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Abstract. Frameworks and Application Programming Interfaces (API)
usually come along with a set of guidelines that establish good program-
ming practices in order to avoid pitfalls which could lead, at least, to
bad user experiences, but also to program crashes. Most often than not,
such guidelines are not at all enforced by IDEs. This work investigates
whether static taint analysis could be effectively used for automatically
detecting bad programming patterns in Android applications. It presents
the implemented tool, called CheckDroid, together with the preliminary
experimental evaluation carried out.

1 Introduction

Since its introduction in 2008, Android has been boldly increasing its share
of the smartphone market. During the last 4 years, Android has consistently
captured between 80% to 90% of the worldwide smartphone volume3. Besides
smartphones, Android is used as software platform of wearable technology, such
as watches, in-car entertainment, and embedded devices in IoT applications in
a variety of domains, such as retailing. In other words, Android-based devices
are pervasive in our daily life.

Therefore, it is very important to make sure that Android applications are
correct with respect to their functional and non-functional requirements. That
is, applications must provide the functionality they have been programmed for
and they must do it through an efficient use of the available resources, such as
memory, energy and processing power.

Carelessly coded applications are likely to be unreliable and inefficient. Thus,
the documentation of the Android API exhibits a number of recommended cod-
ing practices which should be respected by the software developer. Consistently
and carefully applying these rules is key to avoid bad user experiences, such as
frozen screens and Application Not Responding (ANR) messages, poor perfor-
mance caused by memory leaks, unexpected faults causing application crashes
and loss of data, etc.. However, despite the existence of such recommendations,
current Android IDEs do not provide any means to enforce them. Besides, be-
cause of the intrinsic asynchronous behavior of the Android runtime, faults orig-
inated in not respecting the programming guidelines are very difficult to capture

3 https://www.idc.com/promo/smartphone-market-share/os
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during testing and debugging. Hence, it makes sense to resort to static analysis
to verify whether a program complies with the recommendations.

There is a significant amount of research effort devoted to developing static
analysis techniques for Android. A thorough review of the state-of-the-art is done
in [9]. A major conclusion of [9] is that Android code inspection through static
analysis is mainly addressed to seeking privacy and security vulnerabilities [11].
Regarding performance issues, most effort has been put in developing tools for
searching resource (memory, energy, ...) leaks [8], estimating memory usage [2,5],
and testing applications for poor responsiveness [10,17]. An important observa-
tion reported in [9] is that very few approaches provide path-sensitive analyses.
FlowDroid [1] is one of the exceptions.

In fact, many of the performance-related bugs turn up to be consequences of
bad programming practices in the first place. Therefore, it makes sense to auto-
matically scrutinize application code early in the development cycle to clean it up
of bad patterns which could be susceptible of causing runtime defects. Certainly,
more specific analyses could be used afterwards for in-depth verification.

The question of investigating the correct application of programming guide-
lines is related to the problem of appropriately using APIs. However, works on
the latter direction do not focus on analyzing program compliance with doc-
umentation guidelines, like ours. On the contrary, they seek improving API
documentation in order to helping programmers using the API correctly. For
instance, [14] studies programming obstacles derived from badly documented
APIs, [15] seeks discovering API-usage patterns by mining client code, and [16]
pursues the same purpose through the analysis of posts in developer forums.

To the best of our knowledge, only [12] attacks the same research question.
The approach developed in [12] requires the Java source code of the application
and relies on Android Lint [6]. This tool is an Android Studio utility that scans
project sources checking for a number of common mistakes and structural issues.
Android Lint checks for layout problems, unused resources, hard-coded strings,
icon issues (e.g., duplications, wrong sizes), usability problems (e.g., untyped
text fields), manifest errors, deprecated elements, etc.. The tool developed in
[12] is limited to searching for some specific bad practices related to memory
leakage and performance slowdowns due to inappropriate management of thread
priorities and system objects.

