
A Petri Net Variability Model for Software Product Lines 

Cristian Martinez, Nicolás Díaz, Silvio Gonnet, Horacio Leone 

INGAR (UTN - Conicet) 

Facultad Regional Santa Fe, Universidad Tecnológica Nacional 

{ocmartinez, sgonnet, hleone}@santafe-conicet.gov.ar, nicoe-

diaz@gmail.com 

Abstract. Variability is defined as the possibility that a system has to be ex-

tended, changed, localized or configured in order to be used in a particular con-

text. Variability specification in a software product line (SPL) is a main activity 

where product families are specified in terms of variants and dependencies. One 

way of defining the variability of a SPL is through a feature model (FM). How-

ever the product families obtained can present feasibility problems, for instance, 

inclusion rules that can result contradictory which is translated in a set of fea-

tures impossible to be incorporated into any product. Such inconveniences may 

come from the initial feature model developed as well from modifications in-

troduced to satisfy new demands. In this paper a tool based on Petri nets is pro-

posed in order to represent and analyse FMs as well as detecting the problems 

mentioned before.  

Keywords: Features, Variability, Petri Nets 

1 Introduction 

A software product line (SPL) is a set of software systems which share and manage a 

number of features and are developed from a common set of core assets in a pre-

scribed way [1]. One of its main advantages is the cost reduction which is achieved by 

reusing components and artefacts among different products. Two main processes take 

part in the SPL engineering: the domain engineering and the applications engineering 

[2]. In terms of product line variability, the first one defines it and the second one 

exploits it selecting the features along the product derivation process. In particular the 

domain engineering is responsible for defining a basic set of common features and 

defining the variability of the resulting applications of the SPL. Moreover, the engi-

neering application handles applications derivation starting from the artefacts identi-

fied in the previous process. In this process are set the features of the final product. 

In order to support these activities is necessary to define the variability of the SPL. 

There are two approaches to define it: as an integral part of the development artefacts 

or as a separate model. Pohl et al. [3] state several advantages in favour of the second 

alternative. Within the group of the second alternatives, the most used method is the 

Feature-Oriented Domain Analysis (FODA) [4]. FODA focuses on the representation 

mailto:hleone%7d@santafe-conicet.gov.ar
mailto:nicoediaz@gmail.com
mailto:nicoediaz@gmail.com


of the domain’s features, and structural relationships between them. FODA proposes a 

features modelling language (FM), which is then extended by other authors [5]. 

Since the domain engineering is not only an early stage but rather an ongoing proc-

ess, the underlying FM must evolve in order to support new requirements. This adap-

tation to the new requirements results in the addition, elimination or modification of 

different elements. However, consider that any changes may result in an unviability 

problem. An unviable configuration indicates that no product can have the feature set 

of such configuration. This can affect the derivation of future products, invalidate 

already established and generate confusing and contradictory models. 

The simple inspection of a FM [4, 5] in order to detect unviability is a very limited 

strategy. The complexity of this task is evident since just a few dozen features are 

necessary for obtaining FMs complex and difficult to examine. Benavides et al. [6] 

highlight the upward trend over recent years in the number of features available in 

SPLs. In 2004 models were described in terms of around 15 features, but in 2010 this 

number was on the order of the 300. This scenario requires analysis tools that provide 

support in the analysis of SPLs. 

Kang et al. [4] and Benavides et al. [6] have identified a complete set of operations 

that must be performed during the analysis of FMs. Several suggestions have ad-

dressed the study of these partial operations [7, 8, 9] through formal methods. These 

contributions use different formalisms such as propositional logic or constraint pro-

gramming, and enable a SPL verification. However, none of these contributions pro-

vides information about the product derivation process: selection of features to set up 

a final configuration. Thus, the main objective of this paper is to introduce an ap-

proach based on Petri nets (PN) [10] for the representation and evaluation of FM as 

dynamic systems. In this proposal we consider three important functions related to the 

problem of unviability exposed before: (1) dead nodes detection, (2) obtaining a 

product, and (3) obtaining all products. 

 Dead nodes detection: a dead node represents a feature that never appears in the 

SPL configuration. The inconsistency introduced by these unviable nodes adds 

complexity to the SPL and makes it difficult to maintain. 

 Obtaining a product: this allows us to obtain a product whose configuration is fea-

sible. 

 Obtaining all products: this function allows us to identify all possible products. It is 

of critical importance in the evolution of a SPL, since all previously generated 

products must be valid after the changes. 

The first function addresses a consistency issue in SPLs, on the other hand the other 

two functions are related with satisfiability problems. Taking this as a starting point, 

we represent FM in terms of PN. From the obtained network is possible to analyse its 

properties providing support to the three functions recently introduced. Unlike the 

proposals [7, 8, 9] and the ones discussed in [6], our work is focused on the activities 

and their precedence. For each valid configuration is possible to find the sequence of 

decisions regarding the inclusion and exclusion of features. In addition, the proposed 

model has the simulation and analysis ability characteristic of PNs. 



