which the cache can hold 
only one page and the number of sequences is even. We will consider infinite 
and finite input sequences, and we will restrict our attention to the situations 
where on-line competitiveness is possible. As it is usually done in competitive 
analysis, we will compare on-line strategies against an adversary that chooses 
the input and serves it optimally.
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While there is at least one request to be served do
7, a new super-phase starts
Apply a phase of FWF to the sequence <7* formed by taking 
in turn one request of each active sequence <7i, <72,... <7W 
Serve the next request of <7* (no matter how)
Serve all the pending requests of <7* in the same row
of the last served request (no matter how) 

end While.

Figure 1: Algorithm Round-Robin-Flush-When-Full

3.1 Infinite Sequences
Till now the known lower bound for the competitiveness of on-line algorithms 
for Fair-IMTP with t = w — 1 was k; this bound becomes trivial when k = 1. 
We will now prove a higher lower bound for an even number of sequences, using 
that the adversary can choose an appropriate order for the threads.

Theorem 3.1.1 No on-line algorithm for Fair-IMTP with t = w — 1, k = l 
and even w, is c-competitive if c < w + 1, even if we restrict the sequences of 
requests to be formed by at most 2 distinct pages.

Proof Let A be any on-line algorithm and ADV an off-line adversary. We will 
show a set of sequences <7i, <72,... <7W for which A cannot behave better than the 
proposed bound.

Let U = {ai,a2} be a set of 2 distinct pages, where is a page not in A’s 
cache at the beginning. We will describe the input tuple by rows of requests. 
The first row is formed by page for the odd sequences <7i, <73,... <7w_i, and by­
page a2 for the even sequences <72, <74,... crw. In the second row, all the requests 
are to page cq. Each new pair of rows is like the previous one, but with pages a± 
and a2 interchanged (see Fig. 2). Let t = 2wn be the total number of requests to 
be served, where n is any positive integer. Without loss of generality assume that 
A serves one request of each sequence in the order <74, <72,... aw (otherwise, we 
add two initial rows with requests only to page a2, and rearrange the sequences 
if necessary). Since k = 1, only one page can be held in fast memory at a time, 
and therefore A necessarily faults on each request of the odd rows and on each 
first request of the even ones; thus, its total cost is Ca > (w + l)n.

The adversary can use any order in which the even sequences appear before 
the odd ones, e. g., <72,<74,...aw,<71,03,...<7w_i. In this way it groups the 
repeated requests, and faults only once every two rows. Then the total cost of 
the adversary is Cadv < n, and we have for the competitive ratio

Ca . (w + l)n—----- >-------------= w + 1 .
Cadv n
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<71 &odd &even

Gl (11 (12
G1 ai ai G1

&2 ai G1

&2
G1 ai &2
G1 ai ai G1

Figure 2: Sequences used in the proof of Theorem 3.1.1

□

As we can see the above lower bound is tight, since algorithm RRFWF 
described in Section 2 is (fc + w)-competitive for Fair-IMTP with t = w — 1.

Corollary 3.1.2 Algorithm RRFWF is strongly competitive for Fair-IMTP with 
t = w — 1, k = l and even w.

3.2 Finite Sequences
We can reproduce in the finite model the results we have obtained for infinite 
sequences. The following lower bound for Fair-FMTP with t = w — 1 and k = 1 
is only interesting when the number of sequences is w = 2.

Theorem 3.2.1 No on-line algorithm for Fair-FMTP with t = w — 1, k = l 
and even w, is c-competitive if c < w + 1, even if we restrict the sequences of 
requests to be formed by at most 2 distinct pages.

Proof The proof is the same of Theorem 3.1.1, except that we use finite 
sequences, all of them of the same length. □

Again the above lower bound is tight for the cases in which competitive on­
line algorithms can exist, since algorithm RRFWF is (fc + w)-competitive for 
Fair-FMTP with t = w — 1 and w < 2.

Corollary 3.2.2 Algorithm RRFWF is strongly competitive for Fair-FMTP 
with t = w — 1, k = l and w = 2.

4 The Case k = 1 and Odd w
In this section we will consider an odd number of sequences for Fair-MTP with 
t = w — 1 and k = 1. This completes the analysis of Fair-MTP when the size 
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of the cache is 1. As we will see, lower and upper bounds differ from the ones 
obtained for an even number of sequences. Nevertheless, again we will show 
an optimal on-line algorithm. Moreover, we will prove that any reasonable 
algorithm is optimal. The only case of Fair-FMTP with an odd number of 
sequences in which competitive on-line algorithms can exist is regular Paging 
(w = 1); so we will omit a useless discussion, and we will treat only the infinite 
model.

