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Abstract. In this work an iterative method to solve the nonlinear least
squares problem is presented. The algorithm combines a secant method
with a strategy of nonmonotone trust region. In order to define the
quadratic model, the Hessian matrix is chosen using a secant approach
that takes advantage of the structure of the problem, and the radius of
the trust region is updated following an adaptive technique. Moreover,
convergence properties of this algorithm are proved. The numerical ex-
perimentation, in which several ways of choosing the Hessian matrix are
compared, shows the efficiency and robustness of the method.
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1 Introduction

This paper is concerned with an algorithm to solve the unconstrained nonlinear
least squares problem.

There are many and well known reasons to study methods for solving the
nonlinear least squares problems. These problems appear frequently in various
fields of science and they are applied in the analysis of statistical data, in social
sciences, in data fitting and parameter estimation, and in more traditional fields
like engineering and physics sciences.

The problem to consider is the following:

minf(x) =
1

2
||F (x)||22 =

1

2

m∑
i=1

Fi(x)2, (1)

where the residual function is F (x) = (F1(x), . . . , Fm(x))T , the components
Fi : IRn → IR for i = 1, . . . ,m, are twice continuously differentiable and, in
general, nonlinear functions, and ||.|| denotes the Euclidean norm.
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The gradient of the function f is

∇f(x) = J(x)TF (x), (2)

where J : IRm×n is the Jacobian matrix of F , and the Hessian matrix of f is

∇2f(x) = J(x)TJ(x) +

m∑
i=1

Fi(x)∇2Fi(x). (3)

In the following we denote fk = f(xk), ∇fk = ∇f(xk), Jk = J(xk), Fk =
F (xk), and sk = xk+1 − xk.

Although it is possible to solve the problem (1) with the traditional algo-
rithms for unconstrained minimization problems, specific algorithms have been
developed. The most efficient methods use the special structure of the problem
and quasi-Newton strategies.

In particular, we will introduce an algorithm that uses a nonmonotone trust
region with an adaptive radius and a structured secant approach of a portion of
the Hessian matrix.

This work is organized as follows. In the next section we present the non-
monotone adaptive trust region. Section 3 is devoted to the structured secant
approximations, the proposed algorithm is in Section 4. In Section 5 we analyze
theoretical properties and global convergence of the method. Numerical experi-
mentation is described in Section 6. Also, for visualizing the numerical results,
performance profiles are used to show a good graphical comparison. In the last
section, comments and concluding remarks are presented.

2 The nonmonotone trust region

There exist lots of iterative methods for solving the unconstrained minimization
problem. In many cases they require the addition of a line search or trust region
techniques, in order to guarantee the global convergence results.

The classic globalization strategy of trust region is a very popular iterative
process that requires in each iteration the solution of the following subproblem

mk(s) = f(xk) +∇f(xk)T s+
1

2
sTBks (4)

s.t. ||s||2 ≤ δk

where Bk ∈ IRn×n is a symmetric matrix.
It is well known that mk is a quadratic model of f around xk and δk is

the radius of the trust region. If the function achieves sufficient reduction at
the minimizer of the quadratic model, the trial step sk is accepted and the new
point, xk+1 = xk + sk, is obtained, otherwise the radius of the region is reduced
and is updated following a standard scheme [2,3]. Under mild conditions, this
approach builds a sequence of iterates {xk} such that {f(xk)} is monotonically



decreasing. However, some research suggests that if the objective function falls
in very steep and narrow valleys, the method slows down the convergence rate
and it can be made very short steps and winding paths.

In the last years, variants of the method have been proposed so that re-
laxing the requirement of monotonicity, more efficient algorithms are obtained.
The idea of building nonmonotone methods dates back to 1986, when Grippo et
al. [4] presented a nonmonotone line search technique combined with a Newton
method for unconstrained optimization. In 1993 Deng et al. [5] extended non-
monotone techniques of line search to trust region. Subsequently, many authors
have proposed variants of the nonmonotone trust region method [6,7,8,9,10].
They have been able to show that the modified algorithm has similar properties
of convergence to the usual algorithm of the trust region. The basic objective
of the modifications is to decrease the number of inefficient iterations, reducing
the amount of subproblems to solve.