A synthesis of the elements of a feature model together with the PN formalism is 

included in the following section. In Section III, the proposed topologies used to build 

a PN from the basic elements of a FM are described. After that, in Section IV, those 

topologies are formalized and defined. Section V and VI presents and analyses a case 

of study. Finally, Section VII discusses conclusions and further research.  

2 Feature models and Petri nets 

2.1 Feature models 

A feature model represents the information of all the possible products in a SPL 

through modelling the features of its domain and the structural relations between them 

[4]. In a FM, features are connected in a tree hierarchy, where a parent feature (or 

composed feature) is connected with its child features (or sub-features) through the 

following variability dependency relationships: 

 Mandatory. Relationship between a parent feature and a child feature which indi-

cates that the child feature appears in every product where its parent feature is in-

cluded. 

 Optional.  Relationship between a parent feature and a child feature which indi-

cates that the child feature may or may not be included in the products where its 

parent feature is included. 

 Alternative or group cardinality. Relationship between a parent feature and a group 

of child features. The cardinality of the group is represented by an interval 

[min..max] which limits the number of child features that can be included in a 

product when the parent feature is included. The min and max values represents the 

minimum and maximum amount of features that may be included. OR and XOR 

relations are particular cases where cardinality assumes the values [1..max] and 

[1..1] respectively.  

In a FM is also possible to define restrictions between features through the hierarchy 

tree:  

 Require. Relationship that conditions the inclusion of a feature by selecting another 

feature. 

 Exclude. Relationship that indicates that two features are mutually exclusive. 

2.2 Petri Nets formalism 

PNs are a mathematical modelling tool that allows studying events dynamics together 

with pre-conditions and post-conditions [10]. A PN is a directed graph with two node 

types: transitions and places. A transition (event) is associated to a set of input and 

output places through arcs, representing the preconditions and post conditions of the 

events respectively. In Table 1 there is a formal definition of the previous. 



Table 1. Formal Petri net definition. 

A Petri net is a 5-tuple (P, T, A, W, M0) where: 

P = {p1, p2,…, pm} is a finite set of places, 

T = {t1, t2,…, tn} is a finite set of transitions, 

A  (P  T)  (T  P) is a set of arcs (flow relationship), 

W: A  ℕ is a weight function, 

M0: L  ℕ0 is the initial marking, 

P  T =  and P  T  . 

3 Representing variability using Petri nets 

In this section the topologies proposed for representing the elements of a FM using 

PNs are defined. The elements of a FM together with the application engineering core 

activities can be considered depending on the "event/condition" point of view of PN 

modelling. The selections of features during the product derivation are related to 

events in the application engineering process and they are represented as transitions in 

a PN. Features, variability dependencies and restriction dependencies are precondi-

tions for these events and are represented as places in a PN. Finally the included fea-

tures are the result of events occurrence, this is, post-conditions also are represented 

as places. In Table 2 are resumed the proposed relations between FM elements, appli-

cation engineering process activities, and the elements of a PN. In parenthesis there 

are included the generic names assigned for each element. 

Table 2. Relation between FM and Petri Net elements. 

FM elements Petri Net elements 

Feature (fi) 1 Place (PfiSelected) and 1 Arc 

Feature selection (fi) 1 Transition (TSelectionfi) 

Root feature (f0) 2 Places (P0, Pf0NotSelected), 3 Arcs and 1 Transition (TNoSe-

lectionf0) 

Mandatory (f1  f2) 1 Place (Pf1mandatoryf2) and 2 Arcs 

Optional (f1  f2) 2 Places (Pf1optionalf2, Pf2NotSelected), 4 Arcs and 1 Transi-

tion (TNoSelectionf2) 

Alternative 

(fp [min,max]  f1 .. fn) 

3 Places (Pfpalternativef1fn, PNoSelectionfpAlternativef1fn, 

Pf1fnNotSelected), 4 Arcs and 1 Transition (TNoSelectionfpAl-

ternativef1fn) 

For each alternative: 1 place (PMaxCardfi) and 1 arc 

Requires (f1 require f2) 1 Place (Pf1requires f2) and 2 Arcs 

Excludes (f1 excludes f2) 1 Place (Pf1excludesf2) and 2 Arcs 

 

We will call PNFM to the resultant PN. From the Petri net PNFM is possible to study its 

dynamic and show the relationship between its marks and the possible configurations 

of the underlying FM. The marks that interest us are the ones which have no enabled 

transitions (t), this is that all feature selection decisions have been already resolved. 

From this marks, the places associated with features are representing a potential con-

figuration of the SPL. 



