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Abstract. We are interested in data-driven approaches to Natural Lan-
guage Generation, but semantic representations for human text are diffi-
cult and expensive to construct. By considering a methods implementa-
tion as weak semantics for the English terms extracted from the method’s
name we can collect massive datasets, akin to have words and sensor data
aligned at a scale never seen before. We applied our learned model to
name scrambling, a common technique used to protect intellectual prop-
erty and increase the effort necessary to reverse engineer Java binary
code: replacing all the method and class names by a random identifier.
Using 5.6M bytecode-compiled Java methods obtained from the Debian
archive, we trained a Random Forest model to predict the first term in
the method name. As features, we use primarily the opcodes of the byte-
codes (that is, bytecodes without any parameters). Our results indicate
that we can distinguish the 15 most popular terms from the others at
78% recall, helping a programmer performing reverse engineering to re-
duce half of the methods in a program they should further investigate.
We also performed some preliminary experiments using neural machine
translation.

1 Introduction

In this work we identify naming obfuscated methods as a well defined, com-
plex task with practical applications that we believe researchers should consider
among the problems of interest to AI. The task takes as input obfuscated com-
piled code, that is, binary code tampered with the objective of hindering human
understanding, and seeks to imagine names associated with the original program
(in our case, method names).

Reverse Engineering and obfuscation is an arms race between analysts and
developers [1]. From a theoretical perspective [2], the task of people seeking to
protect their code and secrets is an impossible one (at least without resorting
to special hardware). While they cannot stop the attacks from a theoretical
standpoint, they can well hinder understanding of the code by humans peering
into it. For example, [1] says:

Identifier names are often critical to human understanding of a program
but cannot be fully restored with the help of automated code analysis
techniques.
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A popular obfuscation technique is then to scrub any identifier left behind by
the compiler and, if the runtime system requires an identifier, replace it with a
non-sensical name, a practice known as name scrambling [3].

Besides its practical applications, it exercises the construction of small phrases
that describe an object, a subtask of Natural Language Generation (NLG), with
an input that sits in the middle between full semantic representations and full
sensory input. For this proposed task, it is possible to use program analysis tech-
niques to enrich the input with further semantics, helping to shed light to the AI
question of whether we need better semantics or more unsupervised structures
built on top of sensory data.

Real semantic representations are quite involved and difficult to come by and
as such, recent work focuses in using more vague resources which can be profited
using machine learning approaches. Interestingly, the world’s complexity that
results in the need for very fine grained semantics to reason about text makes
also programming computers difficult: computers require a very fine grained level
of detail for the instructions given to them.

In that sense, we see bytecodes-as-semantics not as semantics in the tradi-
tional sense of the word (as a logic involving axioms, formulae and predicates) but
as semantic breadcrumbs that can be used as sensor data and then processed in
a statistical fashion. Such approaches have become more popular in recent years
[4–7] and are showing increasing promise in the semantic acquisition problem in
NLP.

In addition, deobfuscating name scrambling has plenty of available data. In
the work presented here, we used compiled Java code within the Debian archive
(consisting of 5 million compiled methods with their respective names). There are
also many other options are available (the Maven archive, GitHub, etc). Machine
learning approaches to NLG that try to mimick the success of machine transla-
tion usually encounter the problem of finding a large comparable knowledge-text
corpus. Therefore, looking at the bytecodes as a weak semantic representations
that allow for text generation or the reasoning needed for language processing
is also a contribution.

The problem itself might be too difficult to solve. Indeed, humans performing
reverse engineering by hand do not aspire to restore all original names, but just
to gain enough understanding of the code to perform the adaptations or audits
that motivated the reverse engineering in the first place. In this paper, we focus
on identifying the first term in a CamelCased method name,1 which in the Java
naming conventions is equivalent to the verb of the small phrase represented
by the name [8]. Moreover, we found the data to be extremely biased with the
15 most popular terms covering half the data. Our current results show we can
distinguish 15 top level most popular cases vs. the rest with close to 80% recall.
This is useful in practical terms, as the 15 top level cases most likely are of less
interest when doing reverse engineering as they cover simpler method unlikely

1 CamelCasing is a convention in many programming language in which multi-word
names are combined by having the initial letter for each word capitalized then ag-
glutinate by removing spaces.
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to be of interest to the practitioner and we are thus reducing the number of
methods that need to be analyzed by hand by half.