Once the subproblem (4) is solved with a double-dogleg strategy, and the trial
step sk is found, we need to decide if the new point xk+1 = xk + sk is accepted.
The classical acceptance condition of the step is relaxed so that the new point
is compared to the worst in a certain number of previous steps. So the actual
reduction of the function

Aredk = flk − fk+1 (5)

is compared with the predicted reduction

Predk = flk −mk(sk), (6)

where
flk = f(xl(k)) = max

0≤j≤p(k)
f(xk−j), (7)

p(0) = 0 and 0 ≤ p(k) ≤ min{p(k − 1) + 1, N}, k ≥ 1 and N is a nonnegative
integer.

In this way, the new point is compared to the worst point in a certain number
of previous steps.

Then, if

rk =
Aredk
Predk

≥ η (8)

we accepted the trial step, otherwise, it is rejected. Thus, in the ratio we compare
the variation of the function in the two steps and the difference between the
quadratic model and the value of the function in the worst point considered
in the last p(k) iterations. We observe that the method does not generate a
monotone decreasing sequence {f(xk)}. However, when N ≥ 1, the acceptance
criterion of the step should guarantee some decrease of f(xk + sk). When N = 0
the method is reduced to the classic trust region method.

2.1 Adaptive trust region radius

In this subsection we discuss a nonmonotone version of the trust region strategy
where the radius is selected in an adaptive way. In recent years, several authors,



among them [11,12,13,14], have proposed strategies in which the adjustment of
the radius in each internal iteration is performed using some procedures that
involve values of the function, the gradient or the Hessian matrix in the current
point.

In this case we propose a method that adjusts it automatically according to
the information of the current point, and we calculate the radius by a simple
formula that only involves values of the objective function. In this case, we use

δk =

{
cqRk if k = 0
cqmax{Rk, δk−1} if k ≥ 1

(9)

with Rk = θkflk + (1 − θk)||Fk||, for 0 < c < 1, q is a positive integer which
increases in each inner iteration when the relationship between the actual reduc-
tion and the predicted reduction is different to the expected. So, q is the smallest
nonnegative integer ensuring that the trust region is greater than η ∈ (0, 1). The
other parameter is 0 ≤ θk ≤ 1, which is adaptive so that larger radios are ob-
tained when the current point is far away from the solution. In this way, an
adaptive nonmonotone method is constructed.

3 The structured secant approximation

As we have already mentioned, many specific algorithms that exploit their par-
ticular structure, have been developed to solve the problem of the nonlinear
least squares. The Gauss-Newton and the Levenberg Marquardt methods [1,15],
are based on the observation that the second order part of the Hessian matrix
tends to zero in the optimum for zero residual problems. In this case, they have
a q-quadratically convergence rate, but their performance is poor for nonzero
residual problems. To improve this situation, structured quasi-Newton methods
were proposed.

From the structured BFGS update proposed by Al Baali et al. [16], in 1989,
Dennis et al. [17] derived a principle that takes into account the structure with
which they achieved local superlinear convergence. More recently, Huschens [18]
proposed a new structured quasi Newton method that converges quadratically
for zero residual problems, and superlinear for nonzero residual problems. Other
works such as [19,20] have been published later. In the first of them, the authors
proposed a structured quasi Newton method that uses a “product structure”,
and showed that the resulting algorithm is quadratically convergent for the zero-
residual case and superlinearly convergent for the nonzero-residual case. In the
last, the authors provide global convergence of a hybrid Gauss-Newton struc-
tured BFGS. The structure principle as designated by Zhou and Chen [20], was
originally introduced, by Dennis, Martinez and Tapia [17].

All these approximations take advantage of the structure present in the Hes-
sian matrix of the problem. We consider the Hessian matrix composed of a term
containing first order information, which is the available part, and the other
containing the second order information, that is



∇2f(x) = J(x)TJ(x) + S(x) = C(x) + S(x), (10)

where C : IRn → IRn×n and S(x) =
∑m
i=1 Fi(x)∇2Fi(x).