In contrast, we devised a customizable approach based on formal path-
sensitive program analysis. The cornerstone idea of our technique consists in
relating bad practices with paths in the code which can be found by static
taint analysis [13]. To evaluate the practical applicability of the idea, we de-
veloped the tool CheckDroid which steps on FlowDroid [1], a state-of-the-art
static taint-analysis framework which analyzes the .apk, instead of the appli-
cation source code, and takes into account the application life-cycle, providing
higher precision than Android Lint.

Our approach does not rely on the source code, but on the .apk. Nevertheless,
having the source code available, may be useful for eliminating false positives,
that is, situations which are not actual violations of the guidelines, but reported
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by CheckDroid as potential ones, as a consequence of the abstractions made by
the underlying static analysis tool.

We carried out a preliminary experimental evaluation of CheckDroid on a set
of Android applications drawn from different sources. To start up with, we run
CheckDroid on applications developed by undergraduate students as their final
project for a mobile computing course at the Department of Computer Science of
University of Buenos Aires. Then, we analyzed applications published on Google
Play. The experiments showed that recommendations related to performance and
memory usage were the most commonly violated ones.

Outline. The rest of the paper is organized as follows. Section 2 discusses the
research problem in more detail. Section 3 describes the general approach. Sec-
tion 4 explains in how bad practices are mapped into paths in the code in order
to enable taint analysis to be used for detecting violations. Section 5 presents
CheckDroid. Section 6 discusses the experimental evaluation. Finally, Section 7
presents conclusions and future work.

2 Problem statement

An Android application which takes more than 200 milliseconds to respond to
a user event is considered to be unresponsive [4]. The worst-case situation re-
sults in an Application Not Responding (ANR) dialog box, displayed by the
Android runtime when the application does not respond to a key press within
5 seconds [7]. In such a case, Android offers the user an option to close the
application.

Poor responsiveness and ANR messages are likely to motivate users to give
low ratings and negative comments. Eventually users end up uninstalling un-
responsive applications. Therefore, how to avoid ANR messages is an impor-
tant issue thoroughly addressed by the Android API documentation. Indeed,
an important part of the documentation is devoted to providing guidelines for
developing responsive applications.

However, ANR messages are not the only cause of bad user experiences. In
fact, these can be provoked by numerous reasons. For instance, execution lags
due to periodic garbage collection are experienced by the user as small hiccups
in the application behavior. Also, an application performing periodic network
requests at a high rate will keep the radio on causing the battery to drain faster
than expected.

Therefore, as a first step, we started up by analyzing the Android API guides
with the aim of identifying programming recommendations intended to circum-
vent application slowdowns or unexpected crashes. We focused on two main
categories of guidelines, namely performance and memory usage.

In this section, we describe several instances of these guidelines. The rest of
the paper is devoted to addressing the problem of automatically assessing by
static analysis whether the code of an application conforms to instances of these
categories of good practices.

Yovine et al., Static Taint Analysis Applied to Detecting Bad Programming Practices in Android, EJS 17 (1) 35-53 (2018) 37



2.1 Performance

The execution of an Android application follows a single-threaded pattern in
which the main thread of the application, also called the UI thread, handles
all user-interface (UI) events. As a consequence, this thread should not perform
heavy, long-running computations, such as network accesses, database opera-
tions, file I/O, bitmap processing, etc.. Otherwise, the user would actually feel
the application to be unresponsive and most likely receive an ANR dialog box
asking whether the application should be closed.

Android provides an execution policy, called StrictMode, which is meant to
be used during the development cycle to detect accidental deviations from this
expected use of the API. However, StrictMode is not guaranteed to find all mis-
behaviors. Moreover, it should never be left enabled in applications distributed
on Google Play.

For this reason, the documentation contains a number of performance-related
guidelines which seek avoiding application slowdowns. In this paper, we consider
the following examples of such kind of recommendations:

P1 Verbose logging level and StrictMode should never be left enabled in released
applications.