Bellow we introduce the used notation. Considering p1 as a place which represents 

a feature f1, M as the net marking in an specific instant of time, and M(p1) the number 

of marks of p1 in M, M(p1)=1 represents the selection of a feature f1, y M(p1)=0 indi-

cates the non-inclusion of the f1 feature. The trigger sequence   is the list of events 

(selections) needs to reach M. The following notation is used to denote certain pre-

sets and post-sets:  

•t = {p | (p, t)  A}, set of input places of t, 

t• = {p | (t, p)  A}, set of output places of t, 

•p = {t | (t, p)  A}, set of input transitions of p, 

p• = {t | (p, t)  A}, set of output transitions of p. 

3.1 Root feature of the FM 

The root feature, f0, of the FM is represented with the PN as is shown in Fig. 1. The 

PN includes a place P0 which is originally marked, this is M0(P0)=1 (M0 is the initial 

marking).  The mark in P0 (Fig. 1) enables the transition TNoSelectionf0 and TSelec-

tionf0, this transitions model the no-selection and selection of the f0 feature, respec-

tively. This model allows two different configurations {, {f0}}. The first one () 

does not consider the root feature f0 and is represented by Mi(Pf0NoSelected)= 1, i >0. 

On the other hand, the second configuration ({f0}) considers the selection of f0, there-

fore Mi(Pf0Selected)= 1, for all i >0. 

 

Fig. 1. Petri net proposed to represent the root feature, f0, of a FM. 

3.2 Mandatory variability dependency 

As it has been explained in Section 2.1, a mandatory variability dependency (Fig. 

2(a)) between a feature f1 and a feature f2 indicates that the consideration of feature f1 

is enough condition for including feature f2. The Fig. 2 (a) shows a FM with feature f1 

linked to feature f2 by this type of variability dependency. Two possible configura-

tions {, {f1, f2}} exists for this model. The first one () does not consider feature f1, 

on the other hand the second one ({f1, f2}) as is considering f1 includes mandatorily f2. 

 

Fig. 2. Mandatory variability dependency. (a) FM including the mandatory feature (f2). (b) 

Proposed Petri net. 



The proposed PN shown in Fig. 2 (b) represents the mandatory variability dependency 

through the place Pf1mandatoryf2 and the arcs which link transitions TSelectionf1 y 

TSelectionf2. These transitions correspond to the selection of features f1 and f2 respec-

tively. The place Pf2Selected is representing the feature f2 as part of the final product 

configuration when Mi(Pf1Selected)= 1, for some i >0.  

3.3 Optional variability dependency 

In an optional relationship (Fig. 3 (a)) between a feature f1 and a feature f2, the selec-

tion of the feature f1 does not impose the inclusion of the feature f2. This model allows 

two different configurations {, {f1}, {f1, f2}}.  

The proposed PN (Fig. 3 (b)) represents the optional variability dependency trough 

the place Pf1optionalf2 and the arcs which link the transitions TSeleccionf1, TSelec-

cionf2, y TNoSeleccionf2. These transitions represent the selection of the features f1 

and f2, or the selection of the feature f1 and non-selection of feature f2, respectively. 

The place Pf2Selected represents a final configuration which includes f2 when 

Mi(Pf2Selected)= 1, for some i >0. On the other hand, a mark in Pf2NoSelected repre-

sents the decision of not including the optional feature f2. 

 

Fig. 3. Optional variability dependency. (a) FM including the optional feature (f2). (b) Proposed 

Petri net. 

3.4 Alternative variability dependency 

An alternative selection establishes that a selected feature fp (Fig. 4 (a)) is sufficient 

condition for the inclusion of at least min and at last max alternative features fi, i=1..n 

(Fig. 4 (a)). For instance, if n=2, min=0, y max=1 the set of possible configurations 

would be {, {fp}, {fp, f1}, {fp, f2}}.  

The proposed PN topology is shown in Fig. 4 (b) and it represents the alternative 

variability dependency through the place Pfpalternativef1fn and the arcs which link it 

with the transitions TSelectionfp, TSelectionf1, TSelectionf2, …, TSelectionfn, and 

TNoSelectionfpAlternative1fn. The arc that link TSelectionfp with Pfpalternativef1fn 

has a weight equals to max. This arc establishes the maximum number of selection of 

alternative features fi, this enables the transitions TSelectionf1, TSelectionf2, …, TSe-

lectionfn.  

The place PfjSelected (j= 1..n) represents a feature fj as part of the configuration of 

the final product when Mi(PfjSelected)= 1,  for some i >0. The number of times that 



an alternative feature can be selected is determinate by the places PCardMaxf1, 

PCardMaxf2, …, PCardMaxfn, which are marked in M0. On the other hand, each 

mark in Pf1fnNoSelected represents the decision of not including an alternative fea-

ture and the place PNoSelectionfpAlternativef1fn, with an initial marking equals to a 

max – min, restricts the number of non-selections that can be done if fp is selected. If 

we consider again n=2, min=0, y max=1 the possible configurations would be: 

 σ = TSelectionfp TSelectionf1. The resulting marking is: M(Pf1Selected)=1,  

M(Pf2Selected)=0, M(Pf1f2NoSelected)=0, and this represents the configuration 

{fp, f1}. 

