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Abstract 
 

Biologically-inspired approaches constitute innovative problem solving 
techniques that have been applied to several domains including monitoring, 
detection and diagnosis. The human immune system (HIS) has especially 
motivated the development of new approaches to deal with problems where 
complexity and distribution are crucial constraints. Work in this paper reflects 
how characteristics from the HIS can be applied to conceive diagnosis systems. 
An application was implemented to student diagnosis to be integrated to Modal, 
an educational environment to the learning of basic programming skills.  
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1 Introduction 
 
The human immune system is a complex of cells and organs able to carry out tasks such as pattern 
recognition, learning, memorization, generation of diversity, noise tolerance, distributed detention and 
optimization. Immune engineering has been studied as a new paradigm for solving non-deterministic 
problems, strongly founded by bottom-up methodologies. 
 
Artificial immune systems have been applied in several domains such as data classification, pattern 
recognition, and detection [De Castro, 2000]. In our research, we consider the diagnosis as a kind of pattern 
recognition problem. Originally, a diagnosis task is the activity of observing a process (industrial, biological 
or sociological process), through sets of variables describing it, in order to characterize its state and ascribe a 
meaning to it (normal, abnormal or faulty state). Diagnosis, as a process, is started by the detection of changes 
in values expected for observable variables (constituting correct or incorrect patterns). Next, hypothesis must 
be generated to explain about the origin of such abnormal behavior. 
 
Classical approaches to model diagnosis problems are: model-based diagnosis, abductive diagnosis and 
constraint-based diagnosis ([Console, 1989], [Reiter, 1987]). They are based on sets of rules, which describe 
system’s normal and/or abnormal functioning. Recently, distributed approaches have appeared to deal with 
systems where components to be monitored are situated in different locations (industrial environment, 
computer networks, distant sensors and effectors). In this case, software agents can monitor components 
spatially distributed, interact to each other, share findings, and construct a complete diagnosis through 
cooperation mechanisms ([Frohlich, 1997], [Ross, 2003]). 
 
Since previous works [Webber, 2002] we have been researching the possibility of taking a diagnosis as the 
result of the interactive activity of agents (from a micro level), result that is interpreted by specialized agents 
(macro level). In this sense we have implemented a few operational multiagent diagnosis systems alternating 
agents’ behaviors from reactive (coalition formation based diagnosis) to cognitive approaches (ontology 
based coordination diagnosis). Following this approach, we have implemented an immune-based diagnosis 
system (named Artificial Immune System) whose principles are described in this article. 
 
This paper is organized as follows. Next section briefly describes the HIS, whose characteristics have inspired 
this work. Section 3 focuses on the main direction of the research on artificial immune systems. Section 4 
presents the domain of diagnosis and its application to the educational context. Section 5 illustrates the four 
steps of the immune-based diagnosis process proposed by this article. Sections 6 and 7 present Modal learning 
environment and the implementation under test. To conclude, last section discusses some relevant points for 
future research. 
 
2 Human Immune System 
 
The physiological function of the human immune system (HIS) is the defense against infectious 
microorganisms [Janeway, 2000]. It is known that the presence of an antigen can induce the body to produce 
specific antibodies, which generates the so-called immune adaptive response. 
 
At the heart of the immune system is the ability to distinguish between self and non-self. Every body cell 
carries distinctive molecules that identify it as self. An antigen announces its foreignness by means of intricate 
and characteristic shapes called epitopes, which protrude from its surface. Most antigens, even the simplest 
microbes, carry several different kinds of epitopes on their surface; some may carry several hundreds. 
 
However, some epitopes will be more effective than others at stimulating an immune response. The HIS is a 
complex of cells and organs able to carry out tasks such as pattern recognition, learning, memorization, 
generation of diversity, noise tolerance, distributed detention and optimization. It is composed by organs 
(bone marrow, thymus, spleen, and lymph nodes) and cells (granulocytes, macrophages, dendritic cells, B and 
T lymphocytes cells). 
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Lymphocytes are of two main types: B-lymphocytes (or B-cells) and T-lymphocytes (or T-cells). B-cells have 
the main function of producing antibodies in response to the presence of foreign proteins of bacteria, viruses, 
and tumor cells. Antibodies are specialized proteins that recognize and bind to one particular protein. 
 