P2 Long running tasks should execute in worker threads, such as Service

threads, AsyncTasks, etc.
P3 Worker threads should have lower priority than the UI thread. The purpose

of this recommendation is to enable the runtime to schedule the UI thread
upon the reception of an UI event.

2.2 Memory usage

Memory is a scarce resource in mobile devices, specially the low-end ones. Ap-
plication performance is significantly better if memory is managed efficiently.
This entails releasing unused objects when they are no longer needed. Holding
references to unused objects prevents the garbage collection to reclaim the as-
sociated memory which causes the application to “leak” memory. Memory leaks
typically grow over time and are difficult to identify and to correct. Indeed,
careless memory handling is an important cause of application crashes.

The documentation provides several guidelines in this respect. Two important
ones considered in this paper are the following:

M1 References to objects associated with a Context, such as Adapters, should
not be stored in static variables since they will leak all resources bound to
the instance.

M2 Worker threads should be explicitly closed. Otherwise, their associated
memory space will be leaked.

3 Approach

Recall that the purpose of this paper is to address the problem of automatically
checking conformance with recommended Android programming practices. In
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order to do it, we propose an approach based on static analysis of Android code.
The originality of the approach relies on associating guidelines with data-flow
paths in the code. This idea enables resorting to static taint analysis for verifying
whether recommendations are indeed respected.

1 public class MyClass <T> {

2 public T data;

3 public MyClass () {

4 T src = source (); /* source */

5 this.data = src; /* this.data is tainted */

6 } /* this is tainted */

7 public T getData () { return this.data; }

8 }

9 public T foo() {

10 MyClass o = new MyClass (); /* o is tainted */

11 return o.getData ();

12 }

13 void bar() {

14 T d = foo(); /* d is tainted */

15 sink(d); /* sink */

16 }

Fig. 1. Taint analysis.

3.1 Taint analysis

Taint analysis searches for information-flow between two specific points in the
program, called source (or origin) and sink (or target), by applying data-flow
analysis through its control-flow and call graphs. The idea consists in tainting

all assignments and method calls along the path [13].
Consider the example in Figure 1. Here, method bar() calls method foo()

which creates an object of class MyClass. In line 4, the constructor MyClass()
calls method source(). The local variable src then becomes tainted. In line 5
the field data of the newly created object referenced by this is tainted because it
is assigned to src, which is tainted. As a consequence, object o gets itself tainted
in line 10 because it holds a reference to a tainted object of type T. Furthermore,
calling foo() in line 14 ends up tainting variable d which is passed as argument
to sink(). Hence, information flows from a source method source() in line 4
to a sink method sink() in line 15 when method bar() is called.

This flow is depicted in Figure 2. Nodes correspond to methods. Solid arrows
represent the call graph. Numbers labeling solid arrows indicate the order in
which the calls are executed in the execution path described above. Dotted
arrows show how the tainted source reaches the sink through the data-flow path.
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An information flow path from an origin o to a target t, denoted o  t,
is a sequence of solid and dashed arrows. In our example the information flow
path from source to sink which traces the path followed by the tainted data is:
source 99KMyClass 99Kfoo →getData 99Kbar →sink.

bar

foo sink

MyClass getData

source

1

2

3

4

o

5

o

src

d

d

Fig. 2. Information Flow Graph.

A foremost usage of taint analysis is in looking for security vulnerabilities [3].
For instance, a typical use-case consists in finding whether some valuable asset,
like a password, leaks from a secure origin, such as a login dialog box, to a
dangerous destination, such as writing the password decrypted into a text file.

3.2 FlowDroid

Our approach to solve the problem of detecting violations to programming guide-
lines for Android applications consists in encoding a recommendation as a path
between a source and a sink in the code. This idea enables using taint analysis
and the tool FlowDroid [1] as the underlying framework to actually perform the
analysis on Android code. FlowDroid [1] implements a static taint analysis algo-
rithm for Android applications. It achieves high precision and recall by relying on
a context-, flow-, field-, and object-sensitive inter-procedural taint analysis, and
creating a complete model of the application life-cycle, including callbacks. Since
user interaction cannot be predicted statically, the model contains all possible
combinations of callbacks to make sure no taint is lost.

