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Abstract. Cancer researchers are facing the opportunity to analyze and
learn from big quantities of omic profiles of tumor samples. Different omic
data is now available in several databases and the bioinformatics data
analysis and interpretation are current bottlenecks. In this study somatic
mutations and gene expression data from Hepatocellular carcinoma tu-
mor samples are used to discriminate by Kernel Learning between tumor
subtypes and early and late stages. This classification will allow medical
doctors to establish an appropriate treatment according to the tumor
stage. By building kernel machines we could discriminate both classes
with an acceptable classification accuracy. Feature selection have been
implemented to select the key genes which differential expression im-
proves the separability between the samples of early and late stages.

Keywords: Feature Selection · Kernel Learning · Cancer Genomics

1 Introduction

The intersection of Bioinformatics and Machine Learning is an important field
in Biomedicine since the speed to generate biological data has been increasing
and the cost of obtaining it decreases exponentially [1]. This evolution opens a
big opportunity for Cancer biomedical developments. Nowadays it is possible to
obtain multi-omics data [2] and different layers of biological information from
a tumor sample of a patient and learn from cancer data. Multi-omic data is
composed by Gene Expression, Somatic Mutations [3], Copy Number Variation,
Metabolomics [4] or Proteomics data among others. This work focus on learning
models from Hepatocellular carcinoma (HCC) multi-omic data. HCC is the most
common liver cancer type. It is linked to viral hepatitis infection and exposure
to toxins such as alcohol, both are subtypes of HCC tumors. In this study two
omics are used to classify different subtypes and stages of HCC. First Simple
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Somatic Mutations data or Genomics are used to discriminate between tumor
subtypes [5] of HCC samples. Then in a second step the Gene expression data
or Transcriptomics is used to discriminate between early and late tumor stage
[6] of the virus associated tumor subtype.

1.1 Related work

Similar studies have used multi-omic data to characterize along different stages
of Hepatocellular carcinoma associated to alcohol subtype using network anal-
ysis [7]. Other studies have done Early versus Late stage classification using
microarray gene expression data [8]. In this study we propose to work with gene
expression and simple somatic mutations data from Next Generation Sequenc-
ing (NGS) technologies in a multi-omics data analysis approach. In this section
multi-omic data sources and machine learning approaches for tumor classifica-
tion are introduced.

1.2 Analysis description

Machine Learning and Pattern Recognition techniques allow researchers to ex-
plore big volumes of biological data and find hidden patterns. Since Biological
data includes tens of thousands of variables like genomic variants, selecting fea-
tures to reducing dimensionality is a key task. Feature selection enables to im-
prove model training and gives insight about the key genomic variants related
to a tumor. In this work we perform a two step data analysis pipeline to select
features and classfy tumor subtypes and stages.
The first step consists of the accurate discrimination of the HCC Virus associ-
ated tumor sub-type using a binary classification method, to discriminate it from
the HCC Alcohol associated tumor subtype. Both tumor subtypes [9] belong to
the same primary site Liver but the treatment varies due to the cause of the
tumor. The second step of the data analysis pipeline consists in using another
omic data layer: gene expression. Here the analysis of HCC Virus associated is
with patients labeled by tumor stages 1, 2, 3 and 4. To simplify the problem,
stages 1 and 2 are categorized as Early Stage and stages 3 and 4 are categorized
as Late Stages.
In both steps of our analysis the HCC is characterized by Protein Coding Genes
features (either mutation and expression). The Human Genome has approxi-
mately 20.000 genes. On the other hand the quantity of samples obtained from
donors are less than 600. The sample to feature ratio is close to 0,03. This situ-
ation is known as The Curse of Dimensionality [10]. For this reason we choose
to determine the subsets of genes that maximizes linear classification accuracy
based on Lasso. The goal first is to obtain a reduced gene panel to help the
detection of the Virus associated HCC tumor subtypes using Gene Somatic Mu-
tations. Then another reduced gene panel is obtained to help the discrimination
of the early stage in Virus Associated tumors using gene expression data.
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In addition, at each step of the data analysis pipeline a similarity matrix be-
tween tumor samples is computed by a Kernel Gram Matrix. Then Kernel Target
Alignment (KTA) [11] score is calculated for each Kernel, in order to understand
how well the kernel separate the two classes. Our aim is to understand how the
KTA evolves before and after selecting gene features and how it can be useful
in the classification process. The KTA increases with the contrast between the
two classes, thus a larger KTA means a higher inter-class distance and it enables
to learn a better classifier. The kernel function type used is Gaussian and it is
tuned by considering the improvement of the KTA. The tuned kernel is used to
train a support vector classifier between the classes [12].
This work poses two objectives. The first one aims to generate gene signature
for each omic by selecting the genes that improves the classification performance
between HCC tumor subtypes and tumor stages. The second objective is to un-
derstand the impact of tuning the kernel function used for support vector clas-
sification considering the kernel target alignment, which means the inter-class
separability.