In term of techniques, we trained a Random Forest over features that rep-
resent a method by the total opcode counts and the first 28 opcodes. This con-
strained representation is robust enough in the presence of name scrambling
obfuscation and straightforward enough to be computed from compiled code.
We also experimented with a neural machine translation system with some pre-
liminary success.

We deployed all our code and data available to the community as part of the
Keywords4Bytecodes2 1stclass tool3 and we are also packing our tool as a plugin
for the popular BytecodeViewer tool.4 The rest of this paper is structured as
follows: we discuss our data in the next section, the system and results, related
work, discussion and conclusions.

Table 1. Training data sizes.

Data # classes # methods # instructions

Apache (train-development) 67,217 574,620 11,027,500
Eclipse (train-validation) 93,865 721,153 13,352,704

Apache+Eclipse (train) 161,082 1,295,773 24,380,204

Rest (test) 519,541 4,318,079 89,353,021
Rest sample (obf) 111,562 1,032,290 23,974,818

TOTAL 680,623 5,613,852 113,733,225

2 Data: Debian Project Java Archives

Collection. The corpus collection was greatly helped by the automatic tools
available as part of the Debian project.5 We performed a rsync process to obtain
a functional Debian archive mirror,6 thn proceeded to extract all the binary
packages, and searched for all the Java ARchive (.jar) files. That process yielded
a total of 7,857 jar files occupying 3.3G on disk.

Doing a random split of all the available data into training and testing will
pick up strong coding guidelines from the larger projects that dominate the

2 http://keywords4bytecodes.org
3 https://github.com/Keywords4Bytecodes/1stclass
4 https://github.com/Konloch/bytecode-viewer
5 We use Debian (http://debian.org) in the event we want to make experiments that
involve going back to the source code and have a full build system readily available.
It also give us some idea of “notability” for the software and quality. We used the
unstable repository as of Sun, 03 Jul 2016 15:39:37 UTC, we have kept all the
.deb and .jar files and are making available together with our tool, to facilitate
reproducibility of our results.

6 Following the instructions and scripts at: https://www.debian.org/mirror/ftpmirror.
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training data. That will not speak of the generalization power of the system.
To avoid this type of contamination of our results and false inferences, we use a
development set with all the org.apache classes and a development validation
set of all the org.eclipse classes. For the final test (and for the results we
report) we use all the other classes, a much heterogeneous group without a
strong focus or coding structure. This way we expect our results are as strong as
possible. We could have done a cross validation across all the methods, but we
felt doing that will inflate the results by letting these two projects that have very
large code bases dominate. Even stratified cross validation would not have helped
as each project has strong naming conventions, learning their naming convention
on part of Apache and testing it on part of Apache will not be representative
of the use of the tool with obfuscated code unrelated to any Apache project
codebase. We also choose to training on Apache plus Eclipse because it helps to
have the highest level of quality in terms of naming conventions. The data split
sizes are presented in Table 1.

To extract opcodes, we use the libary org.ASM (we omit label and lo-

cal variable as they are usually scrubbed during obfuscation).

We only keep methods that have a “first term,” that is, a verb to be extracted:
we drop all the words after an underscore or after an upper case and ignore
methods that start with ‘<’ (internal constructor) or contain a ‘$’ (internal
methods).

Obfuscation. In Java bytecode obfuscation, there are three established pro-
cesses [3] (page 29): (1) name scrambling, the focus of this paper; (2) string
encryption, which obfuscates the string constants inside the .class file, a motiva-
tion for using only opcodes (an will not pose a problem to our technique); and (3)
control flow obfuscation, which presents a threat to our approach (see Threats
to Validity section), but it is less common in the Java world. We focused on Pro-
Guard (that does only name scrambling) due to its popularity and availability.
The ProGuard tool is also the default scrambling process in the official Android
release as part of the platform tooling. In our experiments, we checked both
the original and ProGuard-obfuscated versiones produced the same sequence of
opcodes (discussed next).

