
Electronic Journal of SA DIO

http://www.dc.uba.ar/sadio/ejs/
vol. 1, no. 1, pp. 1-20 (1998)

Structural Testing of Active DataBases

Martin Balzamo Martina Marre Daniel Yankelevich

Departamento de Computation, FCEyN, Universidad de Buenos Aires, Ar
gentina. {t incho/mart ina/dany}@dc.uba.ar

Abstract

Active databases (ADBs) are databases that include active compo
nents or agents that can execute actions. The rise of active databases
in the picture of software development has a great impact on software
systems and in the discipline of software engineering. However, we still
lack the foundations that are needed to adequately support this new tool.
These foundations are needed in order to properly apply known software
engineering techniques to ADBs and systems that use them. Among the
methods and techniques used to improve quality, we count systematic
testing. In this work, we generalize structural testing techniques to ADB
systems. We introduce a model of active databases, called dbgraph, suit
able for testing. We show that dbgraphs can be used to generalize struc
tural testing techniques for ADBs. Moreover, we introduce several new
structural criteria aimed at find errors in a set of rules for an ADB. We
also compare the strength of the coverage criteria presented in this work.

Supported in part by UBACyT grant EX186.

http://www.dc.uba.ar/sadio/ejs/

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)2

1 Introduction
Active databases (ADBs) are databases that include active components or agents
that can execute actions. These databases do not just store data: they transform
data, and may implement complex business rules and verifications.

The interest in active databases increased significantly in recent years. From
the point of view of research, active databases present new interesting prob
lems [6], and they inherit some others from the Artificial Intelligence (Al) field.
In fact, the analogy between active databases and knowledge-based systems
with inference rules is immediate.

From the point of view of industry, the interest in active databases has a more
practical motivation. Many database vendors are including rules in their engines
that may be triggered by the occurrence of certain events. These products do not
include all the features offered in active database models, as used in academy.
But in one way or the other, current products allow developers to define rules
that are executed when a particular event occurs. Most of the main database
engines include event/action rules of some kind, and many vendors promise to
include more related features in future releases.

The current interest and potential future of active databases can also be il
lustrated by the inclusion of concepts such as rules and events in some standards
and proposals, like ODMG and SQL3 [5].

The rise of active databases in the picture of software development has a
great impact on software systems and in the discipline of software engineering.
The the facto standard of client/server architectures in commercial software
systems, which in most cases means passive database servers interacting with
active clients, may be influenced if database servers might include rules.

However, we still lack the foundations that are needed to adequately support
this new tool. These foundations are needed in order to properly apply known
software engineering techniques to ADBs and systems that use them. The dis
cipline of software engineering is now mature enough to promote best practices
to apply in order to produce better software. These practices are acknowledged
by most software professionals, and aim at positioning software development as
an engineering discipline.

Among the methods and techniques used to improve quality, we count vali
dation and verification techniques. In particular, systematic testing is one such
best practice that is supported by many techniques and tools. Testing involves
exercising an implementation, and is the predominant verification technique
used in actual production.

Even if commercial systems are now in the market with ADB functionalities,
no tool exists supporting systematic testing of active databases. In our view,
tools can be developed only once the underlying model has been properly studied
and well-known techniques are generalized to this new model. In the case of
testing, tools are of great importance, because it is almost impossible to perform
systematic testing on a real system without the aid of tools.

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)3

Validation and verification of ADBs have been studied from the point of view
of static analysis. Static analysis, as opposed to dynamic analysis or testing,
performs verification of the system without executing the code. Static verifica
tion techniques for ADBs have been presented, for example, in [8, 2].

Some work has been done in dynamic analysis of rule based systems, in the
context of Al. The most relevant to ADBs is the work presented in [13]. In that
work, the author apply notions from structural testing to rule based systems.
While the motivations are very similar, and the goal is to apply structural
testing techniques to a particular kind of systems, the models developed and
the technical results are quite different. The reason is that the use of rule based
knowledge bases and active databases is different. Structural techniques take
into account the structure of systems, and structure is influenced by function [9].
For instance, the model of [13] for a set of rules are graphs in which each node
represents a rule. Clearly, we need a finer granularity (more detail) if we want
to analyze rules that may trigger complex actions (that might cause other rules
to fire).