 σ = TSelectionfp TSelectionf2. The resulting marking is: M(Pf1Selected)=0,  

M(Pf2Selected)=1, M(Pf1f2NoSelected)=0, and this represents the configuration 

{fp, f2}. 

 σ = TSelectionfp TNoSelectionfpAlternativef1f2. The resulting marking is: 

M(Pf1Selected)=0,  M(Pf2Selected)=0, M(Pf1f2NoSelected)=1, and this represents 

the configuration {fp}. 

 
(a) 

 

Fig. 4. Alternative variability dependency. (a) FM including n alternative features. (b) Proposed 

Petri net. 

3.5 Requires dependency restriction 

In a requires dependency the consideration of a feature is attached to the inclusion of 

it associated feature. Fig. 5 (a) shows that feature f1 requieres feature f2. The proposed 

topology in this case is shown in Fig. 5 (b). Transitions TSelectionf1 and TSelectionf2 

correspond to the selection events of features f1 and f2, respectively. The place 

Pf1requieresf2 represents this restriction. By triggering TSelectionf2 (conditioning 

fp 

f1 f2 

[min..max] 

fn …

  

max 

max 
- min 

(b) 



event) a mark is put in Pf1requieresf2 enabling transition TSelectionf1 (conditioned 

event). 

 

Fig. 5. Requires dependency restriction. (a) FM where feature f1 requires feature f2. (b) Pro-

posed Petri net. 

3.6 Excludes dependency restriction 

An excludes dependency establishes that two features are mutually exclusive. Fig. 6 

(a) shows an excludes relationship between features f1 and f2. In Fig. 6 (b) is specified 

the proposed topology for this case. Transitions TSelectionf1 and TSelectionf2 are 

related to the selection events of features f1 and f2, respectively. The place 

Pf1excludesf2 represents the excludes restriction. The mark in Pf1excludesf2 enable 

transitions TSelectionf1 and TSelectionf2, but only one of them can be triggered. 

 

Fig. 6. Excludes dependency restriction. (a) FM representing the excludes relationship between 

two features. (b) Proposed Petri net. 

4 PNFM formal definition, concepts and properties 

In this section we will formally define the PNFM net together with the interpretation of 

concepts and properties of PNs in the FM context. 

4.1 PNFM formal definition 

In Table 3 a PNFM is defined based in a FM. The notation proposed represents the set 

of places with P, the set of transitions with T and the set of arcs with A. We split the 

places and transitions sets P and T into subsets according to its interpretation. Some of 

these subsets represent explicitly the elements of a FM. These sets are P
F
 (features), 

P
M

 (mandatory), P
O
 (optional dependency), P

G
 (alternatives dependency), P

E
 (exclude 

restriction), and P
Q
 (require restriction). The other subsets of places are related to 

representing the cardinality, the possibility of non-selection of a feature and the root 

of a FM. Each place in P
C
 is defined to indicate the maximum number of times that a 

certain feature can be included, in this case the value is always 1. P
A
 specifies the 

minimum number of features that must be selected (or the maximum number of non-

selections). Transitions in T
F
 are representing the selection of features. Instead, transi-

tions in T
N
 are specifying the non-selection of features; and are used to disable transi-

tions in the PNFM. 



Conditions described in Table 4 allow representing FM rules associated with the 

initial marking and the income and outcome arcs from and to the places and transi-

tions. For instance, place P0 ( P
R
) does not have any income transaction (•P0 = ) 

and the number of marks on its initial marking is 1 (M0(P0) = 1). The outcome trans-

actions must be P0• = {TSelectionf0, TNoSelectionf0} and are related with the selec-

tion and no-selection of the root feature of the FM. 

Table 3. PNFM formal definition. 

For a feature model FM defined as (F, r, M, O, G, C, E, Q), where: 

F= {f1, f2,…, fn} is a finite set of features,  

r  F, is the root feature of the FM, 

M  F  F is a set of mandatory dependency relations, 

O  F  F is a set of optional dependency relations, 

G  F  ℙ(F) is a set of alternative dependency relations,  
C: G  ℕ  ℕ is a cardinality function, 

E  F  F is a relation set of exclusive restrictions,  

Q  F  F is a relation set of require restrictions. 