While conceptually simple, name scrambling requires all the classes that
compose an app to be obfuscated together, with “entry” methods and classes
properly identified (these are methods and classes used to run the program or to
interact with a library). Without modifying the internals of the obfuscator, the
only way to obfuscate a class for our experiments involves running the obfuscator
once for each class under test (and ideally, every method), obfuscating every
other class in the project. As such, any references to other classes and methods
will be obfuscated properly but we will still know the class name and method
name for the obfuscated method. This process is very CPU intensive for large
projects and it is why we only tested on a sample of obfuscated code.
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JVM Internals. As we are using JVM bytecodes rather than source code,
we want to include a brief introduction on the JVM. The JVM is a stack ma-
chine, with most of its operations happening in the JVM stack. A Java compiler
transforms Java source code into sequence of JVM bytecodes, which are then
interpreted or just-in-time compiled by the JVM. There are 204 types of byte-
codes, each prefixed by a unique opcode. This set of 204 opcodes is quite limited
to simplify porting the JVM to different architectures. This vocabulary is much
reduced than source code vocabulary. The opcodes fall into six categories (Ta-
ble 2). We refer the interested reader to the JVM documentation for the full list
[9].

Category Example

Load/store aaload, bastore
Arithmetic/logic iadd, fcmpg
Type conversion i2b, f2d
Object construction and manipulation new, putfield
Operand stack manipulation swap, dup2 x1
Control flow if icmpgt,goto
Method invocation and return invokedynamic, lreturn

Table 2. JVM opcode categories.

One of the main benefits of using bytecodes is their reduced vocabulary.
Alternatively, learning from Java source code directly will involve dealing with
a much larger vocabulary and a tree input (part of the job of the compiler is
to linearize the source code). However, there are a number of bytecodes that
incorporate either the name of classes or methods, or string constants, making
the vocabulary unbounded. For example:

ldc. This opcode pushes a constant onto the operand stack, which can be either
a number or a string.

getfield. This opcode takes two parameters, an instance and a field name (ac-
tually a field index but in our disassembled output it is represented as a full
fledged string) and returns the value of that field.

getstatic. This opcode takes two parameters, a classname and a field name and
returns the value of that field.

invokedynamic. Invokes a dynamic method specified by an index in the con-
stant pool (which gets transformed into an actual string by our disassembler).

by using only the opcodes we eliminate these but we might revisit this decision
(see future work, Section 7).

Call Graph. If the semantics of a Java method are determined by its behavior,
it will be short-sighted to consider only the code associated with the method
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itself: a large part of the behavior of a method is contained in the code associated
with methods called by the original method.

In Program Analysis [10], the term call graph refers to a graph where the
nodes are methods directed edges connect them to indicate that a given method
calls (in some moment during its execution) the other method.

There are a number of program analysis tools available to obtain a call graph.
For example, the fingerprinting techniques (described in the next section) em-
ployed by Høst [11] make very limited use of the call graph information. However,
in our current experiments, we did not make use of full call graph but we ap-
proximate it for a particular behaviour described next.

Wrapper Methods. Early in our experiments, it became clear that a particu-
larity of the Java programming language (lack of optional arguments) generated
a large number of spurious “incomplete” methods that without special process-
ing will pose an ill-defined learning problem: due to the lack of default values for
arguments, it is common to express one method with different parameter lists
which in turn complete the parameter list with default values and call the method
with the same name and the full parameter list. For example, setAlarm(time)
will call setAlarm(time,timeZone) with a default time zone. We call these
methods “wrapper methods”. We believe when considered at the bytecode level,
they should be indistinguishable irrespective of its name and thus assign them
to the unique term wrapper that we also learn as all other terms (get, set,
etc).

To identify wrapper methods, we sorted all methods with the same full name
and keep its associated term for the one with the longest code as measured on
number of instructions. The rest were marked as wrapper. While simple to
implement, this heuristic might be hurting us, as we will further discuss.

3 Related Work

There is ample of work related to ours, either in the name recovery / appraisal
starting from source code or property discovery from binary code. While much of
the work is indeed related and have informed our work, working from obfuscated
bytecodes makes it a different problem than working from clean bytecodes (or
source code).

