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Abstract

Given the enormous growth and complexity of modern software sys-
tems, architectural design has become an essential concern for almost
every software development project. One of the most challenging steps
for designing the best architecture for a certain piece of software is the
analysis of requirements, usually written in natural language by engineers
not familiar with specific design formalisms. The Use Case Map (UCM)
notation can be used to map requirements into proper design concerns,
usually known as responsibilities. In this paper, we introduce an approach
for mining candidate architectural responsibilities and components from
textual descriptions of requirements using natural language processing
(NLP) techniques, in order to relieve software designers of this complex
and time-consuming task. High accuracy and precision rates achieved by
applying part-of-speech (POS) tagging with domain rules and semantic
clustering to textual requirement documents, suggest a great potential for
providing assistance to software designers during early stages of develop-
ment.
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1 Introduction
During the last few years, the growing number of processes involved in Software
Engineering activities has led to the introduction and popularization of several
standards to measure and certify quality, not only of the system being devel-
oped, but also of the development process itself [11]. Multiple approaches have
been proposed for aiding analysts and engineers in the definition and application
of an active development process [19], including automated or semi-automated
tools for modeling business processes and the application of re-engineering tech-
niques. Modern Software Engineering is characterized by the use of several
models that establish and show the different states a software product goes
through, from its initial conception to its end, covering its development, setup
and maintenance amongst others. Requirements Engineering plays a critic role
in this process since it is concerned with one of the most important stages of
software development: the definition of the product we want to build, that is to
say, the generation of correct and compact specifications that clearly and un-
ambiguously describe the system’s behavior. The failure of a high percentage of
software projects is often caused by the lack of proper requirement analysis [24],
followed by low user involvement and participation, incomplete specifications,
and changing requirements [8], among others.

Software architectures are system models with such a high level of abstrac-
tion that allow different stakeholders to correctly handle the great distance be-
tween requirements and implementation. The growing adoption of architecture-
centered development is mainly because the most important design decisions
and their consequences are properly documented in an early stage of the soft-
ware development process. This allows a better understanding of the system as
a whole, taking into consideration every relevant quality attribute.

One of the most challenging steps for designing the best architecture for a
certain software system is the analysis of requirements, usually written in natural
language by engineers not familiar with specific design formalisms. Automatic
processing and knowledge extraction from requirement documents can be per-
formed with text mining. Text mining involves a set of techniques to organize,
classify and extract relevant information from text collections. These prac-
tices are part of a much general process of Knowledge Discovery in Databases
(KDD), which is the semi-automated process of extracting relevant knowledge
from databases (that may be textual), aiming at discovering valid knowledge,
previously unknown and potentially useful [5].

In this paper we propose the application of text mining techniques to re-
quirement and use-case documents, in order to help designers in bridging the
complex gap between requirement analysis and architectural software design
through detection of responsibilities and components. The reminder of the ar-
ticle is organized as follows. Section 2 introduces the proposed approach to
automatically detect candidate responsibilities and components from textual
requirements using part-of-speech tagging and a set of custom rules for NL
analysis. The empirical evaluation of this approach is explained and summa-
rized in Section 3. Section 4 discusses related works in the use of Information
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Figure 1: UCM basic elements

Retrieval (IR) and linguistic techniques for analyzing textual requirements and
aiding software designers in the complex task of bridging the gap between spec-
ifications and architectures. Finally, conclusions and ongoing work are stated
in Section 5.

2 Proposed Approach
Software architectures are engineering artifacts that provide designers and de-
velopers with high-level descriptions of complex systems. Architectures are com-
posed of several views that allow a better understanding of the system and can
be represented using different types of diagrams. Use Case Map (UCM) is a
visual standard notation for the materialization of architectural scenarios [18],
which focuses on both static and dynamic aspects of a system. These diagrams
are useful for modeling architectures from early design stages, as they can be
easily exploded into similar diagrams with further degrees of detail.

As can be seen in Figure 1, UCMs consist of a set of components and re-
sponsibilities associated to them, joined by the execution path of the quality
scenario they materialize. The basic notation is very simple and consists of: a
set of start-points, filled circles, which represent preconditions; responsibilities,
crosses that represent the tasks to be executed; end-points, bars that repre-
sent post-conditions; and components, boxes that represent a software entity
and contain responsibilities. The execution path is represented by curved lines,
from the start point to the end, passing through all the responsibilities asso-
ciated with the scenario. One of the advantages of using the UCM notation
is that it is easily understandable by any stakeholder of the system, allowing
designers to reduce the gap between clients’ needs and requirement analysts.
Some studies have particularly focused on the integration of UCM with UML
and XML document formalization [3].