Our work is related to testing, and in general to verification, of event/action
systems. However, active databases are a particular case of such systems, in
which we do not deal with programs: the rules of an ADB have a particular,
well-defined form with clear semantics. The semantics change from model to
model. In this paper we follow the model of the Starburst system [18], but
clearly the results can be easily applied to any model.

In this work, we generalize structural testing techniques to ADB systems.
Our final goal is to use these techniques in real systems, and thus it includes
the construction of an automatic tool. In this first step, we establish the basis
of structural testing in this context. In particular, we show that structural
techniques can be applied to active databases by introducing a model of active
databases, called dbgraph, suitable for testing. Criteria are based on this model.
Specifically, we introduce several new structural criteria aimed at find errors in
a set of rules for an ADB.

In the next section, we present background that is needed for the work, both
on testing and active databases. In Section 3, we introduce the dbgraph model
and we present some examples. Section 4 is devoted to the definition of testing
criteria for active databases based on our model. Also, we use the inclusion
relation [16] to compare the strength of the coverage criteria proposed. Finally,
in Section 5, we discuss the conclusions and some future work.

2 Background

2.1 Testing
Software testing [15, 1, 4] consists of validating computer programs through
the observation of a meaningful set of executions. A complete verification of a

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)4

program at any stage of the development process can be obtained by performing
a test for every element of the domain, i.e., for every possible input. If for each
possible input of the program the actual behavior and the expected behavior
agree, the program is verified; otherwise a fault has been found. This exhaustive
testing method is the only dynamic analysis technique that would guarantee
the validity of the program. Unfortunately, this technique is not practical.
Frequently, domains are infinite or at least sufficiently large to make the number
of required tests infeasible.

Therefore, program testing consists of the validation of the program through
the selection of a meaningful subset of all possible executions of the program
and verifying that the corresponding outputs are consistent with what the spec
ification says. The subset of inputs selected to test the program is called test
(data) set or test suite. The selection of test data can be guided by different
strategies or criteria for choosing representative elements from the domain. A
testing criteria groups together input elements determined by test cases. Thus,
selection criteria require to test the program using at least one representative
element of each subdomain.

A selection criteria can be based on the function or on the structure of a
program. There is no controversy between the use of functional testing versus
structural testing techniques: both are useful, both have limitations, both target
different kinds of error [4].

In structural testing the structure of the program is examined in order to
analyze the consistency of a component’s implementation with its requirements.
Typically, in structural based testing criteria the program structure is analyzed
on a graphical representation called a flowgraph [12], and all the information
used to select test cases is implicit on it. The test suite tries to cover some
predefined features of the program’s control flow (e.g., statements, decisions) or
data flow (i.e., relations between a definition and a use of a variable). Control
flow and data flow are both essential and complementary testing techniques.
Structural testing is probably the most widely used class of program testing.
The popularity of these techniques is mainly due to their simplicity and the
resulting availability of software tools to assist the testing process.

One of the most difficult problems in testing is knowing when to stop [15].
On the one hand, it is not possible in general to give an answer to whether a test
suite guarantees the absence of faults. Therefore, it is useful to have criteria to
determine when a program has been tested “enough.” On the other hand, we
need a way to limit the cost of testing. In fact, if we had unlimited resources
we could do all the testing we wanted. In real software projects, we are always
short of time or money. Consequently, we need a way to know when to stop the
testing process.

Either if the testing process has been planned in advance or the tests have
been incorporated step by step, the testing process stops when some completion
criterion or adequacy criterion is satisfied. In theory, the adequacy criterion
should be related to some fault-rate [14] or some coverage [10]. In the second

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)5

case, different coverages are used to determine when the program has been tested
enough. The idea is to guarantee that each statement, decision, or other feature
of the program has been executed at least once under some test. Structural
testing criteria are frequently used to measure testing coverage, and thus stop
the testing process.