4.1 Infinite Sequences
We start with a lower bound for the competitive ratio of on-line algorithms.

Theorem 4.1.1 No on-line algorithm for Fair-IMTP with t = w — 1, k = 1 
and odd w, is c-competitive ifc<w, even if we restrict the sequences of requests 
to be formed by at most 2 distinct pages.

Proof If w = 1 then there is nothing to prove. For w > 3 the proof is as follows. 
The first w — 1 sequences are constructed as in Theorem 3.1.1. Sequence aw is a 
copy of <7i. Without loss of generality assume again that the on-line algorithm 
A serves the sequences in the order <7i, <72,... <7W. In this situation A faults on 
each request of the odd rows (note that the even rows are redundant). Then its 
cost for I = 2wn requests is C \ > wn. The adversary can group the repeated 
requests as in Theorem 3.1.1 faulting only once every two rows, with a total 
cost Cadv < n. Therefore we have

Ca wn-- ----- > — = w .
Cywv n

□

In normal Paging with k = 1 there is no particular strategy that a good 
algorithm must follow: if the requested page is in the cache, then nothing is 
done; otherwise the page must be brought into fast memory, replacing the only 
page that is there. Any algorithm that does not unnecessarily evict pages is 
optimal. In Fair-IMTP with t = w — 1 and k = 1 the situation is the same, except 
that the algorithms can choose between w! distinct orders of the sequences. We 
said that this choice is useless for an on-line algorithm, so it makes sense that 
any on-line algorithm is strongly competitive. We will now see that this is the 
case, at least for an odd number of sequences. We are able to prove that any 
lazy algorithm (on-line or not) for Fair-IMTP with t = w — 1, k = 1 and odd w, 
is w-competitive. A lazy algorithm is one which only evicts a page on a page 
fault, and in that case evicts exactly one page.

Theorem 4.1.2 Any lazy algorithm for Fair-IMTP with t = w — 1, k = l and 
odd w, is w-competitive.
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Proof Let A be any lazy algorithm (on-line or not) and ADV an off-line 
adversary. To measure the costs of both algorithms we will split the rows of 
requests into disjoint stages. The first stage starts with the first row and ends 
with the first row in which the adversary has no cost. Each new stage starts 
with the row immediately after the last row of the previous stage, and ends 
with the next row in which again the adversary has no cost. We will consider 
that the i-th stage starts and ends with the p,-th and the </,-th rows of requests, 
respectively. We will denote by and Ca{j) the costs of A in the i-th stage 
and in the J-th row, respectively. A similar notation is valid for the adversary. 
Notice that (Vj) Ca{j) < w.

Suppose that after I requests the algorithms completed rn stages and are 
currently in the {rn + l)-st stage. Before we measure the costs of the algorithms, 
it is convenient to point out some facts about the stages we have defined. In 
the completed stages {i < rn), the last row verifies CADv{Qi) = 0, which implies 
that all the requests in the row are to the same page, and hence Ca{(1i) < 1; 
besides, both A and the adversary start the next stage with the same contents 
in the cache. On the other hand, in each row r but the last one (p, < r < q^) 
we have Cadv{t) > 1; this is also true for the completed rows of the {rn + l)-st 
stage, because otherwise we would have an additional stage.

We will now analyze the costs in the different stages:

• In the first stage, all the rows but the last one verify Cadv{t) > 1, and 
then we have

Ca < wCadv + w ■

• In the last stage, all the rows except eventually the last one verify the 
same condition Cadv{t) > 1, and then we have

C%+1 •

• Let s be an intermediate stage (2 < i < rn) for which A does not pay in 
the last row of the stage. Again all the other rows verify Cadv{v) > 1, 
and then we have

C'\ < ™CaDV .

• We must now consider the costs in each intermediate stage (2 < i < rn)
for which A pays in the last row of the stage. The only possibility is 
that C \{qt) = 1, since we know that Ca{(H) < 1- First notice that the 
algorithms start the last row of the stage with different contents in their 
caches; this is because all the requests in that row are to the same page, 
while Ca{(1i) CADv{<li) (1 0). It follows that the stage has at least two
rows of requests. We claim that among the rows that are not the last one 
of the stage, there exists at least one row which verifies Ca^) < w — 1 
or CAov{ti) > 2. Suppose this is not true, i. e., for each row we have 
Ca{t) = w and CADv{r) = 1, in particular for the first row of the stage. 