2 Data analysis pipeline

This study consists in a data analysis pipeline with two main steps: first clas-
sification of HCC subtypes and second a HCC Virus associated tumor stages
classification. Both steps are detailed in the next subsections.

2.1 Hepatocellular Carcinoma sub-type classification

The first step consists in the binary classification between virus and alcohol asso-
ciated tumor sub-types from the correspondent LIRI-JP and LICA-FR studies
(see Datasets section). In this first step of the pipeline the number of Simple
Somatic Mutations per gene are used as features. Previous studies have discrim-
inated between different tumor types [15] using somatic mutations although a
greater challenge remains to classify between tumor sub-types within the same
primary site like breast cancer sub-type classification [16]. In this pipeline step,
the dataset is characterized by a matrix of 510 samples and 19990 somatic mu-
tated genes as features. Kernel Target Alignment (KTA) is computed for a tuned
Gaussian kernel. Then Support Vector Classification with the tuned kernel is
trained with the two tumor sub-types classes considering the full feature set. Af-
ter that the Least Absolute Shrinkage and Selection Operator (LASSO) method
[17] using the L1 norm is used for feature selection. A considerably reduced gene
set is obtained and then again KTA is computed and SVC is performed aiming
a better classification result.

2.2 Tumor stage classification of Hepatocellular Carcinoma Virus

subtype

The second step consists in the early and late stage classification of the HCC
Virus subtype samples. The data is available from the LIRI-JP study within
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the ICGC data portal. In this step Normalized Gene Expression per gene is
used as features. The dataset is characterized by a matrix of 232 samples and
22913 protein expressed genes and other transcript locations. Early stage is
obtained by grouping stage I and II. Late stage is obtained by grouping stage
III and IV. Early stage has a total of 142 samples and late stage a total of
90 samples. A first approach consists in a gaussian kernel tuned to improve the
Kernel Target Alignment. Then a Support Vector classifier using the tuned kernel
is implemented for binary classification using the full feature subset. Since the
dimension of the problem is too high for the number of samples Lasso method is
used to select a reduced set of expressed genes. A second approach consists in a
Gaussian kernel built with the new gene subset selected by Lasso. Using the new
kernel KTA and SVC is computed and compared with the results obtained on
the original dataset. This step has a a critical impact on clinical diagnosis since
the early detection of a tumor can lead to better and less invasive treatments.
The challenge in this step is to deal with more similar classes since both belong
to the same tumor subtype.

3 Datasets

In this study, we used a total of two datasets from the International Genome
Cancer Consortium (ICGC) [13] [14] from the Liver primary site tumor types.
For the first step of the data analysis pipeline we used the Simple Somatic
Mutation data from the studies LICA-FR (Liver tumor samples associated to
alcohol) and LIRI-JP (Liver tumor samples associated to Virus).
For the second step of the data analysis pipeline is used the Gene Expression
data from the study LIRI-JP corresponding to HCC associated to Virus subtype.
LIRI-JP data is provided to ICGC by the RIKEN National Cancer Center and
the Human Genome Centre, Institute of Medical Science, University of Tokyo.
LICA-FR data is provided to ICGC by the Centre National de Gnotypage (CNG)
and the Institut National de la Sant et de la Recherche Mdicale (INSERM).
Table 1 and 2 details the number of samples per class in each dataset. The
ICGC data portal presents in the LIRI-JP project some extra samples within
the SSM dataset than the Gene Expression one. All the available samples in
both data sources are used at each step of the data analysis pipeline.