Antibody production and binding to a foreign substance or antigen is a mean of signaling other cells to engulf, 
kill or remove that substance from the body. T-cells are divided into two main classes. The first class includes 
the cytotoxic T-cells, which are important in directly killing certain tumor cells, viral-infected cells and 
sometimes parasites. The second class comprehends the T-helper cells, which main function is to increase the 
potential of the immune responses by the secretion of specialized factors that activate other white blood cells 
to fight off infection. Lymphocytes do not exhibit any functional activity until presented to an antigen, which 
is necessary to its proliferation and specific action. 
 
Lymphocytes circulate continuously from the bloodstream to the lymphatic organs. When pathogenic 
microorganisms are captured in the lymphoid tissue, lymphocytes that recognize them are restrained there in 
order to proliferate and differentiate in effector cells, capable to fight off the infection. For the sake of brevity 
this is a short section, however we recommend [Janeway, 2000] for the study on HIS. 
 
3 Artificial Immune System 
 
The HIS has inspired the conception of 4 main algorithmic approaches namely Negative Selection [Forrest, 
1984], Danger Models ([Matzinger, 2002], [Aickelin, 2002]), Clonal Selection ([Weinand, 1990], [De Castro, 
1999]), and Immune Network Models ([Farmer, 1986], [Fukuda, 1993]). Garrett (see [Garrett, 2005]) presents 
an important study on the usefulness of these methods comparing to existing ones (for instance, genetic 
algorithms, neural networks, hidden Markov models) considering their distinctiveness and effectiveness to 
solve problems. Although AIS is a young domain of research, the author argues that they are promising 
methods (to be applied alone or in conjunction to other methods) producing in most cases effective results. 
 
This article is concerned with artificial negative selection (ANS). Natural negative selection (NNS) is the 
ability that mature B and T lymphocytes have to distinguish self (body's cells) from non-self (antigens). NNS 
provides tolerance to self cells (avoiding self-immune diseases) and induces the appropriate immune response 
to antigens. 
 
ANS has been commonly applied to detection and diagnosis tasks. Forrest was the first to propose and apply 
negative selection algorithms to abnormal detection. A negative selection algorithm is an abstract model, 
which defines “self” by building normal behavior patterns of a monitored system. Detectors are intended to 
detect when elements of the self-set have changed from an established norm.  
 
The original algorithm of negative selection works on a set of self-binary strings, then it generates new 
strings, and calculates their similarity to self strings. If a new string is similar to self, then it is discharged; 
otherwise it is added to the detector set. Once the detector set is built, it helps to discriminate non-self 
elements. Dasgupta (see [Dasgupta, 2006]) describes different negative selection algorithms considering 
particular representation schemes, matching rules and detector generation processes.  
 
For the purpose of this work, we have conceived a diagnosis multiagent system whose behavior is based on 
how the HIS distinguishes self from non-self. We have been inspired by ANS principles, although we have 
not worked with strings to represent self and non-self. According to our model of self/non-self discrimination, 
agents encapsulate rules of normal and abnormal behaviors and together they verify inconsistencies. System’s 
domain of application and implementation are presented in the two next sections. 
 
4 Domain of Application 
 
The Artificial Immune System (AIS) was conceived as a multiagent system applied to student diagnosis in the 
context of a learning environment. An important aspect of learning environments is the ability of taking into 
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account students’ knowledge in order to generate new learning situations or to intervene during problem 
solving activities. The student diagnosis is a way of taking into account students’ knowledge. 
 
The AIS is an abstraction of the HIS, whose main characteristics are the interaction among its components, 
the reactive behavior face to intruders, the complex environment (the body), the ability of self-adapting and 
self-organizing, pattern recognition, memory and the capacity of operating simultaneously in different 
portions of the environment. 
 
We have integrated the AIS to a learning environment called Modal. Modal was conceived to help students 
learn the basic skills of programming using a structured language similar to Pascal. Programming is a 
complex skill to learn and, as already known, compiler tools are not originally conceived to be used in 
educational contexts because learners easily develop “generate and test” problem solving methods. As a 
consequence, students may hold misconceptions about the use of language statements and programming logic. 
Modal intends to fulfill such learning requirements. 
 
As a multiagent system, Modal was implemented using the generic multiagent platform FIPA-OS and the 
PMA3 platform. PMA3 offers the common infrastructure for conceiving multiagent learning environments in 
any domain, comprehending agents for pedagogical and communication services [Webber, 2006]. Among its 
components, Modal has lexical, syntax and semantic analyzers of the structured language that students must 
use to interact with the environment. Lexical and syntax analyzers are each one a single agent. The semantic 
analyzer was decomposed in several small agents, each one responsible for checking whether a rule holds. 
The agent If-Agent, for instance, is in charge of the correct use of the if-then-else statement of the language. 
Besides this one, other agents compose the semantic analyzer (for instance, declare, write, attrib, switch, read, 
uniquevar, for, while, and repeat agents). 
 