Considering the expressiveness of this notation and the ease to create and
understand these diagrams, we propose a method based on the application of
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Figure 2: Responsibilities and components detection approach

text mining techniques to requirement documents written in natural language,
for semi-automatic detection of architectural responsibilities and components.
Using this method, responsibilities can be assigned to software components,
which can aid designers to establish candidate architectures for a system.

Figure 2 depicts the proposed approach. Initially, a set of requirement doc-
uments and use case specifications provided by the requirements engineering
team are processed with a classifier [4] that splits them into two groups, func-
tional and non-functional (NFR). Afterwards, each document is analyzed with
a part-of-speech (POS) tagger and a set of rules to determine whether if it is a
candidate responsibility or not, weighted with information obtained in the pre-
vious stage. Then, responsibilities are grouped using semantic clustering to infer
the components they may belong to. Finally, an analyst supervises these results
and provides feedback to improve the tagging and detection process in further
stages. In the following subsections we explain each of the above mentioned
parts.
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Figure 3: Sample sentence with POS tags and intermediate semantic analysis

2.1 Part-of-Speech Tagging
Part-of-Speech (POS) tagging is the process of assigning a lexical class marker
to every word in a sentence. The usual markers are noun, verb, pronoun, prepo-
sition, adverb, adjective, among others [17]. A POS tagging algorithm receives
a sentence as input and returns the corresponding tags for every word within
a specified tagset, which is a finite list of part-of-speech tags. When given out
of context, many words have several senses or meanings, causing an ambiguity
about how they should be interpreted. The task of disambiguation is to deter-
mine which of the senses of an ambiguous word is invoked in a particular use of
the word, which is often performed by looking at the context of the word’s use.

POS taggers can be rule-based or stochastic. Rule-based taggers use a set of
predefined hand-written rules to distinguish the ambiguity of a tag. Stochastic
taggers are either based on hidden Markov models (HMM), choosing the tag
sequence which maximizes the product of word likelihood and tag sequence
probability, or cue-based, using decision trees or maximum entropy models to
combine probabilistic features.

A tagset encodes both the target feature of classification, telling the user the
useful information about the grammatical class of a word, and the predictive
features, encoding features that will be useful in predicting the behavior of
other words in the context [21]. Table 1 shows a sample list of frequently used
part-of-speech tags in English.

Tagging is much easier to perform than parsing, and accuracy results are
very high. Between 96% and 97% of tokens are disambiguated correctly by
almost every approach [17]. The intermediate layer of representation that can
be obtained from POS tagging can be used for information extraction, question
answering, and shallow parsing amongst others.

In our approach, we parsed and grouped POS tags into an intermediate layer,
identifying verb phrases, noun phrases, adverbs (of place, time, etc.), and direct
objects for interesting and non-ambiguous verbs. Figure 3 shows an example of
intermediate layer generation for a simple sentence.

Initially, every verb phrase is selected as a candidate responsibility. After-
wards, a set of rules is applied to filter those phrases that do not contain verbs
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Tag Part of Speech

AT article
BEZ the word is
IN preposition
JJ adjective
JJR comparative adjective
MD modal
NN singular or mass noun
NNP singular proper noun
NNS plural noun
PERIOD . : ? !
PN personal pronoun
RB adverb
RBR comparative adverb
TO the word to
VB verb, base form
VBD verb, past tense
VBG verb, present participle, gerund
VBN verb, past participle
VBP verb, non 3rd person singular present
VBZ verb, 3rd singular present
WDT wh- determiner (what, which)

Table 1: Frequently used part-of-speech tags in English
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in the desired tenses (VB, VBN, VBP and VBZ tags), that is to say, verb phrases
that contain a verb in the simple past or the simple participle form are dismissed.
Next, verb phrases with incomplete or non-existent direct object are also dis-
carded. Additional information such as prepositional phrases contained onto
the verb phrase are saved for subsequent processing. Finally, verb phrases are
rewritten in a “verb + direct object” form, converting the verb to its infinitive
form if necessary.

2.2 Semantic Clustering
Clustering algorithms aim at reducing the amount of data by categorizing or
grouping similar data items together [17]. The goal is to place similar objects in
the same group and to assign dissimilar objects to different groups. Clustering
is unsupervised, that is to say, it does not require training data and the result
only depends on natural divisions in the data. These algorithms usually help
in the automatic construction of categories or taxonomies, and can be divided
into two basic types: hierarchical and partitional.

Hierarchical clustering works by iteratively merging smaller clusters into
larger ones, or by splitting larger clusters. The key point is the rule used by
the algorithm to decide which two small clusters are merged or which cluster
is split. The result is a tree of clusters known as dendogram, which shows how
clusters are related.