2.2 Active Databases
Database systems, in general, are passive: they only give answer to queries or
execute transactions required by a user or a program. In many applications it
is important to monitor different situations and to react to them with certain
actions. For instance, the global amount of expenses in an organization can
not exceed the budget. If it does, some information should be transformed or
some processing is needed. Hence, particular conditions may trigger a (possibly
complex) action. This can be solved in several ways:

In each application: Each application can check for a certain condition and
execute the related action. This approach produces software that is diffi
cult to maintain. Moreover, optimizations depend on particular details of
each application, and the code is not reusable.

A daemon application: A program can be written to check for relevant con
ditions and execute actions accordingly. This is a better approach from the
point of view of maintenance, but frequent checking causes low database
performance. On the other hand, infrequent checking could signal events
at wrong times.

An active database system: A database manager monitors situations of in
terest and executes related actions when they occur. This behavior is
represented by event-condition-action rules. We will go through active
database systems in the following.

An active database system [6] consists of a (passive) database and a set of
production rules or active rules. The most popular form of active rule is the
so-called event-condition-action rules, which specifies an action to be executed
upon the occurrence of one or more events, provided that some specific condi
tion holds. These rules take the form:
on event
if condition
then action

When its relevant events occur, a rule is said to be triggered-, after triggering,
a rule is considered, to see if its condition holds; finally, a considered rule with
a true condition is executed by performing its action.

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)6

This kind of rules allow to implement referential integrity, triggers, alerts,
update data derived from other information (e.g., statistics). Moreover, the in
ference power of the production rules makes active databases a suitable platform
for expert systems and knowledge-based systems.

A database system not only provides tools for defining and storing rules,
but it also allows their analysis and maintenance. It is common to activate and
deactivate them.

Event Specification

In active databases, rules are in general associated with events related to data
modification. In relational databases, data modification is carried out using
insert, delete or update operations. For example:
define rule MonitorNewEmps
on insert to employee
if ...
then ...

In some languages, events are associated with data retrieval. That is to say,
an action can be executed when specific data are read. For instance:

define rule MonitorSalAccess
on retrieve salary
if...
then ...

In other languages, it is possible to work with transaction events. A rule can
be associated with commit, abort or prepare-to-commit operations.

Another kind of events allowed in some managers are time dependent events.
They can be absolute (1/1/95, 8:00:00 AM), relative (five seconds after down
load), or periodic (Every Friday at 7:00:00 PM).

Finally, some languages have operators to compose events. For instance,
disjunction or other logical operators.

Condition Specification

A rule condition is a predicate or a query over the database’s data. The con
dition is satisfied according to the predicate’s truth or to whether the result of
the query is empty. Sometimes, the condition does not exist, meaning that the
action will always be executed. Several languages allow referring to data value
before and after data modification. For example:

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)7

define rule MonitorRaise
on update to employee.salary
if employee.salary > 1.1 * old employee.salary-
then ...

• by setting an order over the rules, and executing them according to this
order;

• by executing all of them in parallel.

Another problem to be solved is the treatment of infinite loops. The manager
can count how many times a rule calls itself and, for instance, stop it after a
prefixed number of times.

Finally, it is important for the user to know the rules processing granularity:
a tuple or a set of tuples can be modified. The process manager can evaluate
net effect, or analyze each single operation.

Action Specification

Rule actions specify the operations to be executed over the database. The oper
ations can be implicitly or explicitly given. For instance, a rollback (not written)
in a referential integrity rule is an implicit operation. Delete, update, or insert
queries are explicit operations. In these queries, deleted data, inserted data, or
modified data can be manipulated before and after the occurrence of the event.
Finally, an action can be a commit or rollback. For example:

define rule NewEmps
on insert to employee
then delete employee where new.name=“WHA* ”

In this example there is no condition, the inserted data are used, and the action
is executed on each update. This rule says that no register with name field
beginning with “WHA” can be added to the table employee.

Rules Execution

When an event occurs the manager could have to make a choice between different
rules related to the same event. This problem can be handled in different ways:

• by forbidding the existence of more than one rule associated with the same
event;

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)8

Starburst

Every active database system or language has an underlying model, that fixes
the particular meaning and form of execution of the rules. In this work, we
apply the techniques to the Starbust model.