The work most related to ours is the Java Programmer’s Phrase Book, the
construction of a phrasebook to catalog existing usage of English expressions in
method names [8, 12]. In their work, Høst and Østvold curated by hand a list of
17 predicates over Java bytecodes (e.g., “does the method contain a branch?”,
note that 3 of them are not robust under obfuscation, see Table 3) and compare
the Boolean fingerprint to abstracted versions of the method names themselves.
By doing that they could say, for example, that method namaed add-pronoun-
etc “tend to contain loops, often have parameters, uses local variables, etc.”
(see Figure 1). They use this resource for teaching Java conventions to new
programmers [8, 12], detecting naming bugs [13] and improving conventions [14].
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At the end of their research they obtained almost 400 phrases with associated
probability distribution over predicates. In our work, by picking the first token in
CamelCase construction with no stemming or any further processing, we seek to
learn the verb- part of such constructs without their relying on their predicates
and operating directly from data.

Fig. 1. Programmer’s Phrasebook (excerpt). Adapted from http://phrasebook.nr.no.

A related project in mining properties of large code-bases is the Big Code
project and the JSNice Tool7 [15], which deobfuscates names in obfuscated
JavaScript code. While our project and theirs address related problems, with
the subproblem closest to ours within JSNice being the prediction of name vari-
ables, the differences are in dealing with interpreted source code vs. machine
code. JSNice uses Conditional Random Fields for MAP inference over program
properties. We use Random Forests over lower level features to accomplish sim-
ilar goals. The MAP CRF approach used in JSNice could be applied to recover
obfuscated names of functions in JavaScript, although that is not something it
does at the moment. We believe local variable names belong to a smaller subset
that function names and might be better suited for that approach. In our case
the full names involve a space too big to predict at this time and we are focus-
ing on the first term of the name. Because they are working with source code,
the structure of the code can be recovered directly and provide more complex
features. Their reported ablation experiments [15] indicate such structure would
account for a 16.6% increase in precision. Also of note, their problem starts at
25% as a number of variable names cannot be obfuscated. We obfuscate and
predict every method name, so our baseline is much lower.

7 http://jsnice.org/
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Also working from binary code, Chua et al.[16] work on argument recognition
from binary data. Their system could provide extra features for ours. Another
work on name appraisal from source code using a neuro probabilistic approach
is that of Allamanis et al. [17]. It has informed our new experiments using neural
machine translation.

Our work applies Natural Language Processing to Software Engineering, a
topic that has recently gained renewed interest. Other work on the topic includes
explaining object hierarchies [18], creating documentation from software spec-
ifications [19], coding examples for students [20] (pages 59–73), source code or
source differences comment generation [21–23], ontology construction [24], source
code summarization [25], and project categorization [26], and situated semantic
parsing [27]. Many of these approaches operate over source code. The few sys-
tems that work on bytecodes do so by extracting API calls and cite obfuscation
as a threat to their validity. In general, the relation between code and human
language is receiving renewed attention in both AI and software engineering [28].

From an Artificial Intelligence perspective, real semantic representations are
quite involved and difficult to come by. Recent work focuses in using more vague
resources which can be profited using machine learning approaches [4–7].

4 Random Forests System

Our system uses Random Forests [29] with a feature set (Table 4) composed
of three parts: total opcode counts (what is usually known as a Bag-of-Words,
BoW features), the exact opcodes for the first 29 instructions (29 is the median
length of a method in the Apache codebase) and the length of the method in
opcodes. We use Random Forests because our positional features and our BoW
features are highly correlated. Random Forests are known to be able to handle
such situations very well. Moreover, given the amount of training data, the fact
that learning can be parallelized to several CPU core is a very valuable property.
In addition, Random Forests are consistently among the top classifiers in gen-
eral problems [30]. We use the implementation from the fast-random-forest8

project, an external add-on to Weka. We train 250 trees for each forest.9

Our feature representation for each bytecode sequence is a mixture of posi-
tional and bag of words. The feature vector contains 236 entries, of which the
first 29 are the actual opcodes on the first 29 positions plus the counts for all
opcodes on the whole bytecode sequence. The rationale here is that opcodes are
very general and very information poor. The actual meaning lies in their sequenc-
ing. Because the methods with popular names tend to be short, by keeping the
exact beginning of the bytecode sequence, we allow the machine learning com-
ponent to pick up subsequences of opcodes that form a signature for particular
method names.