A. Strejilevich de Loma, Fair Multi-threaded, Paging, EJS, 1(1) 21-36 (1998)31

Let at be the page in the caches of both A and the adversary when they 
start serving the stage. Since Cadv(Pi) = 1- from the adversary’s point of 
view, this first row is formed by zero or more requests to page cq, followed 
by one or more requests to another page bi (bi ai). On the other hand, 
since CA(Pi) = w, for A the row looks like alternating requests to pages a, 
and bi, starting and ending with bi because A faults on each request and 
w is odd. Hence, once the first row of the stage is completed, we are as in 
the beginning of the stage, in the sense that both A and the adversary has 
the same contents in the cache (now it is page bi). We can think about 
the second row of the stage like we did about the first, and so on, until 
we arrive to the last row of the stage. This last row starts with the same 
contents in the cache of both algorithms, but we said it cannot happen. 
This is a contradiction, and therefore our claim is true. If Cbi(tj) < w — 1 
we have

Ca(ti) + CA(qi) <(w-l) + l = w< wCADv(ti) =

= w[CADv(ti) + CADv(qi)] ,

while if Cadv (it) > 2

C'A(ii) + C'>i(Qi) < w + 1 < 2w < wCADv(ti) =

= w[CADv(ti) + &ADv(qi)] ■

Since the row we found verifies at least one of those conditions, and the 
other rows in the stage (except the last one) verify Cadv(v) > 1, again 
we have

C'\ < wCadv ■

The total costs Ca and Cadv are the sums of the costs in each stage, and hence

m+1 /m+1 \
Ca = Ca < ( wCadv I + 2w - 1 = wCadv + (2w - 1) , 

i=l \ i=l /

that is, A is w-competitive. □

The preceding proof cannot be applied to an even number of sequences; the 
problem arises with the last kind of stages we considered, where the induction 
is not valid for an even w.

It is worthwhile to mention that the lower bounds shown in this and the 
previous section can be generalized to arbitrary values of k, so as to obtain a 
general lower bound of (roughly) w/k. This new lower bound is linear in the 
number of sequences, and when w > k2 it is better than the already known 
lower bound of k.
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While there is at least one request to be served do
7, a new super-phase starts
Repeat

Apply a phase of FWF to the sequence <j* formed by 
taking in turn one request of each active sequence 

Until it is possible to serve with unitary cost
the next request of <j* and all the pending requests 
in the same row of that request

Serve the next request of a* and all the pending requests 
in the same row of that request (with unitary cost)

end While.

Figure 3: Algorithm Check-Row-Flush-When-Full

5 The Case w < k
In this section we will analyze the case of Fair-MTP in which w < k. This case 
is the opposite situation to the extreme case of the two previous sections (where 
we considered k = 1). We will present a new on-line algorithm for Fair-MTP 
and we will show that for w < k it behaves better than RRFWF, the known 
on-line algorithm for Fair-MTP.

5.1 Infinite Sequences
The new on-line algorithm for Fair-MTP is called Check-Row-Flush-When-Full 
(CRFWF), and it is described in Fig. 3. Algorithm CRFWF can be regarded 
as a modification of RRFWF: CRFWF works in super-phases and serves the 
requests row by row as RRFWF does; the difference is that in each super-phase 
RRFWF applies one phase of FWF and serves some additional requests (see 
Fig. 1), while CRFWF applies one or more phases of FWF until it is possible 
to serve the additional requests with unitary cost. As we will see now, CRFWF 
beats RRFWF in Fair-IMTP with t = w — 1 and w < k.

Theorem 5.1.1 Algorithm CRFWF is {k + T)-competitive for Fair-IMTP with 
t = w — 1 and w < k.

Proof Assume that after I requests CRFWF completed rn super-phases, each 
one having pi > 1 phases (1 < i < rn), and is currently in the {rn + l)-st super­
phase with Pra+i > 0 phases completed in this last super-phase. To terminate a 
super-phase CRFWF entirely serves its last row; thus the adversary has served 
all the requests in the super-phases that CRFWF has completed. Consider the 
i-th of those super-phases (1 < i < rn). By definition of CRFWF, the cost of 
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each phase is at most k, and then the cost for the super-phase is

Ccrfwf Pik + 1 < (ft + l)p, .

To analyze the adversary’s cost in the super-phase, we associate to each odd 
phase an xphase (extended phase) as follows: we include in the xphase all the 
requests of the odd phase plus the next request served by CRFWF, and all the 
requests in the rows of the already included requests; note that we include in 
the xphase all or none of the requests of any given row. Being w < k, each phase 
has at least w requests, and then the xphases are disjoint. From the behavior 
of FWF we know that in each xphase at least k + 1 different pages appear; this 
implies that the adversary must fault at least once in each xphase. If an xphase 
is not associated with the last phase of the super-phase, then the number of 
distinct pages is at least k + 2 (because otherwise the super-phase would finish 
in that xphase); in these xphases the adversary must fault at least twice. If pi 
is even, there is no xphase associated with the last phase of the super-phase; 
then the cost of the adversary in the super-phase is

Cadv > = Pi .