Starburst rules are based on the notion of transition. A transition is a
database change resulting from execution of a sequence of data manipulation
operations. Rules consider only net effect of transitions [17], meaning that (1)
if a tuple is updated several times, only the composite update is considered; (2)
if a tuple is updated and then deleted, only the deletion is considered; (3) if a
tuple is inserted and then updated, this is considered as inserting the updated
tuple; (4) if a tuple is inserted and then deleted, this is not considered at all.

The syntax for defining a rule is:
create rule name on table
when event
[if condition]
then action
[precedes rule list]
[follows rule list]

An event can be an insert, delete, or update operation. A rule can be
activated by a transition only if at least one operation occurs in the net effect of
the transition. The condition is optional, and has the form of a SQL query. The
action is an insert, update, delete, rollback, or select. The action is executed if

• the condition does not exist, or

• the condition exists, and the result is not empty.

Finally, there is a way of specify a partial order between rules, by means of
two statements: precedes and follows. This order is used if two rules can be
activated simultaneously, in order to guide the scheduling algorithm.

Testing techniques must be used to complement static analysis techniques.
This fact is immediate if the properties of interest are not decidable for the
language studied. For instance, if the properties of interest are pi,p2, ...pn and,
given any program P, there are algorithms to check the validity of p. for P,
the importance of testing could be discussed. Even in that case, the actual
execution of the program may give useful information - in general, it is not true
that one knows everything that must be checked in a program.

However, it is important to know the expressive power of the language, in
order to have complexity measures of the problem to solve. In our case, it is
easy to see that the Starburst model is Turing complete, i.e. any computable
function can be expressed by means of a set of rules and a database schema.
This fact is given without proof in this paper (see [3]), but one way to prove it,

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)9

is to translate any Turing machine in a set of rules and codify the tape in one
table. A consequence of this fact is that it is not possible to give algorithms to
perform static and automatic analysis of programs.

On this work, we use the Starburst model to apply our terminology. This
model is rather simple, while preserving the interesting properties of active
databases and rules. The techniques presented can be generalized to more com
plex models if desired. Industrial products, in general, use quite simple models.

3 Dbgraphs
In this section we introduce the notion of active database flowgraphs or db
graphs. We assume that the basic concepts of graph theory [11] and of program
flowgraphs [12] are known to the reader.

Dbgraphs model rules and their relationship in an active database. Each
rule is represented as a dbgraph. A node represents a decision (a rule point at
which the control flow diverges) or a junction (a rule point at which the control
flow merges). An arc represents a possible course of the control flow inside the
rule.

Let R be a rule. In Figure 3 we present the two possible dbgraphs for a
single rule in an active database. There are two possible decisions in a rule:
one corresponding to the if condition, and the other corresponding to the where
condition. The dbgraph in Figure 3A corresponds to a “complete rule,” i.e.,
the if condition and the where condition are not empty. There is an initial
node of the rule representing the activation of the rule and the if condition.
Arc a represents the satisfaction of the if condition. Arc b represents that the if
condition does not hold. Arc c represents that the action in the rule is executed.
And arc d represents the case in which the where in the action is empty, and
the action is not executed. The head of arcs c and d are called final nodes of
the rule, representing the two possible states after the execution of the rule.

When the if condition of a rule is empty, then the rule is represented by the
dbgraph in Figure 3B.

Now let JR be a set of rules. For each R G JR, let the corresponding dbgraph
be Gr = (Nr, Er). The dbgraph corresponding to the set of rules JR represents
every rule and the interaction between rules, i.e., the possible activation of more
rules when a rule is being executed. Hence, in a dbgraph we have two different
kinds of arcs: those inside a rule (as we have seen for a single rule), and those
between rules or from the final node of a rule to the initial node of a rule,
indicating the possible activation of a rule. We consider that a rule R may
trigger another rule Q if the condition of 0 includes a field of a table that can
be modified by R. Note that this invocation relation can be statically detected.