On the other hand, partitional clustering attempts to directly decompose the
data set into disjoint clusters. The function that the algorithm tries to minimize
depends on the local structure of the data. Usually the global criteria try to
minimize some measure of dissimilarity in the objects within each cluster, while
maximizing the dissimilarity of different clusters. Our approach uses a basic
partitional clustering algorithm known as K-means [16]. In K-means clustering
the criterion function is the average squared distance of the data items from
their nearest cluster centroids.

The purpose of using clustering is to semantically categorize candidate re-
sponsibilities into groups, based on the noun phrases each verb relates to. These
noun phrases may belong to the subject of the sentence or even to the verb
phrase itself, functioning as direct object or as a propositional modifier. In
any case, the name of the cluster is given by the noun of the noun phrase and
corresponds to the component associated to the responsibilities of the cluster.
At this point, an experienced software designer may intervene to correct the
suggested components and rearrange the clusters.

3 Empirical Evaluation
Empirical evaluation of the approach was performed integrating text engineering
techniques and algorithms into a standalone Java application, which provides
a convenient environment for developers to visualize and enhance the results.
Figure 4 shows two snapshots of the developed tool, where plain text documents
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Rent

System

12 20 43 6 59 76

Project 2:

Email

System

17 32 50 6 64 81

Project 3:

Web-

Analytics

System

21 35 57 8 72 95

Table 2: Case Studies Summary

and use case specifications can be loaded and processed within the application,
and once potential responsibilities and components are detected, they can be
easily drawn, moved and linked throughout the design canvas. Experimental
setting, evaluation metrics and results are detailed in this section.

3.1 Experimental Setting
In order to evaluate the approach of semantic analysis for architectural respon-
sibilities and components detection, several experiments were carried out using
real data from IBM’s support website for the Rational Suite3 and also from
projects developed in our institute4. For each of these case studies, requirement
documents, UML-like use-cases and software architectures were available and
validated by us.

The three case studies correspond to a simple movie rental system, a stan-
dard desktop email client application and a full-featured web-analytics system.
A set of requirement documents ranging from 12 to 21 was available for the
mentioned systems, and a manual analysis and count of real potential responsi-
bilities was performed. A summary of the three case studies analyzed is shown
in Table 2.

3http://www-01.ibm.com/software/rational/
4http://isistan.exa.unicen.edu.ar
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(a) Requirement Documents Selection

(b) Responsibilities Detection and Validation

Figure 4: Responsibilities and Components Analysis Tool
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For linguistic analysis, we used the Stanford Parser and the Stanford POS
Tagger, a set of efficient Java tools developed by the Stanford Natural Lan-
guage Processing Group5. The Stanford Parser is an implementation of a prob-
abilistic natural language parser. This package implements a highly optimized
probabilistic context-free grammar parser (PCFG) based on a factored prod-
uct model, with separate PCFG phrase structure and lexical dependency, in
which preferences are combined by efficient exact inference using an A* algo-
rithm [13, 12]. The Stanford POS Tagger is the materialization of the maximum-
entropy (CMM) POS tagger described by Tautanova and Manning in [22, 21].
The instance of the POS tagger was trained with a modified version of the Penn
Treebank corpus6, adding specific software-related annotations. The tool also
allows the user to train the model with any custom corpus. Clustering was
performed using an implementation of the K-means algorithm from the Java
Machine Learning Library (Java-ML)7

3.2 Evaluation Metrics
The purpose of the responsibilities detection approach is to identify if a certain
part of a requirement can be mapped to a responsibility and further associated
to a component. The results of this mapping process were evaluated using the
standard definitions of accuracy, precision, recall, and F-measure metrics [23].

For responsibilities identification, given a test set of documents expressing
system requirements, a contingency table is constructed for each binary classifi-
cation, that is to say, whether a verb phrase is a responsibility or not. Knowing
beforehand the real number of potential responsibilities and the real number
of verb phrases N , tables were constructed relying on the count of true posi-
tives (TP) or number of correctly verb phrases detected as responsibilities, false
positives (FP) or number of verb phrases incorrectly suggested as candidate
responsibilities, true negatives (TN) or number of verb phrases correctly not
detected as responsibilities and false negatives (FN) or number of verb phrases
incorrectly not suggested as responsibilities. Using these values, the metrics are
defined as follows:

Accuracy =
TP + TN

N
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F −measure =
2× precision× recall

precision+ recall
(4)

5http://nlp.stanford.edu/software/index.shtml
6http://www.cis.upenn.edu/~treebank/
7http://java-ml.sourceforge.net/
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3.3 Experimental Results
As mentioned before, the approach was validated using Java implementations
of machine learning algorithms, integrated into a support tool. To evaluate the
effectiveness of the responsibilities and components detection scheme, we calcu-
lated each metric for the three case studies. In a first attempt, the POS tagger
used was trained with the Penn Treebank corpus as it is, yielding accuracy and
precision rates that were below 55% for responsibilities detection and below 40%
for component detection. Afterwards, the model was retrained with a custom
version of the same corpus, adding specific domain software-related sentences
and annotations. The results obtained outperformed previous values, reach-
ing accuracy rates near to 80% for responsibilities and components detection.
However, precision figures differed and did not perform as good as expected for
components detection. Figure 5 summarizes the results regarding measures of
detection.