Modal agents were implemented for a previous approach of the student diagnosis based on the coordination of 
agents and the semantically distributed diagnosis model [Webber, 2002]. Such approach appeared to be quite 
complex. For this reason, we have decided to explore the immune-based approach to model agents` behavior 
and diagnosis convergence. 
 
Figure 1 illustrates the two levels given by Modal agents and AIS, as well as its interactions. Four classes of 
agents compose the AIS architecture: a macrophage, T-lymphocytes, B-lymphocytes, and a diagnosis 
Blymphocyte. They were implemented over Modal agents based on their functionalities. 
 

Fig. 1. Modal and Artificial Immune System’s Agents 
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As showed, lexical and syntax analyzers are part of macrophage agent. Semantic agents are part of 
Tlymphocytes. The student’s solution is the antigen. 
 
5 Artificial Immune System Description 
 
The immune-based diagnosis occurs on four steps namely phagocytosis, adaptive immune response, 
sensitization of B-lymphocytes, and B-lymphocyte diagnosis. Each step is briefly described next. 
 
Step 1 - Phagocytosis 
 
Phagocytosis is the process where the macrophage engulfs the infectious microorganisms (antigen). In the 
context of AIS, the macrophage agent recognizes through its sensors an antigen (a sequence of programming 
statements), and then phagocytes it. 
 
Once the process of phagocytosis is started, the antigen is broken into pieces (similar to a process of 
tokenization). Each token is called a peptide. A peptide corresponds to one statement either to input and 
output data (read and write), to control loops of execution (repeat, while, and for), to test a condition (if-then-
else and switch), set values to variables, constants, or to compute arithmetic/logic operations. Figure 2 
illustrates the phagocytosis process, where a student’s solution is the input to macrophage agent. Small 
squares represent the peptides (tokens like “read”, “+”, “if”, “x”, and the assignment operator “<-”), which 
originally concentrate on the surface of the macrophage. 
 

 
Fig. 2. Phagocytosis process 

 
At this step of the process, a new data structure is needed to store the peptides on the surface of the 
macrophage agent. Peptides must be located at the surface of the macrophage in order to be readable by 
Tlymphocytes (as showed at figure 2). This first step corresponds to the innate immune response observed on 
HIS, which provides immediate defense against antigens. 
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Step 2 - Adaptive immune response 
 
When peptides become available for T-lymphocytes, the adaptive immune response initiates. This response 
brings to the HIS the ability to recognize certain pathogens. Each T-lymphocyte agent searches for one 
instance of a peptide having affinity with its receiver. A receiver recognizes peptides (same tokens like 
“read”, “+”, “if”, “x”, “<-”). Once a T-lymphocyte agent recognizes a peptide, it activates a particular 
semantic agent (illustrated on figure 1). Semantic agents realize the distributed semantic analysis of the 
student´s program, where each agent seeks for abnormal use of one statement. 
 
If one semantic agent recognizes the peptide carries a semantic error, the T-lymphocyte agent discharges a 
cytokine message in the environment (figure 2). Cytokines are originally proteins that affect the behavior of 
certain sensitive human body cells. In the AIS, cytokines correspond to messages exchanged among agents 
through a blackboard architecture. We defined four classes of cytokines (types of errors): 
 

-Expression error: errors using regular language statements (if-the-else, repeat, write, and so on); 
-Type error: mismatch between variables and values; 
-Unicity error: errors declaring variables; 
-Declaration error: signals an incompatibility between the declaration type of a variable and its use. 
 

A cytokine message is composed by the name of the agent secreting it, its class (expression, type, unicity or 
declaration), and a description. Examples of cytokine messages are as follows: 
 

(LymphoTAgent1 (expression_error) (“invalid expression” while_statement 

line_15)) 

(LymphoTAgent2 (declaration_error) (“incompatible value attribution” 

value_attribution line_21)) 

 
Once T-lymphocyte agents stop secreting cytokines, they become inactive. 
 