Thus, the dbgraph Gjf = (N%, Eg l+J F^) corresponding to the set of rules JR
can be constructed in the following way:

1. For each rule R G SR, for each node n G Nr, then the node riR G Wr.

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)10

a

b

ia

A

c d

A B
Figure 1: Dbgraphs for a single rule

2. For each rule R G SR, for each arc e G Er, e = (o,d), then the arc
eR = (0R,dR) is in

3. If an execution of rule R can activate rule Q, then there exist an arc in
Fjf from the final node or of R to the initial node of Q. Such an arc is
called a firing arc.

4. Let ai and a/ two new nodes in 2Vjf. For each R G JR, there exists an arc
in Fjf from a, to the initial node n of R. There exists an arc in E^ from
each final node n in to af if there is no arc exiting n.

5. There are no other arcs or nodes in Gr then those implied by item 1
through item 4.

Notice that, by construction, every node can be reached from a, and can
reach af.

The construction of the dbgraph for an active database can be automated,
since the information needed to construct it can be obtained statically.

Let us consider an extension of an example presented in [2]. The following
simple database schema contains 3 tables.
emp(id, rank, salary)
bonus(empJd, amount)
sales(emp-id, month, number)

Table emp records each employee rank and salary. Table bonus records
a bonus amount to be awarded to each employee. Table sales records each
employee’s number of sales on a monthly basis.

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)11

The following rule increases an employee’s salary by 10 whenever that em
ployee posts sales greater than 50 units for a month.
create rule D on sales
when inserted
then update emp
set salary = salary + 10
where id in (select emp-id from inserted where number > 50)

The next rule increases an employee’s rank by 1 whenever that employee
posts sales greater than 100 for a month.
create rule K on sales
when inserted
then update emp
set rank = rank + 1
where id in (select emp-id from inserted where number > 100)

The next rule increases an employee’s salary by 10% whenever that em
ployee’s rank reaches 15 (we assume that ranks do not decrease), provided that
the sum of all employee’s salaries is less that 20000 for a month.
create rule T on emp
when updated(rank)
if Select sum(salary) as total where total < 20000 then update emp
set salary = 1.1 * salary
where id in (select id from new-updated where rank = 15/

Finally, the following rule increases an employee’s rank whenever that em
ployee receives a raise provided that some conditions are satisfied.
create rule V on emp
when update (salary)
then update emp
set rank = rank + 1
where id in (select id from new-updated where rank < 5 and salary < 1000/

In Figure 2 we present the dbgraph for the four rules above. There are firing
arcs from D to V, from V to T, from K to T and from T to V, and from node
ai to the inital nodes of all rules.

A path, i.e., a sequence of adjacent arcs, from cq in a dbgraph represents
a possible sequence of firings of rules in the ADB. If there is no input that
exercises a specific path, then the path is said to be infeasible. A complete path
in a dbgraph is a path such that the first arc in the sequence is cq and the last
arc is af. For instance, A'c,e!KT,rail’d,3%,is a complete path
in the dbgraph of Figure 2.

In this work, test cases for the ADB are associated with paths in a dbgraph.
Our goal is to select a set of paths in a dbgraph, in order to test the rules. In the

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)12

next section, we propose several criteria useful to select test paths in a dbgraph,
or to evaluate testing completeness based on the coverage of a dbgraph.

We note that the generation of test data is out of the scope of this work.

4 Coverage Criteria
There are many, possibly infinite, (complete) paths in a dbgraph. Various crite
ria, or test strategies, can be followed to select a suitable and finite subset of test
paths. In this section we introduce several control-flow based coverage criteria
for dbgraphs. These criteria use the information in a dbgraph to select a subset
of all the complete paths. They can be used to generate test cases or to measure
testing thoroughness (i.e., once the rules in a ADB have been tested with test
data generated by using some other test generation method, these criteria can
be used to check how thorough those test cases have been).

4.1 Coverage Criteria
Let JR be a set of rules. Let G}; = (N^, E^\±1F^) be the dbgraph for JR. First we
present several test criteria that are extensions of sequential testing strategies.