4 Strategies

This section is devoted to putting the aforementioned approach in practice. We
analyze in detail all listed recommendations in Section 2 and propose a concrete
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strategy to cope with each one. A strategy consists in a path or set of paths
starting at a source and leading to a sink. Capturing the path or set of paths with
taint analysis provides evidence of the violation of the corresponding guideline.
We define 3 different strategies which cover the complete set of recommendations
identified in Section 2. We will use the application snippet shown in Figure 3 as
a running example to illustrate the strategies.

1 /* class MyActivity */

2 private TextView tv;

3 private ImageView iv;

4 private static EmailAddressAdapter instance;

5 protected void onCreate(Bundle b) {

6 super.onCreate(b);

7 tv = (TextView) findViewById(R.id.tv);

8 iv = getView (). getImageView ();

9 EmailAddressAdapter.getInstance(this);

10 }

11 public void updTextView(String s) {

12 Log.v("MyActivity", "updTextView" + s);

13 Thread t = new Thread(new Runnable (){

14 public void run (){ tv.setText(s); }}). start ();

15 }

16 public void updImgView(String s) {

17 HttpURLConnection h = null;

18 try {

19 h = (new URL(s)). openConnection ();

20 Bitmap bmp = BitmapFactory

21 .decodeStream(h.getInputStream ());

22 iv.setImageBitmap(bmp); }

23 catch (Exception e) { e.printStackTrace (); }

24 finally { if (h != null) h.disconnect (); }

25 }

26 public static EmailAddressAdapter

27 getInstance(Context cx) {

28 if (instance == null)

29 instance = new EmailAddressAdapter(cx);

30 return instance;

31 }

Fig. 3. Running example.

The schematic call and flow graph built by FlowDroid is depicted in Figure 4.
The structure of the graph corresponds to the Android activity lifecycle. Rectan-
gular nodes are methods of the Android Activity class. Solid ellipsoidal nodes
correspond to user-defined methods in the application code. Dotted ellipsoidal

Yovine et al., Static Taint Analysis Applied to Detecting Bad Programming Practices in Android, EJS 17 (1) 35-53 (2018) 41



nodes are Android API methods other than Activity ones. Double head arrows
of the form →→ model callbacks. It means that a method is called by the Android
runtime during the application lifecycle. Those edges do not correspond to direct
calls from callers to callees but to the order in which they are actually executed
by the runtime. For instance, the edge from onCreate to onStart means that
the Android runtime calls onStart after onCreate.

The node Activity Running is an abstraction of the activity being executed.
Callbacks to updImgView and updTextView that occur while the activity is run-
ning are modeled by the edges from Activity Running to the corresponding nodes.
The activity is removed from memory upon the call to onDestroy.

onCreategetInstance

onStart

onResume

Activity Running updTextView

Log.v

start

setText

Thread

updImgView

openConnection
onPause

onStop

onRestart

onDestroy

Fig. 4. Call Graph.

4.1 Strategy 1

Consider recommendation P1. We can think of the call to method Log.v() in
line 12 as an origin o and the call to onStop() as a target t. Notice that this call
is not explicit in the code, but it appears in the call graph shown in Figure 4.

A path from o to t, denoted o t, is a violation of P1, since it means that
method Log.v() may actually be executed. Of course, this is a very simple case,
but only looking for occurrences of Log.v() in the code, though useful, could
lead to a larger number of false positives.
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StrictMode checking could be done exactly in the same way, except for the
fact that there could be more than one source. Examples of possible origins are
StrictMode.ThreadPolicy.Builder or StrictMode.VmPolicy.Builder. This
case is not illustrated in our running example.