8 https://code.google.com/archive/p/fast-random-forest/
9 We found that the more trees, the better the results, 250 were the maximum number
of trees we could train with our available infrastructure.
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Table 3. Predicates, adapted from [11]. (R) Robust refers to our opinion of whether
the predicate is robust under obfuscation: Y(es), N(o), D(epends). (L) Learnable is
our opinion of whether our approach might be capturing that predicate, we distinguish
Y(es), N(o), P(ossible) and M(issing).

Predicate R L

Contains loop. There is a control flow path that causes the same basic block
to be entered more than once.

Y P

Contains branch. There is at least one jump or switch instruction in the
bytecode.

Y Y

Multiple return points. There is more than one return instruction in the
bytecode.

Y Y

Is recursive. The method calls itself recursively. Y M

Same name call. The method calls a different method with the same name. N N

Throws exception. The bytecode contains an ATHROW instruction. Y Y

Writes parameter value to field. A parameter value may be written to a
field.

Y Y

Returns field value. The value of a field may be used as the return value. Y Y

Returns parameter value. A parameter value may be used as the return
value.

Y M

Local assignment. Use of local variables. Y Y

Reads field. The bytecode contains a GETFIELD or GETSTATIC instruc-
tion.

Y Y

Writes field. The bytecode contains a PUTFIELD or PUTSTATIC instruc-
tion.

Y Y

Returns void. The method has no return value. D P

No parameters. The method has no parameters. D P

Is static. The method is static. Y P

Creates objects. The bytecode contains a NEW instruction. Y Y

Run-time type check. The bytecode contains a CHECKCAST or IN-
STANCEOF instruction.

Y Y

Table 4. Features employed, divided into three subsets. The opcodes at position 1-29
are one of 204 opcodes plus a “padding” code for methods less than 29 opcodes in
length.

Pos Feature Type

1 Opcode at position 1 one of 205
· · · · · ·
29 Opcode at position 29 one of 205

30 Total count for opcode 1 int
· · · · · ·
234 Total count for opcode 205 int

235 Method length in bytecodes int

236 Class one of target tokens
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4.1 Results

Which terms to predict is a difficult question. Ideally, we would like to predict
all terms, but many terms are so rare that there is not enough evidence for the
prediction to work. We settled on terms that appear at least 1,000 times in our
training set (Apache codebase). There were about 50 such terms. A 50-way clas-
sification is a complex problem. We approached it by training on Apache and
validating on Eclipse. There, we found most of the keywords to be indistinguish-
able from the background model. Only 14 were

– frequent enough to have training data available,

– have a minimal level of performance on Eclipse (which we set as having an
F-measure greater than 10% so that the next condition holds), and

– common enough to be of practical importance, that is, they account for
roughly 50% of the training instances.

We applied these criteria during training: whether these terms will perform well
when run on the larger, unseen set was unknown to us until the end of our
experiments. From a reverse engineering perspective, the practitioners have no
names, so having some names improves their current state of affairs.

When adding the background class (other, which encompasses all other
possible terms) and wrapper (which identifies wrapper methods, for any term)
that brings the total number of terms to 16. The other class might be also called
“interesting” as for the purpose of reverse engineering, the most popularly named
methods would not attract much attention from a practitioner.

When trained on Apache plus Eclipse and tested on the rest we obtain the
results in Table 5 with a heatmap per Figure 2. These results are statistically
significant over a binary random baseline (second column on the table, note that
this baseline is much higher than doing a 16-way baseline), with an average F1 of
0.49. We also performed a test on a sample that has been run through ProGuard
and validated that our results are the same in the presence of obfuscation, a result
expected given our strict feature set.

From the table, we can see that the other class is at 78% recall, which
we consider our strongest (most useful) result. It should help a practitioner per-
forming reverse engineering to focus their attention on more interesting methods
when, for example, stepping through a program on a debugger. The F1 measures
for the individual terms are not as good but many terms have a precision above
80%, meaning that, when predicted, a practitioner could trust the classifier’s
output. A suitable UI that incorporates the confidence of the predictions can be
particularly useful.