All-Paths This is the strongest criterion presented in this work. It requires to
exercise every path in Gr, i.e., the unique set of paths that satisfies this
criterion is the set of all paths in Gr. Notice that, if Gr contains a cycle,
then there is an infinite number of paths in Gjf-

All-k-Cycles This criterion provides a restriction of All-Paths, by limiting the
iterations of loops in a path. The paths selected are those that do not
iterate loops more than k times, for a given integer k. This is to say, a set
of paths satisfies this criterion if it includes all paths in Gr that do not
iterate loops more than k times.

All-Arcs This criterion requires exercising all the arcs in the dbgraph at least
once under some test. Thus, a set of paths p satisfies this criterion if for
each arc e in the dbgraph there is at least a path in p including e.

All-Nodes This criterion requires that all the nodes in the dbgraph be exer
cised at least once under some test. Hence, a set of paths p satisfies this
criterion if for each node n in the dbgraph there is at least a path in p
including n.

Now we present several testing criteria that use specific information provided
by ADB.

All-Actions This strategy guarantees that every action in every rule of the
ADB is exercised at least once under some test. Then, it requires to

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)13

exercise all the arcs representing an action in the dbgraph. This is to say,
a set of paths p satisfies this criterion if for each arc e that represents
an action in a rule in the dbgraph, there is at least a path in p passing
through e.
For instance, if
Pi =eiD,Dc,e‘Dv,Vd,efvd, and
P2 = elK,Kc,e*KT, Ta,Tc, edTv, Vc, edyr, Tb, e f Kd-
thus, the set of complete paths {^1,^2} satisfies the All-Actions criterion
for the dbgraph in Figure 2.
This criterion adopts a pure state-transition point of view. On this view,
only actions are of interest because only them might modify the state of
the database. This coverage exercises all actions at least once, and hence
all possible “modifications” of the state of the database are executed at
least once. Relations among actions are not taken into account.

All-Rules This criterion guarantees that every rule is exercised at least once
under some test. Thus, it requires to exercise all the initial nodes in the
dbgraph. This is to say, a set of paths p satisfies this criterion if for each
initial node n in the dbgraph, there is at least a path in p including n.
For instance, the set of complete paths {^1,^2} satisfies the All-Rules
criterion for the dbgraph in Figure 2.
This criterion formalizes the intuitive idea of “trying at least one every
rule.” In the actual testing of an actual database, it guarantees that no
rules remain unexplored.

All-Firing-Arcs This criterion requires to exercise all the firing arcs in the
dbgraph. To exercise these arcs is important since they represent the
calling of a rule by the system and the calling between rules. This is to
say, a set of paths p satisfies this criterion if for each arc e in F%, there is
at least a path in p including e.
For instance, if
Pz = PSy, Vd, eJyd,
Pi = e^T^bje^Td,
thus, the set of complete paths {pi,P2,P3,P4} satisfies the All-Firing-Arcs
criterion for the dbgraph in Figure 2.
This criterion reflects that it is important, besides checking every rule, to
check every form in which a rule can be activated. Firing arcs between
rules can appear in an unexpected way: for instance, a new rule includes
an action that modifies a field that triggers another rule. Hence, these
forms of activation must be verified; it is not enough to check rules. This
criterion can be used when merging databases with rules, when adding new

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)14

rules to a database, or when upgrading an application that uses rules. On
all these cases, it is clever to analyze possible activation among old and
new rules.

4.2 Comparison of Active DataBases Structural Testing
Criteria

We have presented several coverage criteria for active databases. However, there
is no information about how these methods compare. One common way of
comparing criteria is to use the inclusion or subsumption relations [16]. In this
work, we use the inclusion relation to compare the strength of the coverage
criteria proposed in the last section. Let ci and C2 be two coverage criteria
from those presented in the last section. We say that ci includes C2, written as
ci —> C2, if for every set of paths p satisfying ci, p satisfies C2 as well. If neither
ci nor C2 include the other, then ci and C2 are said to be incomparable.

For the criteria presented in this paper, we have the following facts:

• All-Paths —> All-k-Cycles.