The objective is to construct a secant approximation of the portion containing
the second order information.

If Bk+1 is an approximation of ∇2f and Ak+1 is an approximation of S then

Bk+1 = Ck+1 +Ak+1, (11)

with Ak+1 = Ak +∆(sk, y
]
k, Ak, vk).

We use a secant update BFGS type

∆(s, y], A, v) =
(y] −As)vT + v(y] −As)T

vT s
− (y] −As)T s

(vT s)2
vvT , (12)

where

v(s, y, B) = y +

(
yT s

sTBs

)1/2

Bs, (13)

yk = y]k + JTk+1Jk+1sk, (14)

and y]k is an approximation of Sk+1sk. Then

Bk+1 = Ck+1 +Ak +∆(sk, y
]
k, Ak, v(sk, yk, Bk)), (15)

and so it is reasonable to define

Ak+1 = Ak +∆(sk, y
]
k, Ak, v(sk, yk, Bk)) (16)

as the structured secant update of A.

3.1 Several ways of choosing y]

In this work, we have numerical evaluations for three different choices of y].
Dennis [23] and Bartholomew-Biggs [24] introduced, independently, the fol-

lowing approximation
y]k = (Jk+1 − Jk)TFk. (17)

They obtained this expression by considering the secant equation of Ak+1 and
observing that

∇2Fi(xk+1)sk ≈ ∇Fi(xk+1)−∇Fi(xk), (18)

for i = 1, . . . ,m. Then[
m∑
i=1

Fi(xk+1)∇2Fi(xk+1)

]
sk =

m∑
i=1

Fi(xk+1)
[
∇2Fi(xk+1)sk

]
(19)

≈
m∑
i=1

Fi(xk+1) [∇Fi(xk+1)−∇Fi(xk)] (20)

= (Jk+1 − Jk)TFk. (21)



On the other hand, Huschens, in his work [18], using a scaling of the Hessian
matrix of the problem

∇2f(x) = C(x) + ||F (x)||
m∑
i=1

Fi(x)

||F (x)||
∇2Fi(x) (22)

and
B(x) = C(x) + ||F (x)||A, (23)

showed how the structured product technique can be exploited to obtain values
of y] that allow to improve the convergence. From this consideration, in the
works of Zhang et al. [19] and Zhou and Chen [20], the following updates were
obtained:

y]k =
(Jk+1 − Jk)TFk

||Fk||
+

3Fk
||sk||2

[(Jk+1 − Jk)sk − 2(Fk+1 − Fk)] , (24)

y]k = (Jk+1 − Jk)TFk+1
||Fk+1||
||Fk||

. (25)

4 The algorithm

Now we give a description of our nonmonotone, adaptive and structured trust
region method to solve the problem (1).

Algorithm 1 Given x0 ∈ IRn, the positive constants c, η ∈ (0, 1), θ0 ∈ [0, 1],
ε > 0, a positive integer N and a symmetric matrix B0 ∈ IRn×n:

Step 0. Set k = 0 and calculate δ0 = 1
2 ||F0||22.

Step 1. If xk is a stationary point of the problem the algorithm terminates,
otherwise, set q = 0 and go to Step 2.

Step 2. (Compute the trial step)
Solve approximately the problem (4), obtain sk and define xk+1 = xk + sk.

Step 3. (Evaluation of the trial step)
Calculate Aredk, Predk and rk according to (5) and (6).

Step 4. (Update of the trust region)
– If rk < η then xk+1 = xk, assign q ← q + 1, update δk by (9) and go to

Step 2.



– If rk ≥ η then update δk by (9) and go to Step 5.

Step 5. (Update all the information)
Assign k ← k + 1, obtain Bk = JTk Jk + αAk according to (16), generate θk
by an adaptive formula and go to Step 1.

Note 1. We observe that the value of α is 1 if we use (17) and (25) and ||Fk+1||,
if (24) is used.