If pi is odd, the last xphase corresponds to the last phase of the super-phase, 
and hence the cost is

Cadv >2^+1 =p; .

In both cases we have for the costs in the super-phase

Ccrfwf < (& + l)Pi < (k + l)C*ADy .

In the (m + l)-st super-phase the cost of CRFWF is

C'C'RFWF — Pm+lk + fc < (fc + l)Pm+l + k .

We can think about the adversary’s cost in this super-phase as we did for the 
other super-phases. Nevertheless we must discard the last phase of the super­
phase, because we do not know whether the adversary has served those requests. 
Thus we have

C^v > P™+i - 1 ,
which implies

C^CRFWF — (fc + l)Pm+l+^ = (^ + 1) (Pm+1 — l) + 2fc + l < (fc + l)C™py + 2fc + l .

Summing over all the super-phases we obtain that the total costs Ccrfwf and 
Cadv verify

m+1 m+1
Ccrfwf = Ccrfwf < (fe+i) £ C’ji£)y+2fc-|-l — (fc+l)Cbi£>y+(2fc+l) .

t=i t=i

□
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Table 1: Summary of previous and current results about Fair-IMTP (Im = 
Improved; Cl = Closed).

Previous Current
Cl?l.b. u.b. l.b. u.b. Im?

t > w 00 - 00 - a/
t = w — 1, k = 1 and even w 1 w +1 w + 1 w + 1 V a/
t = w — 1, k = 1 and odd w 1 w + 1 w w a/
t = w — 1 and w < k k k + w k k 1 1
t = w — 1 and w > k > 1 k k + w k k + w

5.2 Finite Sequences
To conclude our analysis we will prove that algorithm CRFWF is (fc + 1)- 
competitive also for Fair-FMTP with w < k. Of course we are restricted to 
the situations in which competitive on-line algorithms can exist.

Theorem 5.2.1 Algorithm CRFWF is (fc + 1)-competitive for Fair-FMTP with 
t = w — 1, w < k and w < 2.

Proof With two active sequences CRFWF behaves as in the infinite version, 
and hence its cost is at most k + 1 times the optimal cost necessary to serve 
those requests. The performance of CRFWF is the same with only one active 
sequence. In any case the algorithm results (fc + l)-competitive. □

6 Concluding Remarks
Table 1 summarizes our results about Fair-IMTP, as well as the results already 
known; we assume w > 1 through the table. In the finite model the results are 
the same, except that no competitive on-line algorithm can exist if w > 3.

When the size of the cache is 1, having an even number of threads is slightly 
more difficult for on-line algorithms than the case in which the number of threads 
is odd. The difficulty probably depends not only on the parity of w itself, but 
on its relationship with the size of the cache. The fact that both w and k affect 
the behavior of on-line algorithms becomes clear when we compare the results 
for the two opposite situations we have considered: when k = 1 < w there is a 
tight bound near to w, while if w < k on-line competitiveness is between k and 
k +1. It seems that when the cache is small the adversary can take benefit of its 
decision about the order in which to serve the sequences; thus the performance 
of on-line algorithms get worse when the number of sequences increases. On 
the other hand, when the cache is big enough the permutation of the threads 
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might have a local effect, and then the performance that on-line algorithms can 
achieve is similar to the one observed in normal Paging.

Although we improved previous results and we closed some gaps, there are 
still differences between current lower and upper bounds; a nice result would 
be to close those gaps. We proved that any lazy algorithm achieves the on-line 
lower bound if k = 1 and w is odd; we know that algorithm RRFWF is optimal 
when the number of sequences is even, but it would be interesting to analyze 
whether that general result is valid in this case too.

Several interesting research directions are possible. One of them is modeling 
fairness restrictions in a different way; perhaps alternative models allow the 
existence of more flexible competitive on-line algorithms. Distinct definitions 
of competitiveness may also be considered for the infinite problem, such as 
comparing the performances of the different algorithms in the limit, that is, when 
the number of served requests tends to infinity. Another interesting possibility 
is to analyze randomized algorithms for these problems.

A general observation is that multi-threaded environments seem a powerful 
modeling tool and a challenging research field.

Acknowledgments: I would like to thank Esteban Feuerstein for his encour­
agement and many helpful suggestions about this work.
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