• All-k-Cycles —> All-Arcs.

• All-Arcs —> All-Nodes.

• All-Nodes —> All-Actions, since the only way to reach the node head of
the arc representing an action, is to pass through that arc.
All-Actions does not include All-Nodes. As an example, we consider the
dbgraph for a single complete rule. The loop-free path p = a, c covers the
rule for the All-Actions criterion. However, this path does not cover the
HEAD of d, and then the All-Nodes criterion is not satisfied.

• All-Arcs —> All-Firing-Arcs, since the set of firing arcs is a subset of all
the arcs in the dbgraph.
All-Firing-Arcs does not include All-Arcs. For example, we consider again
the dbgraph for a single complete rule, and the path p covering c. In this
case, d is not covered, and then All-Arcs is not satisfied.

• All-Firing-Arcs —> All-Rules, since to reach the initial node of a rule, the
path must contain at least one firing arc (remember that arcs starting at
ai are also firing arcs).
All-Rules does not include All-Firing-Arcs. For example, a path covering
the arc d satisfies the All-Rules for the dbgraph of a single complete rule.
However, this path does not satisfy All-Firing-Arcs since the arc from ai
to the initial node of the rule is not covered.

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)15

• All-Actions —>■ All-Rules, since every rule contains an action and to cover
the action of a rule you must pass through the initial node of that rule.
All-Rules does not include All-Actions. For example, a path covering the
arc d satisfies the All-Rules for the dbgraph of a single complete rule.
However, this path does not satisfy All-Actions, since arc c is not covered.

• All-Actions and All-Firing-Arcs are incomparable.
First, suppose that there is a firing arc that triggers the rule R, and the
action in R does not trigger any rule. Suppose that a test case is chosen to
cover that firing arc, such that it does not cover the action in R. Thus, the
covering of All-Firing-Arcs does not guarantee the covering of All-Actions.
Now, pi = eiD,Dc,eiDV,Vc,eiVK,Ta,Tc,eiKV,Vd,efVd, and p2 =
eiK,Kc,eiKT,Tb,efTd are two complete paths in the dbgraph of Figure
2. And {^1,^2} satisfies All-Actions, but does not satisfy All-Firing-Arcs.
Thus, the covering of All-Actions does not guarantee the covering of All
Firing-Arcs.

• All-Nodes and All-Firing-Arcs are incomparable. Let p^ = etn,Dd,e^i>d.
andp< = elK,Kd,e^Kd- Thus, the set of complete paths {pi,P2,P3,P4} in
the dbgraph of Figure 2 satisfies All-Nodes, but not All-Firing-Arcs, since
arc e’y is not covered.
Let p^ = ezT, Tb,e^Td, and pe = e’v, Vd, e^vd- Then, the HEAD of arc Kd
is not covered by the set of complete paths {pi,P2,P5,Pe}, that satisfies
All-Firing-Arcs.

Then, the family of criteria presented in this paper is partially ordered by
inclusion, as shown in Figure 3. In fact, a criterion Ci includes a criterion c2
if and only if the inclusion is explicitly shown in Figure 3 or follows from the
transitivity of the relations.

5 Conclusions and Future Work
In this work, we have presented dbgraphs, a model for active databases. We have
shown that it can be used to generalize structural testing techniques for active
databases. We have also defined new testing criteria based on the information
provided by the rules in an ADB. In this way, the criteria introduced are not
just a generalization of existing criteria: they take into account the nature of
active databases.

In order to establish whether these criteria are useful or not, adequate ex
perimentation must be performed. Only after using the criteria in a significant
set of cases we might take definitive conclusions. Therefore, the next step is to
build a testing tool based on the results presented here. This tool will construct
a model from a set of rules (getting the information from the Data Dictionary or

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)16

metamodel) and will help in checking satisfaction of criteria and in the selection
of inputs. It is also very simple to generalize structural complexity metrics [7]
to the case of active databases, letting the tool calculate such metrics.

Moreover, when the tool will be ready, it will be easier to perform experi
ments with different kind of systems to both refine the model and define new
criteria. Besides, it will help to analyze whether some concepts (for instance,
structural complexity) are meaningful in this context.