A PNFM is defined as a 5-tuple (P, T, A, W, M0), where: 

P= PF  PR  PM
  PO  PG  PN  PC  PA  PE  PQ                         

T= TF  TN 

A  (P  T)  (T  P) is a finite set of arcs,  

W: A  ℕ is a weight function,  

M0: P  ℕ0 is the initial marking,  

P  T =  and P  T  . 

where 

PF = {PfiSelected | i= 1..n} selected features            

PR = {P0} root 

PM = {Pfimandatoryfj | (fi, fj)  M} mandatory dependencies 

PO = {Pfioptionalfj | (fi, fj)  O} optional dependencies 

PG = {Pfpalternativef1fk | (fp, A)  G, A={f1, ..., fk}  F} alternative dependencies 

PN = {PfjNoSelected | fj = r ⋁ (∃fi |(fi, fj)  O)}  {Pf1fkNoSelected | (∃fp |(fp, A)  G, A={f1, 

..., fk}  F)} non-selected features (root, optional or alternative) 

PC = {PCardMaxfj | (∃fp |(fp, A)  G, fj   A)} maximum cardinality of each feature in a 

group 

PA = {PnoSelectionfpAlternativef1fk | (fp, A)  G, A={f1, ..., fk}  F)} maximum cardinality 

of non-selectable features in a group  

PE = {Pfiexcludesfj | (fi, fj)  E} excludes restrictions 

PQ = {Pfirequieresfj | (fi, fj)  Q} requires restrictions 

TF={TSelectionfi | i= 1..n} feature selection event 

TN={TNoSelectionfj | fj = r ⋁ (∃fi |(fi, fj)  O)} }  {TNoSelectionfpAlternativef1fk | (∃fp |(fp, 

A)  G, A={f1, ..., fk}  F)} feature non-selection event (root, optional o alternative) 



4.2 PN concepts applied to a FM 

The meaning of some PNs concepts allows us to understand the relationship between 

the PN dynamic and the allowed configurations on a FM. In the next paragraphs we 

analyses the concepts of marking, mark and firing sequence. 

 Marking. Is an n-vector where n is the total number of places in the PN. The ith 

component of M (M(i)) represents the number of marks in the i place. Each M de-

scribes a specific product (or configuration) of a SPL and the marks indicate which 

features are included. The markings that we are interested in are the ones without 

enabled transitions, this is, those where all decisions have been made during the 

configuration process. 

 Mark. The presence of a mark in a place has different meanings depending on the 

associated FM concept. In the case of a feature, a mark in a place P
F

i (P
F

i   P
F
) 

indicates that the represented feature by that place is included in the configuration. 

For a dependency restriction, the mark ensures that a mutually exclusive (inclu-

sive) restriction disables (enables) a transition at the moment that another transition 

of the restriction is triggered. In the cardinality case, the number of marks in a 

place restricts the maximum or the minimum number of transactions that can be 

triggered; when a place is empty it is not possible to select any more features. 

 Firing sequence. The firing sequence from the initial marking M0 to a marking 

where does not exist an enabled transition represents the event sequence to reach a 

certain configuration. This sequence gives us the information about the feature se-

lection to build a possible configuration in a SPL. 

Table 4. Imposed conditions in Places and Transitions of a PNFM. 

Places conditions: 

•P0 = , P0• = {TSelectionf0, TNoSelectionf0}, M0(P0) = 1, P0  PR 

•p   TF, |•p | = 1, p• = , M0(p) = 0,  p  PF 

•p   TF, |•p | = 1, p• =  TF, |p•| = 1, M0(p) = 0,  p  PM 

•p   TF, |•p | = 1, p• =  TF  TN, |p•| = 2, M0(p) = 0,  p  PO 

•p   TF, |•p | = 1, p• =  TF  TN, |p•| > 1, M0(p) = 0,  p  PG 

•p   TN, |•p | = 1, p• = , M0(p) = 0,  p  PN 

•p  = , p•  TF, |p•| = 1, M0(p) = 1,  p  PC 

•p  = , p•  TN, |p•| = 1, M0(p) > 0,  p  PA 

•p  = , p•  TF, |p•| = 2, M0(p) = 1,  p  PE 

•p   TF, |•p | = 1, p•  TF, |p•| = 1, M0(p) = 0,  p  PQ 

Transitions conditions: 

•t   PR  PM  PO  PG  PQ  PE, |•p |  1, t• = PF  PM  PO  PG  PQ, |p• |  1,  t  TF 

•t   PR  PO  PG  PA, |•p |  1, t• = PN, |p• | = 1,  t  TN 

4.3 PNFM properties 

In this work we focused in those properties of the PNFM which are related to the op-

erations identified in Section 1. Next, we will explain how boundedness, reachability, 



and potentially triggerable (“L1-live”) properties allow addressing problems of con-

sistency and satisfiability of a FM in a SPL. 

 Boundedness. A PN is k-bounded if, from an initial marking M0, for any reachable 

state the number of marks in any place is not greater than k. In a non-bounded Petri 

net, regardless of the firing sequence the upper limit of the marks in any of the 

places cannot be specified. A PNFM is k-bounded, where k is the maximum value of 

the maximum cardinality of the alternative dependencies. If the model does not 

have alternative dependencies the bound is equals to 1. 