Table 1: HCC subtype simple somatic mutation (SSM) dataset

Tumor subtype Number of sample ICGC Study

Virus associated 258 LIRI-JP

Alcohol associated 252 LICA-FR
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Table 2: HCC virus associated tumor stage dataset from LIRI-JP study using gene
expression data

Tumor stage Number of sample Class

Stage I 36 Early stage

Stage II 106 Early stage

Stage III 71 Late stage

Stage IV 19 Late stage

3.1 Data preprocessing

First step: tumor subtype classification In the first step of the data analy-
sis pipeline, preprocessing consists in removing 5% of the outliers by considering
the 0.95 quantile as an upper bound of the total amount of mutations per pa-
tient. The dataset is reduced from 510 to 484 patients, leaving out the outliers
with excessive number of mutations by the assumption these patients are not
representative of the true distribution of HCC. Then each feature is normalized
between 0 and 1.
Only protein coding genes have been considering for this step. Data is splitted
in training and test set where train corresponds to 80% of the data.
Each sample is characterized by a vector where each position corresponds to one
mutated gene within the full dataset. Every mutated gene of a sample is filled
with the number of mutations within that gene. It is important to remark that
for this reason the data matrix is highly sparse.

Second step: Early and Late stage classification Data is splitted in train-
ing and test set where train corresponds to 70% of the total amount of samples.
Preprocessing consisted in an auto-scaling of the features to obtain a 0 mean
and unit standard deviation.

4 Methods

The corresponding section details the statistical learning techniques and meth-
ods used along the data analysis pipeline. First Kernel Learning concepts are
introduced, then the Kernel Target Alignment score, followed by Support Vector
Classification and finally feature selection by Lasso.

4.1 Kernel Learning

Before jumping to classification and feature selection we will introduce kernel
learning and its role in this study. Let X be a compact space. The function k :
X×X 7→ R is symmetric and describes the mapping φ from X to a Reproducing
Kernel Hilbert Space (RKHS) H through an inner product.

K (xi, xj) = 〈φ(xi), φ(xj)〉H (1)
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Here φ is a function that maps from X to a feature space H

φ : X 7→ φ (X) ∈ H (2)

Consider the vector of samples xi belonging to a set S

S = {x1, , · · · , xm} (3)

The Gram Matrix of a Kernel [19] is built from S and is defined as an m×m
matrix G with respective entries Gi,j = 〈xi, xj〉. The application of a Repro-
ducing Hilbert Space Kernel function to compute the inner product between
training vectors with a feature mapping φ allow to compute the following gram
matrix:

Gi,j = 〈φ (xi) , φ (xj)〉 = k (xi, xj) (4)

where each position of the Gram matrix if Gi,j = 0 corresponds to orthogonal
training vectors i and j. In this work we use Gram matrices to compute similarity
between samples. We refer to high similarity when a pair of training vectors
correspond to a value closer to 1 and a lower similarity when the gram matrix
coordinates of two pair of vectors is closer to 0.

4.2 Kernel Target Alignment

Given a set S of labeled samples

S = {(x1, y1) , · · · , (xm, ym)} (5)

and each xi ⊆ Rn is labeled with yi where Y = {+1,−1} , a kernel K can be
built from equation (1).