The model presented in this work is based on the control flow in a rule and
between rules. We plan to further extend the results obtained to data flow
structural testing.

Our work is based on the Starburst model. This model is very simple. How
ever, the results can be generalized, because the complexity of other models
might be handled using techniques already applied in procedural languages [1].
The integration of techniques is also an interesting problem. For instance, sup
pose we are analyzing a complete system, part implemented via the active
database and part in a procedural language. It is too simplistic to consider
that if we cover both parts separately we are covering it as a whole. Somehow,
we need to integrate what is done in the procedural part with the model for
the active database rules. Database languages used in industry allow actions to
be specified in a procedural language. In order to perform experimentation on
real systems, we must solve this integration between ruled based and procedural
models for structural testing.

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)17

References
[1] W. R. Adrion, M. A. Branstad, and J. C. Cherniavsky. Validation, verifica

tion and testing of computer software. ACM Comp. Surveys, 14(2):159-192,
June 1982.

[2] A. Aiken, J. Hellerstein, and J. Widom. Static analysis techniques for pre
dicting the behavior of active database rules. ACM Trans, on Database
Systems, 20(l):3-41, March 1995.

[3] M. Balzamo. Testing sobre Bases de Datos Activas. Tesis de Licenciatura,
Departamento de Computation, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, 1997.

[4] B. Beizer. Software Testing Techniques, Second Edition. Van Nostrand
Reinhold, New York, 1990.

[5] R. G. Cattell. Object Data Management. Addison Wesley, 1994.

[6] U. Dayal, E. Hanson, and J. Widom. Active database systems. Modern
Database Systems: The Object Model, Interoperability, and Beyond. W.
Kim, Ed. ACM Press, NY, 434-456, 1994.

[7] N. E. Fenton and S. L. Pfleeger. Software Metrics: A rigorous and practical
approach. PWS Pu. Co., 1996.

[8] P. Fraternali and L. Tanca. A structured approach for the definition of the
semantics of active databases. ACM Trans, on Database Systems, 20(4):414-
471, March 1995.

[9] R. P. Gabriel. Patters of Software. Oxford University Press, 1996.

[10] J. B. Goodenough and S. L. Gerhart. Towards a theory of testing: data
selection criteria. In Current trends in programming methodology, vol. 2, R.
T. Yeh Ed. Prentice-Hall, Englewood Cliffs, N. J., pages 44-79, 1977.

[11] F. Harary. Graph Theory. Addison Wesley, 1969.

[12] M. S. Hecht. Flow Analysis of Computer Programs. North Holland, 1977.

[13] J. D. Kiper. Structural Testing of Rule-Based Expert Systems. ACM Trans,
on Soft. Eng. and Methodology, 1(2):168-187, April 1992.

[14] J. D. Musa and A. F. Ackerman. Quantifying software validation: when to
stop testing? IEEE Software, 19-27, May 1989.

[15] G. J. Myers. The Art of Software Testing. Wiley, New York, 1979.

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)18

[16] E. J. Weyuker and S. N. Weiss and D. Hamlet. Comparison of program
testing strategies. Proc. ACM SIGSOFT Fourth Symposium on Software
Testing, Analysis, and Verification (TAVfi), 1-10, 1991.

[17] J. Widom. The starburst rule system: language design, implementation and
applications. Special Issue on Active Databases, IEEE Eng. Bull., 15(4):15—
18, 1992.

[18] J. Widom, R. Cochrane, and B. Linsday. Implementing set-oriented produc
tion rules as an extension to starburst. In Proceedings of 17th International
Conference on Very Large Data Bases, VLDB Endowment, pages 275-285,
1991.

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)19

Figure 2: Dbgraph for rules D, T, K, V

Balzamo et al., Structural Testing of Active DataBases, EJS, 1(1) 1-20 (1998)20

All Paths

I
All k Paths

I
All Arcs

All Nodes

I
All Actions

All Firing Arcs

All Rules

Figure 3: Relationship among the Structural Testing Criteria for Active
DataBases