The Apache plus Eclipse model is 185 Mb compressed, 2.45 Gb uncom-
pressed. Training was done in a machine with 8 cores and 32 Gb of RAM.
Training over the Apache set took 50 minutes using 23 Gb of RAM of which 4
minutes were spent on GC. As mentioned, we employed 250 trees per forest.
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Fig. 2. Token results heatmap, this table encodes recall@n with colors closer to red
indicate higher recall. For instance, the first column is recall@1 (recall in Table 5).

Table 5. Results of predicting 14 terms (+other, wrapper) trained over Apache plus
Eclipse and tested on non-Apache, non-Eclipse (4.3M methods from 520k classes).

Token Count (%) Baseline F1 Prec. Rec

other 2,449,084 (56.7) 0.2835 0.74 0.70 0.78
wrapper 544,621 (12.6) 0.0630 0.37 0.50 0.29
add 66,778 (1.5) 0.0075 0.22 0.48 0.14
clone 7,968 (0.1) 0.0005 0.35 0.72 0.23
compare 9,517 (0.2) 0.0010 0.39 0.70 0.27
contains 16,811 (0.3) 0.0015 0.08 0.50 0.04
equals 17,749 (0.4) 0.0020 0.72 0.83 0.64
get 706,435 (16.3) 0.0815 0.54 0.47 0.64
hash 16,479 (0.3) 0.0015 0.49 0.81 0.35
is 117,638 (2.7) 0.0135 0.39 0.44 0.36
jj 12,431 (0.2) 0.0010 0.97 0.97 0.98
next 15,086 (0.3) 0.0015 0.18 0.56 0.10
set 249,094 (5.7) 0.0285 0.57 0.76 0.45
to 63,070 (1.4) 0.0070 0.35 0.61 0.24
value 14,247 (0.3) 0.0015 0.67 0.90 0.53
values 11,071 (0.2) 0.0010 0.80 0.94 0.70
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5 Experiments using OpenNMT

To compare the Random Forest approach to using Recurrent Neural Networks,
we are working with OpenNMT [32] starting from the sequence of opcodes for the
compiled Java code to the sequence of characters in the method name. This is a
multi-step approach shown in Figure 3. We represent the sequence of opcodes by
their integer numbers together with the letters “Op” at the beginning (to avoid
any special treatment to numbers as part of the tokenization chain). As this is
a sequence to sequence system, for each source sequence of opcodes, we need
to specify a target output sequence. For this target output sequence, we found
the best balance so far to start with one of our 16 terms, then all characters in
turn (using their ascii value, starting with “Ch”, again to avoid any tokenization
interference). Therefore “getTitle” becomes “get Ch103 Ch101 Ch116 Ch84...”.

The preliminary OpenNMT experiments did not yet achieve the same per-
formance of their Random Forest counterparts. On the development validation
set (which is much better than the final test set), it achieves an average F1
of 39% (compare to 59% on the final test set by Random Forests), with the
other class at 77% recall (so we would expect a much lower performance in
the final test set). What makes these experiments intriguing is the fact that it
predicts other terms beyond the first term, with thought-provoking results such
as mapping getConfiguredRemote to getProperty and getAbbreviatedObjectId to
getName (potentially discriminating between get methods that retrieve a field
versus get methods that compute something) or even canRunInBackground to
isSupported. However, their efficacy in this general case is very low (21% accuracy
for all terms, not just the top 16).

The experimentation with OpenNMT has shown the weakness in our wrapper
identification methods: not adding the original name of the wrappers trains a
system that returns wrapper 80% of the times. We plan to revamp our wrapper
identification system using a call graph for each processed class in future work.

In a way, dropping the parameters from the bytecodes is a very harsh idea.
However, it strenghtens our position regarding stability under obfuscation. We
would like to relax this constraint in future work.

6 Discussion

Our current experiments can be considered as Reverse Engineering using pattern
matching techniques or as an ML approach to static analysis. According to [1],
to be considered static analysis it has to be doing some form of resolution of the
target of jumps. All information is completely lost in the process of extraction
of the bytecodes and as such the “large scale pattern matching” concept takes
the lead. We find the tension between these two views quite thought-provoking.