 Reachability. Given a PN with an initial marking M0, Mn is reachable if exists a 

firing sequence  which enables to reach Mn from M0. One way of analysing this 

property is through a reachability graph. A reachability graph is a directed graph 

where nodes represent the markings and arcs the transition from one marking to its 

successor. The initial node corresponds to the initial marking (M0), the intermediate 

nodes to the ones with at least one transition enables and the terminal nodes to 

those which does not have any transition enabled. Reachability graph in k-bounded 

Petri nets are finite [10]. By analysing a k-bounded PNFM, it is possible to obtain all 

the possible products (possible configurations) that are derivable from a FM. 

 L1-live or potentially triggerable. The liveness property is associated with the ab-

sence of deadlocks or dead nodes. A live PN guarantees that is possible to find a 

sequence for trigger any transition. This property ensures the complete absence of 

dead nodes. There are several liveness levels [10]. The L1-live level, also called 

potentially triggerable, establishes that a transition can be triggered in a sequence 

at least once. If all transitions accomplish the L1-live level, then the PN is L1-live. 

Taking the two first properties as a starting point and as a PNFM is bounded, we can 

confirm that its reachability graph is finite. The nodes of the reachability graph repre-

sent all the possible configurations of the SPL, but the ones we are interested in are 

the terminal nodes. These nodes represent configurations which does not have any 

pending decisions related to the inclusion or non-inclusion of features. This is useful 

in order to identify all possible configurations in a SPL and to provide support to find 

a product and get all possible products. Moreover, if a change in the FM takes place 

(and its PNFM), the resulting graph can be compared with the graph of the previous net 

in order to detect viable configurations in the previous model and non-viable ones in 

the new model. 

The L1-live property is useful to address the detection of dead nodes. If every tran-

sition is potentially triggerable, any feature will be included in at least one configura-

tion, thus the FM will not have unviable features. 

5 Case study  

The case study includes in this section partially describes the variability of a mobile 

phones SPL. In first place we will introduce the FM, then we will generate the PNFM 

to represent the FM and analyse its properties. 



Fig. 7 partially illustrates the FM of the case study. Due to space limitations, we 

include only 7 features. The model was built using SPLOT [11]. The root feature is 

MPhone. If this feature is selected, features Calls and Screen must also be considered 

because there are linked to MPhone through a mandatory dependency (fill circle). 

Instead, GPS and Camera are optional features (empty circle). Basic and HRes are 

alternatives of the Screen feature but only one of them can be selected (cardinality [1, 

1] in Fig. 7). The features GPS and Basic are mutually exclusive and the selection of 

Camera will require the inclusion of HRes (bottom part of Fig. 7). 

 

Fig. 7. Partial mobile phone FM. 

Fig. 8 represents the PNFM net obtained from the FM illustrated in Fig. 7. For building 

the PNFM net according to the topology described in Section 3 we have developed a 

tool called FM2PN. This tool generates a Petri net PNFM from a FM created with 

SPLOT. FM2PN was built using the JLex lexical analyser [12] and the parser genera-

tor CUP [13], both of them based on Java. For the study case a net with 22 places, 11 

transitions and 34 arcs was obtained.  

 

Fig. 8. PNFM of the mobile phone FM. 



The MPhone feature is represented by the place PMPhoneSelected (Fig. 8) and the 

non-selection of this feature is represented by PMPhoneNoSelected. Mandatory fea-

tures Calls and Screen are modelled by the places PCallsSelected and 

PScreenSelected, respectively. For the optional features GPS and Camera, the places 

PGPSSelected and PCameraSelected where included to represent their selection, and 

the places PGPSNoSelected and PCameraNoSelected to represent the non-selection. 

The excludes restriction (GPS  Basic in Fig. 7) is represented by the place 

PGPSexcludesBasic and the requires restriction (HRes  Camera in Fig. 7) by the 

place PCamerarequieresHres. Transitions TSelectionMPhone, TSelectionCalls, TSe-

lectionGPS, TSelectionScreen, TSelectionBasic, TSelectionHRes, and TSelectionCam-

era (TNoSelectionMPhone, TNoSelectionGPS, TNoSelectionScreenAlternativeBasi-

cHRes, and TNoSelectionCamera) represent the selection (non-selection) of the fea-

tures. 

FM2PN generates the PNFM net into an xml file. This net is analysed using PIPEv2 

(Fig. 8, Fig. 9, Fig. 10) in order to detect the unviability problems. PIPEv2 [14] allows 

to build, among other things, the reachability graph (Fig. 9) of a certain PN and simu-

late the net as well (Fig. 10).  

 

 

Fig. 9. Partial view of the reachability graph. 

The node S0 (Fig. 9, represented as a rectangle) represents the initial marking (M0) 

and the terminal nodes are representing the different configurations in the SPL, for 

instance the node S49 in Fig. 9, has the marking {0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 



0, 0, 0, 0, 1, 0, 0, 1} where the marked places are: PCallsSelected, PCameraSelected, 

PCardMaxBasic, PGPSExcludesBasic, PGPSNoSelected, PHResSelected, PMPhone-

Selected, and PScreenSelected. This marking represents the selection of features 

MPhone, Calls, Camera, HRes, and Screen, this is, the configuration {MPhone, Calls, 

Camera, HRes, Screen}. Moreover, the reachability graph provides information about 

the event sequence that achieved this configuration. Especially, one of the possible 

sequences that allows to reach the configuration represented by the node S49 is given 

by the events σ = TSelectionMPhone TNoSelectionGPS TSelectionCalls TSelection-

Screen TSelectionHRes TSelectionCamera, this triggering sequence is illustrated in 

Fig. 10, highlighting the final marking. 