5 Analysis of convergence

In this section we prove the well definition of the algorithm and its global con-
vergence. To do this we need to establish the following assumptions about the
problem. The function f , the gradient ∇f and the approximation B are asked
to satisfy the following assumptions:

H1. There exists an open convex subset S ⊆ Rn such that, for all k, xk, xk+sk ∈
S.

H2. ∇f ∈ Lipγ(S).
H3. The sequence of Hessian approximation {Bk} is uniformly bounded.
H4. The set S0 = {x ∈ Rn : f(x) ≤ f(x0)} is compact.

The next lemmas are crucial in order to obtain the well definition of the
algorithm and to analyze the convergence of the method.

Lemma 1. If sk is the solution of the trust region subproblem (4) then

Predk ≥
1

2
||∇fk||min

{
δk,
||∇fk||
||Bk||

}
. (26)

Proof.

Predk = flk −mk(sk) ≥ fk −mk(sk) = mk(0)−mk(sk)

By using [25, Lemma 6.1.3] results

mk(0)−mk(sk) =
1

2
||∇fk||min

{
δk,
||∇fk||
||Bk||

}
, (27)

what concludes the proof.

Lemma 2. Assuming (H1)-(H3) we have

|Aredk − Predk| ≤ ν||sk||22. (28)



Proof. From the definitions 5 and 6 we have

|Aredk − Predk| = |flk − fk+1 − flk +mk(sk)|
= | − fk+1 +mk(sk)|

= | − fk+1 + fk +∇fTk sk +
1

2
sTkBksk|.

Applying the Taylor’s Theorem it results

f(xk + sk) = fk +∇fTk sk +

∫ 1

0

[∇f(xk + tsk)−∇f(xk)]T skdt. (29)

Then,

|Aredk − Predk| ≤
∣∣∣∣∫ 1

0

[∇f(xk + tsk)−∇f(xk)]T skdt

∣∣∣∣+
1

2
|sTkBksk|

≤
∫ 1

0

∣∣∣(∇f(xk + tsk)−∇f(xk))
T
sk

∣∣∣ dt+
1

2
|sTkBksk|

≤
∫ 1

0

||∇f(xk + tsk)−∇f(xk)|| ||sk||dt+
1

2
|sTkBksk|

≤ γ
∫ 1

0

||(xk + tsk − xk)|| ||sk||dt+
1

2
|sTkBksk|

≤ γ

2
||sk||2 +

1

2
β||sk||2 = ν||sk||2,

where γ is the Lipschitz constant and β is a bound of the norm of the Hessian
approximation.
Thus, (28) is obtained with ν = 1

2 (γ + β), and we complete the proof.

The following result guarantees the well definition of the algorithm.

Theorem 1. Suppose that assumptions (H1)-(H3) hold. Then the Algorithm
cannot cycle infinitely.

Proof. Suppose by contradiction, that the Algorithm cycles infinitely between
step 2 and step 4 at iteration k. That is, we assume that the internal iteration
cycles infinitely, i. e., δk(q) → 0 as q →∞.
Note that between steps 2 and 4 we have xk(q) = xk,∇f(xk(q)) = ∇fk,B(xk(q)) =
Bk, sk(q) and δk(q).
On the other hand, we have that rk(q) ≤ η and

|rk(q) − 1| =
∣∣∣∣Aredk(q) − Predk(q)Predk(q)

∣∣∣∣ =
|Aredk(q) − Predk(q)|

|Predk(q)|
. (30)



Using the fact that xk in not optimum of (1) we can conclude that there exists
a constant ε > 0 such that ||∇fk|| > ε.
From (H3) in Lemma 1, it results

Predk ≥
1

2
||∇fk||min

{
δk,
||∇fk||
β

}
. (31)

Then with our contradiction hypothesis we have

Predk ≥
1

2
ε min

{
δk,

ε

β

}
. (32)

This last result allows us to write in (30)

|rk(q) − 1| ≤
ν||sk(q)||2

1
2 ||∇fk||min

{
δk(q),

||∇fk||
β

} ≤ νδ2k(q)
1
2ε min

{
δk,

ε
β

} → 0, as q →∞.