Step 3 - Sensitization of B-lymphocyte agents 
 
We have implemented four B-lymphocyte agents. Each one is sensitive to one of the cytokine's classes of 
errors (expression, type, unicity or declaration error). As soon as cytokines are secreted, B-lymphocyte agents 
become active and monitor the environment. When a B-lymphocyte recognizes the particular cytokine it is 
sensitive to, it stores cytosine's information. As a result, each agent forms groups of errors related to the same 
category. Once no more cytokines are found, each B-lymphocyte secretes a diagnosis cytokine message, 
destined to the special diagnosis B-lymphocyte. At the end of this step, B-lymphocytes become inactive. 
 
Step 4 - Diagnosis B-lymphocyte agent 
 
The last step concludes the diagnosis task. It is supported by a diagnosis B-lymphocyte agent, which is 
sensitive to cytokines of diagnosis previously secreted. Diagnosis B-lymphocyte agent captures partial 
diagnosis messages, organizes and integrates them in order to build a final diagnosis. Final step is illustrated 
on figure 3. 
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Fig. 3. Flow of cytokine messages 

 
Final diagnosis comprehends syntactic and semantic errors recognized and grouped according previous 
classes of errors. Modal system retrieves and uses this information to customize learning activities, to improve 
interactions, and better evaluate student’s learning. Syntactic errors can be pointed out to the student, to 
explain or recall the student about the correct use of statements. Semantic errors are interpreted as student 
misconceptions, following an educational theory, being treated accordingly to learning priorities and/or 
student’s difficulties. Since such aspects go beyond the objective of this paper, we refer the reader to 
[Webber, 2002]. 
 
6 Modal Learning Environment 
 
Modal is a JSP (Java Server Pages) application composed of several agents. These agents can propose 
exercises, help in editing programs, compile solutions, and provide asynchronous and synchronous 
communication channels among learners. Figure 4 illustrates student’s interface presenting an interaction 
between the student and a teacher during problem solving activities. According to resources available on both 
workstations, student and teacher are able to see and communicate to each other. 
 
Modal was conceived to help students learn the basic skills of programming using a structured language 
similar to Pascal. Each student has access to a library of exercises and to a private folder. During problem 
solving activities students can also check whether their solutions are correct. Students are asked to construct 
programs, to test them, and correct them until they run properly. 
 



C. G. Webber et al., An immune-based approach to student diagnosis, EJS 8(1) 1-11 (2008)                          8 

 
Fig. 4. Modal student’s interface 

 
Modal informs students as a regular compiler about their syntax errors, recording information about student’s 
difficulties. Since 2003 we have been collecting novice-programming solutions in order to observe which are 
the common errors we find. This research is important as long it sheds light on misconceptions students may 
hold, which allows developing better adapted learning environments. 
 
We have observed during learning activities that there are two main situations that occur when students face 
difficulties solving problems. Some students try to solve a problem and give up without seeking for 
alternative paths to solve it, lacking of confidence. On the other hand, some students keep on trying different 
paths, repeating them and going around in circles. Usually such behaviors point out that students do not fully 
understand the semantics of the programming language constructs. Some studies have shown that students 
lacking a mental model of the language (statements, syntax, etc) were unable to decompose a problem in 
order to solve it. Our research has confirmed these assumptions, recognizing that one main cause of novice 
errors concerns the difficulty of associating a problem to a set of primitives that solve it correctly. Also, 
during learning activities, novices tend to develop misconceptions about the use of such primitives. A typical 
misconception students hold concerns assignment, where A=B is interpreted in a way that B is linked to A 
and any future changes to A affect on B. This is maybe due to the fact that in Mathematics assignment and 
logic operators are represented by the same symbol (x=4 ; 9=13-4). Input statement (read) causes as well 
some trouble in understanding the hidden kind of assignment. Students often do not understand how a read 
instruction interrupts execution until it receives a value from the user. 
 
At this point, we find that our approach of distributed diagnosis is particularly suitable since it decomposes 
student’s program in order to better analyze the different aspects having influence on students reasoning 
(syntax use of primitives, semantic meaning of words, senses to components of the program, among other 
more subtle aspects of writing a program). First experiments reported in this article have focused on learning 
logical and mathematical expressions. We have chosen this topic of knowledge because constructing correct 
expressions is a basic but primordial skill novices must develop to pursue learning of complex structures. 
Expressions control the execution of a program (when used to test conditions and to interrupt loops), but also 
they involve variables, constants, and operators. Such diversity allows the system to check a great variety of 
problem situations and misconceptions students may hold. 
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7 Implementation 
 