A similar approach could be applied for M1. This case is illustrated as a
path from the call to EmailAddressAdapter.getInstance() in line 9, which is
the source o, to method onStop(), which is the target t. Here, a reference to
the activity instance making the call, e.g., this, ends up being passed to the
constructor of EmailAddressAdapter while a reference to the created object of
class EmailAddressAdapter is stored in the class (static) variable instance of
MyActivity. Thus, this code violates recommendation M1.

Therefore, whether the code complies with recommendations P1 and M1

could be checked by the following strategy:

S1 Find a path o t where o belongs to appropriately identified sets of sources
and target t is method onStop().

4.2 Strategy 2

S1 is not enough for detecting all bad programming practices. For instance, a
violation of M2 requires two conditions to hold:

– a worker thread is created, and
– it is not explicitly closed.

Closing a thread in Android consists in interrupting it by invoking interrupt(),
or waiting for it to terminate by calling join().

We could therefore check whether there is a violation of recommendation M2

with the following two-path strategy:

S2 1. Find a path o t from a thread creation (origin o) to method onStop()

(target t), and
2. check there is no path o′  t′ from methods interrupt() or join()

(origin o′) to method onStop() (target t′).

It is not difficult to figure out that the same strategy could be used for P3. In
this case, the source o′ corresponds to method setThreadPriority(). Notice,
however, that calling setThreadPriority() does not ensure the worker thread
priority will be set to a value lower than the one of the UI thread. That is, this
strategy finds violations to P3 only when the priority of worker threads is not
set at all. This is reasonable, because it means the worker thread is assigned the
same priority than the UI thread by default, which is undesireable.

An example of code violating recommendation M2 is illustrated in Figure 3.
The thread created in line 14 is never closed afterwards. Therefore, its memory
is leaked when the activity is shut down. Besides, its priority is never set, so P3

is also violated.
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4.3 Strategy 3

Now, consider recommendation P2. A typical example is downloading an image
from an URL whenever a button is clicked. This long running task should be ex-
ecuted in a worker thread or an instance of AsyncTask, which allows performing
background operations and publish results on the UI thread without having to
explicitly manipulate threads and/or handlers.

This situation is illustrated with callback method updImgView() in line 16.
The guideline requires that method doInBackground() of AsyncTask should be
a caller of openConnection() because the latter starts a network connection.
That is, the long running operation should be executed by an AsynTask object.

If we view the recommendation from the standpoint of taint analysis, we have
that doInBackground() should appear in any path from openConnection() to
onStop().

This idea gives us a new strategy that could be used to detect a violation of
recommendations like P2:

S3 Find a path from a source o to a target t (method onStop), which does not
go through a particular method i.

In our running example, the origin o is openConnection(), the target t is
onStop(), and the intermediate method i is doInBackground(). Hence, recom-
mendation P2 is violated.

5 Tool

We developed the tool CheckDroid, which implements the strategies in Table 1.

one-path two-path

S1 S3 S2

o t o ¬i t o t ∧ ¬(o′  t
′)

P1, M1 P2 P3, M2

Table 1. Strategies and covered recommendations

5.1 Architecture

Figure 5 depicts the schematic architecture of CheckDroid. Overall, CheckDroid
comprises 20 classes and 1500 LOCS. It takes as inputs the application .apk and
an XML file containing the bad practices to be checked.
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.apk .xml

InstrumentationSoot aapt

instrumented .apk sources/sinks

AnalysisFlowDroid

result

Fig. 5. CheckDroid architecture.

5.2 Strategies

Instances of the strategies are provided in an XML file. This allows extending the
tool with further strategies and source/sink pairs. An example of such a strategy
instance is shown in Figure 6. It corresponds to an instance of strategy S2. It is
defined to search for violations to recommendation P3. It says that a path from
source start() (line 5) of class java.Lang.Thread (line 6) to onStop() (target)
should be present (line 2), while a path from setPriorityThread (line 13) to
onStop() should not (line 10). Notice that target method onStop() is implicit.
This is because in our approach, onStop() is always the target method.