Therefore, there exists a sufficiently large q, called qk, such that rk(qk) ≥ η and
the inner cycle of the Algorithm 1 is well defined.

In the following theorem we establish the result of global convergence.

Theorem 2. If the hypothesis (H1)-(H4) are satisfied then

lim
k→∞

||∇fk|| = 0. (33)

Proof. By contradiction, for all sufficiently large k, assume that there exists a
constant ε > 0 and an infinite subset K ⊆ N ∪0 satisfying ||∇fk|| > ε for k ∈ K.
Also by the definition of Rk and flk

||Fk|| = (1− θ)||Fk||+ θ||Fk||
≤ (1− θ)flk + θ||Fk|| = Rk

≤ (1− θ)flk + θflk = flk .

Then

||Fk|| ≤ Rk ≤ flk . (34)

Furthermore, let us in mind that in the definition of Aredk the equation (32)
allows us to write

flk − fk+1 ≥ ηPredk ≥
η

2
ε min

{
δk,

ε

β

}
. (35)



Since the radius is obtained by the formula (9) and by the definition of Rk we
have

flk − fk+1 ≥
η

2
ε min

{
cq max{Rk, δk−1},

ε

β

}
(36)

≥ η

2
ε min

{
cqRk,

ε

β

}
(37)

≥ η

2
ε min

{
cq(θflk + (1− θ)||Fk||),

ε

β

}
(38)

≥ η

2
ε min

{
cq(θ||Fk||+ (1− θ)||Fk||),

ε

β

}
(39)

≥ η

2
ε min

{
cq||Fk||,

ε

β

}
=
η

2
εLk, (40)

where Lk = min

{
cq||Fk||,

ε

β

}
and the inequality (39) in is obtained by using

(34). Then

flk − fk+1 ≥
η

2
εLk. (41)

Now, by taking a limit from both sides of the last inequality (41), as k →∞, we
have that lim

k→∞
Lk = 0, and q → ∞ for sufficiently large k ∈ K. This fact only

is possible if q → ∞ as k ∈ K. This is a contradiction with Theorem 1, where
the well definition of the algorithm is proved, and then, the stopping criterion
of the Algorithm 1 holds.

6 Numerical results

In order to show the behavior of the algorithm, we considered a set of 26 test
problems from the literature [26,19]. The dimension of the problems range from
3 to 180 and the component functions range also from 4 to 300. Only 10 of them
belong to the group of zero residual. The problems that are indicated in the table
1 with (∗) belong to the non-zero residual group. Each problem was considered
with the initial points proposed in [19]. The algorithm has been coded in Scilab.
The code has been performed on a personal computer with Core i3 processor
with 3.8 Gb of RAM memory, using Ubuntu 14.04 Linux operation system.
The purpose of numerical experimentation is to show the behavior of the al-
gorithm with the three different ways of the structure of the matrix. Simulta-
neously, the objective is to compare between them and against the traditional
monotone trust region [1].
The nonmonotone trust region subproblem was approximately solved by using a
quasi Newton method with the different approximations of the Hessian matrix
that have been described in section 3. The monotone trust region subproblem
was solved using standart dogleg procedure and Bk, the approximation to the
Hessian matrix, was updated by using the approach of Dennis, Martinez and



Tapia [17].
The parameters are chosen as follows: c = 0.5 and η = 0.1. Moreover, all the
algorithms are stopped whenever the total number of iterates exceeds 500 or the
condition ‖∇fk‖ ≤ ε, with ε = 10−6is satisfied.