The identification of wrapper methods is trivial when the names are in the
clear but it becomes challenging under obfuscation. We believe our current proof-
of-concept system biggest utility lies on its capability to highlight such methods
plus other trivial ones such as get- and set-, potentially freeing time from the
reverse engineering practitioner for more interesting methods.
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Source Code

String getTitle() {
if(this.title == null)
return ””;

else

return this.title;
}

↓

Compiled

getTitle:
(opcode 25) aload 0
(opcode 180) getfield title
(opcode 199) ifnonnull 10
(opcode 18) ldc ””
(opcode 176) areturn
(opcode 25) aload 0
(opcode 180) getfield title
(opcode 176) areturn

↓

Obfuscated

a:
(opcode 25) aload 0
(opcode 180) getfield b
(opcode 199) ifnonnull 10
(opcode 18) ldc ””
(opcode 176) areturn
(opcode 25) aload 0
(opcode 180) getfield b
(opcode 176) areturn

↓

OpenNMT
Op25 Op180 Op199
Op18 Op176 Op25
Op180 Op176

→
get Ch103 Ch101
Ch116 Ch84 Ch105
Ch116 Ch108 Ch101

Fig. 3. Preliminary OpenNMT system.

Duboue, Deobfuscating Name Scrambling as a Natural Language Generation Task, EJS 18 (1) 58-76 (2019) 70



Table 6. OpenNMT preliminary results, training on Apache, testing on Eclipse.

Token F1 Prec Rec

OTHER 40.93 63.37 30.23

WRAPPER 19.59 10.96 91.92

add 17.17 18.49 16.02

clone 18.32 23.07 15.18

compare 41.08 51.12 34.34

contains 4.76 4.16 5.55

equals 51.02 35.71 89.28

get 21.27 60.66 12.89

hash 39.14 34.76 44.78

is 12.48 56.53 7.01

jj 39.99 41.17 38.88

next 14.1 13.41 14.86

set 4.58 53.43 2.39

to 44.89 43.3 46.6

value 74.48 96.42 60.67

values 94.33 98.68 90.36

Multiple questions arise when looking at work as presented here. The first
one has to do with whether the type of semantic breadcrumbs obtained from
the bytecodes has anything to do with semantics as understood by the field of
NL semantics. This issue is clearly a philosophical question beyond this paper
itself, but we believe the recent influx in “soft” treatement of semantics should
encourage looking at the problem in a less traditional fashion [4–7].

A separate topic is the use of sequence of opcodes as proxy for real semantic
representations (in the linguistic/epistemological sense) for the verbs identified.
This view was one of the reasons to embark in this project and one of the basis
of using only sequences of opcodes. Interestingly, semantically related words
under software engineering semantics has been studied as part of SWordNet
project [22]. We believe exploring the relation between confusing tokens in our
results and SWordNet semantically related words (“rPairs”) opens up exciting
possibilities.

An interesting question is whether this constitutes a full-fledged NLG task.
On its current form it is arguable. However, if we start looking into more complex
phrases encoded as method names (e.g., canRunInBackground), we can start
seeing how rich the problem is. The related task in NLG is lexical choice and
dealing with subtle distinctions, such getName vs. getProperty, are key to the
task. An appealing characteristic of this problem from the NLG perspective, it is
that reverse engineering practitioners are willing to tolerate noisy text, similar to
the types of text that can be obtained from using machine learning approaches
to NLG.
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We performed a qualitative analysis and comparison between the Java Pro-
grammer’s Phrase Book’s predicates [8] and our approach (Table 3). We found
that 14 out of 17 predicates should be usable after obfuscation and that our
approach should capture also 14 (different 14) of these predicates and can be
expanded to capture 16 of them, potentially improving on their work in the
presence of obfuscation. A side to side comparison of the approaches will be
addressed in future work. Note that one of their predicates (“Same name call”)
is destroyed by name scrambling but recovered by our wrapper classifier.