5.3 Instrumentation

The instrumentation phase is needed because taint analysis tracks information
flowing through object links. So, the existence of a path in the call graph from
the call to Log.v() in line 12 to method onStop() is not enough to constitute a
tainted path. That is, we need to create an information flow path. For this, we
need to have some data value stored at the source and read at the sink.

CheckDroid uses Soot to instrument the application .apk in order to recreate
information flow paths which could be found by FlowDroid. The instrumentation
occurs at the application main activity class, and at every source.

The Android Asset Packaging Tool (aapt) is used to detect the application
main activity class and to avoid instrumenting sources which are not part of the
application code in order to reduce false positives.

Figure 7 sketches the instrumented MyActivity class. CheckDroid provides a
class called CheckDroidBinder. Its role is to store references to objects which will
be used to reconstruct the data-flow path during the analysis. The onStart()

method is modified so as to create an instance of CheckDroidBinder (line 4).
The static method addBindingObjs() (line 10) is added to have a hook to
the internal CheckDroid method. Method onStop() is instrumented to call
getBindingObjs() (line 8) to simulate a sink.
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1 <bad -practice ><name>P3</name>

2 <path presence="true">

3 <sources >

4 <source >

5 <method >void start ()</method >

6 <class >java.lang.Thread </class >

7 </source >

8 </sources >

9 </path>

10 <path presence="false">

11 <sources >

12 <source >

13 <method >void setPriority(int)</method >

14 <class >java.lang.Thread </class >

15 </source >

16 </sources >

17 </path>

18 </bad -practice >

Fig. 6. Extract of bad practice declaration.

1 private static CheckDroidBinder binder;

2 protected void onStart () {

3 .... /* application code */

4 binder = new CheckDroidBinder();

5 }

6 protected void onStop () {

7 .... /* application code */

8 List<Object[]> l = binder.getBindingObjs(); /* sink */

9 }

10 public static void addBindingObjs(Object [] objs) {

11 binder.addBindingObjs(objs);

12 }

Fig. 7. Example of instrumented sink.
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Figure 8 shows an example of instrumented sources. At each source point, a
call to addBindingObjs() is added with appropriate arguments. For instance,
the call at line 11 makes the activity object to point to the HttpURLConnection
object referenced by variable h and created in updImgView(). This is done by
adding it to the list of binding objects kept by MyActivity binder. The same
approach is followed with the call to Log.v() in updTextView. The added call
to getBindingObjs() in onStop() creates the actual data path which is found
by taint analysis with FlowDroid.

1 public void updTextView(String s)

2 Log.v("MyActivity", "updTextView" + s);

3 MyActivity

4 .addBindingObjs(new Object[]{"MyActivity","updTextView"+s});

5 ...

6 }

7 public void updImgView(String s) {

8 HttpURLConnection h = null;

9 try {

10 h = (new URL(s)). openConnection ();

11 MyActivity.addBindingObjs(new Object[]{new URL(s), h});

12 ...

13 }

Fig. 8. Example of instrumented source.

Figure 9 depicts the call graph of the instrumented code. Gray-colored, dotted
rectangles correspond to methods added through instrumentation. For the sake
of readability, data flows (dashed arrows 99K in Figure 2) are omitted.

The instrumented code is fed into the analysis phase, together with a repre-
sentation of the set of source/sinks to be searched by FlowDroid. The analysis
implements the strategies summarized in Table 1.

The first one (S1) consists in calling FlowDroid once, resulting in a yes/no
answer depending on whether FlowDroid finds or not a path. The second strategy
(S2) requires calling FlowDroid a second time in case a path is found during the
first pass. The third one (S3) requires a post-processing of FlowDroid output
whenever a path is found. This post-processing consists in traversing the paths
generated by FlowDroid to check whether the intermediate conditions are met.