In Table 1, the number of variables of the problem is indicated as n, and m is
the number of component functions of the residual. The number of iterations for
each of the used secant approximations is reported. We indicated with ADMT
the algorithm proposed with the secant approximation by Dennis, Mart́ınez and
Tapia [17] that corresponds to the choice of y] (17), AZXZ indicates to the secant
approximation due to Zhang, Xue and Zhang [19], with y] (24), AZCH corre-
sponds to the secant approximation that use the expression (25), proposed by
Zhou and Chen [20] and, finally, AMTR designate to the monotone trust region.
We have noted with (−) when the problem could not be solved by the algorithm
using a given update for the maximum number of established iterations.

Although ADMT and AMTR use the same secant update, the nonmonotone
method uses less or equal number of iterations than the monotone in all cases
of zero residual problems and in 94% of non-zero residual problems.

The AZCH strategy solves 92% of the all problems and with respect to the
monotone method it uses less iterations in 77% of the cases.

We also take the advantages of the performance profile suggested by Dolan
and Moré [27], which is a tool to compare the efficiency of algorithms. There-
fore, we illustrate the results in Figures 1-3 according to the total number of
external iterations for the zero and nonzero residual problems, and all the solved
problems, respectively.

Figure 1 shows that the AZCH algorithm is the most efficient: it solves with
less or equal number of iterations in 90 % of cases. Clearly, on the non-zero
residual problems, the ADMT algorithm is the most efficient because it solve
about 87% of the test problems with the least number of iterations (See Figure
2).

If the user does not know a priori whether the problem is zero or non-zero
residual, Figure 3 shows that ADMT is the most reliable algorithm to solve it.

7 Concluding remarks

In this work an algorithm to solve the nonlinear least squares problem has been
presented. A nonmonotone trust region strategy and a quasi Newton with sev-
eral ways of choosing the approximation of the Hessian matrix, have been used
to obtain the solution of the problem. The trust radius in each subproblem ad-
justs itself adaptively. The combination of these techniques allows us to have a
method that leads us to decrease the number of subproblems to resolve. Global
convergence of the proposed method is established.

The algorithm has been applied to the resolution of a set of standard test
problems. Our preliminary computational experiments show that it is promising
for solving the unconstrained nonlinear least square problem. The first numerical
results indicate that the technique is efficient to solve the zero and nonzero



Table 1. Test problems

Problem n m ADMT AZXZ AZCH AMTR

Chained Rosembrock 40 78 113 183 77 –
Chained Wood 100 186 165 158 116 –
Chained Powell singular 40 76 13 25 10 24
Chained Cragg and Levy (*) 100 245 34 95 129 23
Generalized Broyden triangular 60 60 5 11 4 5
Generalized Broyden banded 60 60 6 5 5 7
Chained Freudenstein and Roth (*) 140 248 17 – 22 17
Wright and Holt zero residual 60 300 6 7 6 –
Toint quadratic merging (*) 60 174 21 33 21 –
Chained exponential (*) 3 5 24 – 196 24
Chained serpentine 80 158 196 203 162 –
Chained and modified (HS47) (*) 11 18 91 – 347 365
Chained and modified (HS47) (*) 83 162 223 – 337 –
Chained and modified (HS48) (*) 29 63 53 – 52 84
Chained and modified (HS48) (*) 32 70 56 – 43 75
Chained and modified (HS48) (*) 38 84 62 – 62 129
Sparse signomial (*) 4 4 11 14 12 15
Sparse exponential (*) 16 28 5 – 5 7
Sparse trigonometric (*) 20 36 10 128 28 –
Countercurrent reactors (*) 40 40 355 – 343 –
Countercurrent reactors (*) 80 80 121 311 193 –
Tridiagonal system 140 140 39 37 28 64
Structured Jacobian problem 60 60 19 – 19 19
Shifted discrete boundary value 180 180 18 29 20 29
Modified discrete boundary value (*) 41 41 22 – – 23
Attracting Repelling (*) 20 38 148 182 – 265



Fig. 1. Performance profile for zero residual problems

Fig. 2. Performance profile for nonzero residual problems



Fig. 3. Performance profile for all solved problems

residual problems. The results of numerical experimentation showed a better
performance of the nomonotone methods with respect to the classic monotone
trust region. The application of the algorithm to solving real world problems is
a challenge which we are working.
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