 

 

Fig. 10. Resulting marking after applying σ = TSeleccionMPhone TNoSeleccionGPS TSelec-

cionCalls TSeleccionScreen TSeleccionHRes TSeleccionCamera in M0. 

Regarding the satisfiability, the set of allowed configurations is {, {MPhone, Calls, 

Screen, Basic}, {MPhone, Calls, Screen, HRes}, {MPhone, Calls, Screen, HRes, 

Camera}, {MPhone, Calls, Screen, GPS, HRes}, {MPhone, Calls, Screen, GPS, 

HRes, Camera}}. 

6 FMTEST 

We need to analyze the PNFM to determine the collection of feasible configurations of 

the SPL. For this reason, it was decided to develop a tool that could generate the 

reachability graph and perform an automatic analysis based on the study of the Petri 

nets dynamics. This transformation to a PNFM and the analysis of the reachability 

graph should be carried out without the participation of the SPL analyst. In the next 

section is presented an algorithm for building a reachability graph and its implementa-

tion in the tool FMTEST. 



6.1 Reachability Graph 

In this section is introduced the algorithm for building the reachability graph. Al-

gorithm 1 defines the initial state of the graph, thus is M0 of PNFM, and adds to the 

reachability graph. After that, a list of triggerable transitions from the initial state is 

built. For each triggerable transition Algorithm 2 is called. This invocation generates 

the successor state using the state and the transition provided as parameters.  

As it is possible to arrive to a state obtained previously, this subroutine verifies this 

situation. When this situation takes place the algorithm only calculates the corre-

sponding state transition and adds it to the graph structure. Instead, if the algorithm 

arrives into a new state it stores it in the graph as well as the state transition between 

the previous and this new state. Furthermore, the corresponding list of triggerable 

transitions from this new state is obtained. If there are no triggerable transitions for 

this new state the algorithm finalizes. Otherwise the Algorithm 2 is called again for 

each triggerable transition in the list. 

Algortihm 1. getReachabilityGraph(PetriNet) 

getReachabilityGraph(PetriNet petriNet){ 

 State initialState= getState(petriNet); 

 addStateToGraph(newState); 

 List<Transitions> triggerableTransitions= 

   getTriggerableTransitions(initialState); 

 forEach(T in triggerableTransitions){ 

  execute(initialState, T); 

 } 

} 

Algortihm 2. execute(State, Transition) 

execute(State aState, Transition aTransition){ 

 State newState=generateNewState(aState, aTransition); 

 StateTransition aStateTransition=  

     newTransition(aState, existingState); 

 addTransitionToGraph (aStateTransition); 

 State existingState=existsState(newState); 

 if(existingState ==null){ /* newState is a new state */ 

  addStateToGraph(newState); 

  List<Transitions> triggerableTransitions=  

     getTriggerableTransitions(newState); 

  forEach(T in triggerableTransitions){ 

   execute(newState, T); 

  } 

 } 

 return; 

} 



6.2 Equivalent configuration final states 

Since a final state represents a product configuration, two final states are equiva-

lent configuration when the places that are representing the selection of features 

(places that belong to PF) have the same number of marks. In other words, if two final 

states represent the selection of the same set of features they are configuring the same 

product. This is important for the analysis of the reachability graph in order to obtain 

unique configurations for the product family. 

6.3 An implementation of FMTEST in Java 

Taking the implementation of FM2PN as a starting point, the development of a new 

tool was addressed applying the knowledge gained in the previous experience. 

FM2PN performs a SPL analysis implementing the algorithms described in Section 

6.1 and applying the PNFM properties discussed in Section 4.3. 

Fig. 11 shows a screenshot of the user interface of FMTEST. FMTEST provides the 

following functionality: search for a configuration, list all possible configurations, 

detection of dead nodes and calculation of metrics.  

 

 
Fig. 11 FMTEST user interface. 

 

 Search for a Configuration: Using the arrows and the two lateral list panels it is 

possible to select different available features of the model and search for a con-

figuration that includes them. For instance, if feature GPS and feature Camera 

are selected, the configuration obtained is {MPhone, Camera, Calls, GPS,  HRes,  

Screen} as it is shown in Fig. 12. 



 
Fig. 12 “Search Configuration” result. 

 List all possible configurations: FMTEST gives the possibility to list all the pos-

sible products of a SPL represented as a feature model. The “See All” button per-

forms this action listing all the configurations found for the provided FM (Fig. 

13).  