To illustrate the analysis, let us consider the example in Figure 8. The vi-
olation of recommendation P1 is verified with a single run of FlowDroid (S1).
The path is: addBindingObjs() 99KupdTextView() →→onPause() →→onStop()

→getBindingObjs(). Tainted data flows from updTextView() to onStop()

through the MyActivity static object binder.
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The violation of P2 needs analyzing the path produced by FlowDroid dur-
ing the first pass from line 11 in the instrumented method updImgView() to
line 8 in the instrumented class MyActivity. In this case, the path found by
FlowDroid is: addBindingObjs() 99KupdImgView() →→onPause() →→onStop()

→getBindingObjs(). Clearly, a traversal of this path finds no occurrence of
doInBackground() (nor any call to a run method of a worker thread). There-
fore, a violation of P2 is reported.

onCreategetInstance

onStart CheckDroidBinder

onResume

Activity Running updTextView

Log.v

start

setText

Thread

updImgView

openConnection
onPause

onStopgetBindingObjs

onRestart

onDestroy

addBindingObjs

addBindingObjs

Fig. 9. Call Graph of the instrumented application.

Remark CheckDroid relies on static taint analysis which is a kind of may static
analysis. This means that, if no violation is found, then the application conforms
to the guidelines. Otherwise, the application may not. Thus, even if FlowDroid
has proven to be quite accurate, it may result in false positives. Therefore, when-
ever a path is found, a deeper analysis (verification, testing, debugging, etc.) must
be performed to verify whether the path is indeed executable, that is, to deter-
mine whether it is a false positive. For this, it may be useful or even required to
have the source code of the application, although CheckDroid does not need it.
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6 Experimental evaluation

6.1 Undergraduate apps

We first experimented CheckDroid on the apks of 18 applications developed by
undergraduate students as their final project for a mobile computing course at
the Department of Computer Science of University of Buenos Aires. Figure 10
shows the distribution of reported bad practices.

P1 P2 P3 M1 M2

15

10

1

9

Recommendation

V
io
la
ti
o
n
s

Occurrences

Apks

Fig. 10. Distribution of reported bad practices in student applications.

The mean size of the apk was 1MB. In average, the execution time of the
instrumentation phase was 17 secs, yielding an average rate of 61.5KB/sec. The
mean analysis time was 24 secs for one-path strategies, doubling for two-path
ones. Overall, the mean total analysis time for the complete set of bad practices
was 190 secs.

– CheckDroid reported a total of 32 occurrences of bad practices distributed
in 9 of the applications. That is, 50% of them was not conforming with at
least one guideline.

– The most common violated recommendation was P1, with 15 occurrences,
spanning 67% (6/9) of the non-conforming applications.

– The second in importance was P2 with 10 occurrences, spanned over 44%
(4/9) of the applications with bad practices.

– The third in importance was M1, with 9 violations occurring in a single
application, a network intensive one.

– The 9 bad applications violated at least one of these three, with P1 and P2

representing 78% (25/32) of the bad practices and 89% (8/9) of the violating
applications.

– The 67% of those 9 case studies (6/9) had only 1 bad practice (with even-
tually more than one occurrence).
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– A connection-intensive application implementing an Android-based client for
an Enterprise Resource Planning (ERP) system incurred in 3 different bad
practices.

– Two applications were reported having more than 10 deviations with respect
to the guidelines. A social network-centric application had a total of 14
violations, spanning P1 and P2, while a network intensive totaled 11, 9 of
which correspond to M1.

– Taking out these outliers, the average was 2 reports per application.

Furthermore, we investigated whether the reported bad practices were false
positives by inspecting 5 of the 18 applications for which we had the source code.
This subset includes the network-centric application with 11 reported violations.
We verified that all reported deviations with respect to the guidelines were actual
violations. That is, there were no false positives in this subset of applications.

6.2 Google Play apps

After this preliminary experimental evaluation, we run CheckDroid on apks from
Google Play.

To start up with, CheckDroid reported 3 guidelines violated by BA Subte,
an application to query the status of the Subway of Buenos Aires City. This is
a free app which registers between 100K to 500K installs, and a review score of
3.8 (4 of 5 stars). The reported bad practices reported by CheckDroid were the
following:

– An occurrence of M1 (thread leak)
– An occurrence of P3 (thread priority not set)
– An occurrence of P2 (long running task inside UIThread)

Of course, as remarked before, they could actually be false positives because we
do not have the source code to perform a deeper analysis.