We have been testing AIS diagnosis with real students' solutions using a special interface we have 

plemented to observe agents’ behaviors during diagnosis task (figure 5). On the left side of the window, 

 self (correct use of expressions) and 
on-self (incorrect use of expressions). As previously described, agents encapsulate a few self or non-self 

We have requested new learners to write a p ber, calculates its factorial number if it 
as one, and outputs it. This is a typical problem new students are faced with in the beginning of our 

o 
ommon wrong expressions. On line 6, the student concatenated two comparisons that could mean 

im
student’s program is typed. On the right side (on top), messages exchanged through the blackboard can be 
checked. On the right bottom, partial and final diagnoses are presented. 
 
A simulated run of the system consists of 20 agents able to recognize
n
rules to discriminate correct constructions of expressions form erroneous ones. Programming language is a 
Portuguese Pascal-like language. So far students are requested to use distinct symbols for the logic operator 
(“=”) and for the assignment operator (“<-” ). We report here some preliminary results based on our 
investigation of different student’s programs. 
 

 
Fig. 5. AIS test interface 

 
rogram which reads a num

h
programming course. We have observed common errors students make when ascribing values to variables, 
controlling loops, and calculating the factorial itself. An example of system evaluation is shown on table 1.  
 
Student´s solution is presented on the left side of the table (a). Two gray lines (lines 6 and 13) illustrate tw
c
“numero=0 or numero=1”, but also “numero=0 and numero=1”. On line 13, the student misemployed 
assignment operator to define a loop stop condition (aux<-1). On (b), an excerpt from the blackboard of 
cytokines secreted by T-cells describes messages that allowed the inference of final diagnosis on (c).  
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At this moment of this project, we expect agents to recognize that errors related to if-then and repeat 
statements are actually caused by wrong constructions of both expressions. This observation leads to a 

is summary 
(a) Original student´s solution (b) Translated Cytokine messages 

conclusion that the system must interpret as a misconception on “test-condition expressions”, not meaning the 
student does not understand if-then or repeat statements.  
 

Table 1 – Diagnos

[...] 
Lymphocy   te T-0: cytokine type 'expression'
semantic agent: AgenteSe (if statement),  
error: invalid expression on (IF) line 6 
 
Lymphocyte T-1: cytokine type 'expression'  
semantic agent: TipoRepita (repeat statement) 
error: invalid expression on repeat line 13 
[...] 

(c) Translated Diagnosis 

(1)
(2) x 

(4) 

 algoritmo 
 declare numero, fatorial, au

:numerico 
(3) numero<-0 

fatorial<-1 
(5) leia numero 
(6) se 0=numero=1  

va "fatorial = 1" 

 ta 
 orial*aux 

-aux-1 

(7)    entao escre
(8)    senao 
(9)         aux<-numero 
(10)         repi
(11)             fatorial<-fat
(12)             aux<
(13)         ate aux<-1 
(14)         escreva fatorial  Finding1: E

Invalid Expres
ne 13: 

(15) fim se 
(16) fim algoritmo 

rror(s) in EXPRESSION: 
sion on IF  (SE) line 6: 

Invalid Expression on repeat  (ATE) li
 

So far, we have bee odeling and to student 
diag osis and on validating it using students solutions. Next step will consist on extending our testbed to other 

ted an approach to diagnosis where sets of agents having complementary functionalities 
re assigned to solve a diagnosis problem in a bottom-up methodology. Diagnosis functionality is not 

lear 
ependency among expected agents’ behaviors. This becomes a crucial aspect, since the number of agents in 

 diagnosis. The 
search project continues on implementing new agents to increase the classes of errors to be treated. We have 

 by University of Caxias do Sul and FAPERGS. 

n interested on m  implementing an immune-based approach 
n

aspects of learning programming besides logical and mathematical expressions. We plan to integrate the AIS 
to Modal interface as long as more agents are developed and tested. Improvements on performance will be 
expected as well.  
 
8   Conclusion 
 
We have implemen
a
reducible to the functionality of one specific agent, but it emerges from the interaction of several agents.  
 
The hierarchical organization of agents is an important aspect of the AIS implemented, since there is a c
d
the society tends to grow fast. Related work on this subject is been considered in the present. 
 
So far, the outcome of this work demonstrates that immune engineering is promising to student
re
been searching as well for relevant criteria to compare the immune-based approach to diagnosis with other 
operational diagnosis applications. 
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