With respect to association of responsibilities and components, Figure 6
depicts that this first naï¿œve approach reached an average of 70% for every
metric. However, this values might improve significantly providing expert feed-
back during the very first step of detection, that is to say, the selection of
responsibilities, followed by the same procedure for components.

4 Related Work
Natural language descriptions transformed into textual specifications is a com-
mon means for capturing requirements in early stages of software development.
On the other hand, architectural software design helps to analyze properties
of complex systems, comprising a major issue in the building of new systems
with solid foundations, probably based on proven successful experiences. How-
ever, in real life scenarios, requirements engineering and architecture modeling
may not be as close as they seem to be in theory. Interdependencies and con-
straints between architectural elements and requirements elements are difficult
to understand and trace during software development.

Some approaches have been proposed to bridge the gap between software
requirements and architectural design. Grï¿œnbacher et al. [6] introduced the
Component Bus System and Properties (CSBP) approach as a lightweight model
to provide a systematic way of reconciling requirements and architectures. In
this work, a simple set of architectural concepts such as components, connectors,
overall systems and their properties are used to map requirements to architec-
tures in a straightforward process. In a later article [7], a case study is analyzed
with full tool support, showing a possible transition between an EasyWinWin [2]
requirements negotiation into a C2-style architectural model [20]. Kof [15] ar-
gues on how existing text analysis approaches for ontology extraction can be
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(a) Responsibilities

(b) Components

Figure 5: Measures of Detection
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Figure 6: Association of Responsibilities and Components

combined to produce better results than each one on its own. This position pa-
per concludes that natural language processing is mature enough to be applied
to ontology extraction in the context of requirements engineering, in spite of the
necessary manual intervention, also showing two case studies [14].

The idea of extracting knowledge from text and represent it with formal
models has also been approached throughout these years. Ilieva and Ormand-
jieva [10] proposed an automatic method for the transition of natural language
software requirements specifications to formal representations, typically into ob-
ject oriented designs using intermediate models. Their method consists of three
main processing parts, in which firstly the sentences in the text are analyzed,
then a semantic network is built by the formal NL presentation and finally, an
OO model is deduced. More recently, Ilieva and Boley [9] proposed a method for
representing textual requirements with UML diagrams using a similar process.

The Use Case Map notation has been used to assist engineers during software
design. In a short paper, Amyot and Mussbacher [1] introduce the idea of bridg-
ing the requirements/design gap in dynamic systems with UCMs due to their
versatility and ease of understanding. Later, Mussbacher et al. [18] describe how
scenario-based aspects can be modeled at the requirements level unobtrusively
and with the same techniques as for non-aspectual systems with the help of
UCMs, allowing the visualization of early aspects with these diagrams.

Our proposal combines the need for assistance in the transition between
requirements written in natural language and architectural software design, with
the ease of use and understandability of the UCM notation. This approach also
counts with the appropriate tool support for usability purposes, combined with
the possibility to learn from feedback provided by a human designer during the
analysis and design process.
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5 Conclusions
One of the most critical phases of software engineering is requirements elicita-
tion and analysis. The final success of a software project is influenced by the
quality of requirements and their associated analysis since their outputs con-
tribute to higher-level design and verification decisions. Architectural software
design helps to analyze properties of complex systems, comprising a major is-
sue in the building of new systems with solid foundations, probably based on
proven successful experiences. However, this task is very hard to accomplish
and requires a lot of effort and time from both requirement analysts and soft-
ware architects. In this paper we introduced a first attempt for assistance in the
detection of architectural elements within textual requirements specifications,
making use of natural language processing techniques and a previous approach
on semi-supervised classification of non-functional requirements [4]. High ac-
curacy and precision rates achieved by applying part-of-speech (POS) tagging
with domain rules and semantic clustering to textual requirement documents,
suggest a great potential for providing assistance to software designers during
early stages of development. However, it is very important to remark that writ-
ing style of requirement documents and the corpus used to train the POS tagger
plays a critic role in this method.

We are planning to continue working on this field, aiming at improving
the detection process by providing expert feedback during each step, before
classification errors get propagated. Also, the information extracted during the
analysis may be useful for inferring execution paths of the scenario represented
in each UCM.
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