Besides BA Subte, we applied CheckDroid to two sets of applications from
Google Play with apk sizes between 300KB and 3MB:

– A consists in 20 applications with more than 50K downloads and a review
score less than or equal to 2, that is, a poor evaluation of 1 or 2 stars;

– B consists in 5 applications with more than 500K downloads and a review
score greater than or equal to 4.7, that is, a very good evaluation of 4 or 5
stars.

The analysis of set A, gave the following results:

– No violations were reported on 10 of the 20 applications.
– Every guideline was violated at least once.
– Two applications were reported to incur respectively in 21 and 266 violations,

with M1 being the most violated one (10 and 242 occurrences, respectively).
– The most violated guideline was M1, with a median of 3.5, but a very large

standard deviation due to the two possible outliers.
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– The overall median for the subset of A having been reported to violate at
least 1 recommendation was 4.5.

The analysis of set B, gave the following results:

– No violations were reported on 1 of the 5 applications.
– Only deviations with respect to P1 and P2 were reported, with almost equal

numbers of occurrences: 13 and 15, respectively.
– One application was found to incur in 16 violations, with 7 of P1 and 9 of

P2.
– The overall median for the subset of B having been reported to violate at

least 1 recommendation was 7.

We draw the following conclusions:

– The rationale behind separating the applications in two sets with low and
high review scores was to try establishing a relationship between violating
guidelines and bad user experiences manifested as low scores. However, we
found high score applications with large numbers of reported violations and
low score ones with no deviations with respect to the guidelines.

– Recommendations regarding thread manipulation, namely P3 andM2, were
the ones with the least reported violations overall.

– By far, the guidelines with the highest numbers of reported violations were
P1, P2 and M1. Besides they were very frequently reported to happen
together. On one hand, it follows that strategies S1 and S3 revealed to be
the most productive ones. On the other, even though we have found no false
positives so far, it may be an indication that these strategies are too loose.
Therefor, further investigation is needed to evaluate the actual occurrence
of the reported deviations, even in the absence of source code.

7 Conclusions

This work investigated how static analysis could be applied to seek unrecom-
mended programming practices in Android applications. The originality of the
proposed approach resides in the modeling of bad coding patterns as information
flows and using taint analysis for checking their existence in application code. To
achieve this in practice, we developed several concrete strategies to be applied
to detect different kinds of misbehaviors with respect to the guidelines.

To validate the approach, we implemented a tool, called CheckDroid, which
proceeds in three steps. First, it appropriately instruments the code with Soot
using as input the apk of the application and the bad practices to be checked
which are provided as an XML file. Second, CheckDroid runs FlowDroid to search
for tainted paths. Third, CheckDroid analyzes the paths found by FlowDroid
according to the strategy.

It is important to remark that relying on FlowDroid, rather on Android Lint,
as done in [12], is esential for detecting violations of guidelines which require
strategy S3, such as P2.
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We successfully applied CheckDroid to a number of Android applications.
First we experimented the tool on a set of applications developed by newbie
programmers. Second, we applied CheckDroid on a set of freely available appli-
cations in the Play store. In both experiments, we found that strategies S1 and
S3 were the most effective ones by reporting the vast majority of violations. In
terms of concrete instances of non-respected guidelines, the most reported ones
were P1, P2, and M1.

In all experiments, CheckDroid exhibited low execution time rates of both in-
strumentation and analysis phases. This observation let us envisage that Check-
Droid could be profitable integrated in IDEs for helping detecting deviations
with respect to Android guidelines early in the development cycle.

Further investigation is required to extend the tool so as (a) to detect a larger
set of bad practices, (b) to fine tune the definition of the strategies to avoid false
positives, (c) to study the applicability of the approach for recommendations
related to user interface, and (d) to perform a broader experimental evaluation.
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