6.1 Threats To Validity

The main threat to validity of our tool on its current form are bytecode obfusca-
tors that rearrange the bytecodes and add extraneous information using guarded
constructions, an example of which is shown in Figure 4. Also, our technique is
not useful when multiple methods are merged together, another obfuscation
technique. However, neither of them are popular on the Java obfuscation world
[3].

if(1==1){
/* actual code */

}else{
/* decoy */

}

Fig. 4. Control flow obfuscation using guarded constructions.

Our data collection poses also threats to validity, as it might unveil structure
that it is only related to the Apache or Eclipse projects (where it is trained).
However, we do not test nor report on those projects due to that threat. A
related threat is the fact that all our Java archives (jars) have been compiled
using the same compiler and platform, on the Debian project build farms. Other
compilers might produce different opcode sequences.

Finally, in the case of malware, there is a stable trend in recent years for the
malware to be protected from reverse engineering by having the bytecode written
on top of a custom virtual machine. Our work will not help in that situation.

Last, the use of code itself as such, either in source format or compiled form is
referred in Program Analysis as a type of static analysis. However, the meaning
and the cognitive aprehension of the behavior of a program is clearly done at
the level of how the program executes, a technique called dynamic analysis.
Statistical techniques using sampling of execution points have already shown
plenty of promise in Software Engineering [31]. Investigating their impact in our
work is left for future work.
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7 Conclusions

In this work, we identified the task of reversing name scrambling as a potential
area for AI research, particularly after having been deemed “unsolvable”10 by
traditional reverse engineering analysis [1]. We identified it as different from the
aforementioned existing work on verification and description, as here the name
is missing and the compiled code has been obfuscated. We showed some promise
that the problem might be amenable to a machine learning solution based on
opcodes only, as shown in our experiments that differentiate with a recall close
to 80% the terms evenly into 15 common terms and situations versus a general
case.

A more controversial topic particularly related to this approach is the use
of compiled code rather than source code. Mixing source code and NLG has
already proven fruitful for automatic comment generation [24] and other tasks
[23]. We did not discount such approaches, but we found the low level behavior
of compiled bytecodes appealing to statistical processing and machine learning.
Moreover, many of the applications of practical interest to us revolve around
helping a user build an understanding for a program for which source code is
not available.

Our results using a very constrained feature set showed a clear signal from
the data. We find these results very inviting to try different approaches and
techniques and we hope other AI researchers will be interested in tackling this
challenge. As such we are making our code and data freely available.

Our contributions include bringing the deobfuscation of named scrambled
methods to the attention of the AI community, a first implementation using a
Random Forest and a suitable data set. All the code and data is available for
further experimentation by the AI community.

I would like to conclude with a quote attributed to Phil Karlton:11

There are only two hard things in Computer Science: cache invalidation
and naming things.

Future Work. For future work, we want to complete the RNN experiments us-
ing OpenNMT. We believe special adaptations to OpenNMT should allow it to
outperform the current Random Forest approach. Particularly, we want to inco-
porate some parameters from the bytecodes using sub-word encodings method-
ology from Senrrich et al. [33]. Thus, we would like to replicate in Java bytecodes
the instruction embeddings that have already shown value in the machine code
world [16]. We are also interested in extending this work to the Android platform
using the dex2jar tool and to explore dynamic analysis alternatives. Statisti-
cal techniques using sampling of execution points have already shown plenty of
promise in Software Engineering [31]. This is complicated as it requires an envi-
ronment where each individual method can be executed, but this has been made

10 Our approach falls in the category of pattern matching for human understanding,
which the authors deem unfeasible (page 12).

11 https://martinfowler.com/bliki/TwoHardThings.html
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easier with Test Driven Development and the raise of testing frameworks such
as JUnit. Under this setting, we can predict the tokens based on the sequence of
executed opcodes. The linguistic intuition is that methods are named by what
they do rather than for what they are.

Other areas for further exploration include adding the bytecodes for the called
methods and using the technique for method name expansion for source code
search. Finally, we are also interested in extending this work to the Ethereum
Virtual Machine [34]. Similar to the JVM, the EVM has a limited number of
instructions. Better understanding of blockchain distributed programs (“smart
contracts”) has elicited plenty of interest in recent years due to the multi-
millionare impact of some software defects [35].
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