 
Fig. 13 “List all” result. 

 Detection of dead nodes: This functionality analyse the net for detecting dead 

nodes. In this case no dead nodes where founded (Fig. 14). 

 
Fig. 14 “Dead Nodes” result 

 Calculation of metrics: This function allows acquiring dimension about the com-

plexity of the model and the underlying structures created to perform the analy-

sis. For this case, the PN created has 22 places, 11 transitions and 34 arcs. For 

this net, the corresponding reachability graph has 52 states and 119 transitions 

(Fig. 15). 



 
Fig. 15 “Get Metrics” result. 

7 Conclusions and future work 

In this work a Feature Model Petri Net, PNFM, is specified by the definition of the 

topology of a sub-class of PN which allows us to represent a FM and develop a for-

mal study of FMs trough the development and evolution of a SPL. The analysis is 

focused on the PN properties, in particular boundedness, reachability, and potentially 

triggerable. This approach provides a solid base to analyse satisfiability and consis-

tency of feature models (properties described in [4] and [6]). The proposed model was 

implemented initially into a tool, FM2PN, which allows generating the Petri net PNFM 

from a FM and perform the appropriate analysis using a PN analysis tool. 

Subsequently, we developed a tool, FMTEST, that integrates model transformations 

and related analysis. Details about the PN and reachability graphs are encapsulated by 

FMTEST. 

An important challenge is related to the size of the FMs. The ascending trend in the 

number of features [6] requires transformation techniques in order to reduce and sim-

plify the PNFM and the reachability graph but always keeping their properties. It’s also 

a pending challenge extend the study to other PNs properties within the PNFM domain. 

Among them we can mention reversibility and synchronous distance. The first one 

allows us to recover the initial marking from any other marking, in other words, this 

will permit to rebuild a PNFM from its configurations. The synchronous distance is a 

metric of the degree of relationship between transitions and can be used to obtain 

qualitative information about the dependencies in the underlying FM. 

Acknowledgements. Authors thank the financial support from CONICET, Universi-

dad Tecnológica Nacional, and Agencia Nacional de Promoción Científica y Tec-

nológica. 

References 

1. Northrop, L., Clements, P., Bachmann, F., Bergey, J., Chastek, G., Cohen, S. Donohoe, P., 

Jones, L., Krut, R., Little, R., McGregor, J., O'Brien, L.: A framework for product line 

practice, version 5.0, http://www.sei.cmu.edu/productlines/frame_report/index.html (2009) 

2. van der Linden, F., Schmid, K., Rommes, E.: Software product lines in action: the best in-

dustrial practice in product line engineering. Springer Heidelberg (2007) 



3. Pohl, K., Böckle, G., van der Linden, F.: Software product line engineering: foundations, 

principles, and techniques, Springer: Heidelberg (2005) 

4. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Domain Analysis 

(FODA). Feasibility study, Technical Report CMU/SEI-90-TR-21, Software Engineering 

Institute, Carnegie Mellon University (1990) 

5. Schobbens, P., Trigaux, J., Heymans, P., Bontemps, Y.: Generic semantics of feature dia-

grams. Computer Networks 51, 456-479 (2007) 

6. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models 20 years 

later: A literature review, Journal of Information Systems 35, 615-636 (2010) 

7. Batory, D.: Feature models, grammars, and propositional formulas. In: Software Product 

Lines Conference. LNCS, vol. 3714, pp. 7–20 (2005) 

8. Sun, J., Zhang, H., Li, Y. Wang, H.: Formal semantics and verification for feature model-

ing. In: Proceedings of the ICECSS05, pp. 303-312 (2005) 

9. Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Using constraint programming to reason on 

feature models. In: 17th International Conference on Software Engineering and Knowl-

edge Engineering, pp. 677-682 (2005) 

10. Murata, T.: Petri Nets: properties, analysis and applications. In: proceedings of the IEEE, 

Vol. 77:4, pp.541-580 (1989) 

11. M. Mendonca, M. Branco, D. Cowan, “S.P.L.O.T. - Software Product Lines Online 

Tools”, In 24th ACM SIGPLAN International Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, Orlando, Florida, USA, 2009. 

12. E. Berk, C. Scott Ananian, “JLex: A Lexical Analyzer Generator for Java”, disponible en: 

http://www.cs.princeton.edu/~appel/modern/java/JLex/ 

13. S. Hudson, F. Flannery, C. Scott Ananian, “CUP Parser Generator for Java”, disponible 

en: http://www.cs.princeton.edu/~appel/modern/java/CUP/ 

14. N. Dingle, W. Knottenbelt, T. Suto, “PIPE2: A Tool for the Performance Evaluation of 

Generalised Stochastic Petri Nets”, ACM SIGMETRICS Performance Evaluation Review, 

Vol. 36(4), 34-39, 2009. 

http://www.cs.princeton.edu/~appel/modern/java/JLex/
http://www.cs.princeton.edu/~appel/modern/java/CUP/