We start defining the kernel target alignment (KTA) [20] as a measure of
similarity between a given kernel K and an ideal kernel Ky built considering the
label vector Y . Here Ky gram matrix gives a value Gij = 1 where xi and xj

belong to the same class. On the other hand, when the two sample vectors xk

and xt belong to different classes Gkt = 0. The kernel target alignment of two
kernels K and Ky with respect a sample S is the quantity:

A (S,K, yy′) =
〈K, yy′〉F

√

〈K,K〉F 〈yy′, yy′〉F
=

y′Ky

S ‖K‖F
(6)

The alignment A (K,Ky) is the normalized Frobenius inner product between
the Gram matrix and the target Matrix Ky. In this work we aim to maximize
the KTA and thus tune the kernel for discriminant analysis [21]. Increasing the
Frobenius inner product corresponds to increase the inter-cluster distance in the
feature space [22]. The greater the KTA of a given kernel, the better the similarity
obtained between samples of the same class and at the same time low similarity
between samples from different classes. In this work KTA is computed with gram
matrices built with the full feature space and with the reduced feature subset
after feature selection. KTA is analyzed to understand if the feature selection
methods improves KTA and thus improves the similarity of samples of the same
class.
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4.3 Support Vector Classification

During the two steps of the data analysis pipeline a binary classification model
is built before and after feature selection. The classification task used is Support
Vector Classification [23], which builds a nonlinear rule by constructing a linear
boundary in a transformed and high dimensional version of the feature space.
Some characteristics of support vector machines binary classifiers used in this
paper are described briefly. In binary classification our goal is to estimate a
function f : R → {+1,−1} from training data samples xi with label Yi. Support
Vector Classification aims to estimate a hyperplane

x : f(x) = xTβ + β0 = 0 (7)

corresponding to the decision function:

D (x) = sign
[

xTβ + β0

]

(8)

The decision function D obtained corresponds to the hyperplane which maxi-
mizes the separating margin M between the two classes where M = 1/ ‖β‖. Now
supose that both classes overlap and are not linearly separable. A set of slack
variables ξ = (ξ1, ..., ξm) are defined to allow some miss classifications when a
sample fall on the wrong side of the margin.

Then a convex optimization problem is expressed in equation 9 where the
cost C parameter penalizes every miss classification.

min
1

2
‖β‖

2
+ C

m
∑

i=1

ξi (9)

s.t.ξi ≥ 0; yi
(

xTβ + β0

)

≥ 1− ξi (10)

After a quadratic programming solution applying Lagrange Multipliers the
solution of β is expressed as

β̂ =

m
∑

1

α̂iyixi (11)

with non zero coefficient α̂i only for the samples lying on the edge of the
margin or for the miss classified ones. These samples are known as support
vectors.

4.4 Support Vector Classification and Kernels

Since the support vector classifier finds a linear boundary in the input feature
space, a new feature space can be obtained by a transformation φ and thus make
possible the resolution in complex problems where classes are highly overlapped
and are not linearly separable.

The core idea is to apply a transformation/mapping to the input feature
vector X and then use linear models in the new space. The transformation
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is denoted as φ where φm corresponds to the mth transformation of X and
m = 1...M . Then the decision function can be written as

f(x) = φ (x)
T
β + β0 =

M
∑

i=1

αiyi 〈φ (x) , φ (x′)〉+ β0 (12)

where φ(x) is used only for inner products. For this reason it is not necessary
to determine the transformation φ(x) but it is required to know the positive and
semi-definite kernel function K (xi, xj) = 〈φ(xi), φ(xj)〉 responsible to compute
the inner products in the transformed space.

In this study we use the Gaussian Kernel function Kg.

Kg(xi, xj) = exp

(

‖xi − xj‖
2

2σ2

)

;σ > 0 (13)

and the hyperparameter σ has been tuned to improve the KTA of Kg.

4.5 Feature Selection

In this work feature selection is performed by Least Absolute Shrinkage and
Selection Operator (LASSO) [23]. Lasso technique aims to improve the general-
ization capacity and performance of a classifier by selecting a subset of features
using a penalization term βj from a full set of N features.

(β0, β) = argmin











N
∑

i=1



yi − β0 −
∑

j

βjxij





2










(14)

s.t.
∑

j

|βj | ≤ t (15)

The parameter t of the equation (15) defines the solution domain for β.
Reducing t reduces the solution domain and force more coefficients βi to reduce
to 0. In this work the t parameter is determined by a grid search of different
values of t evaluated in a 5-fold cross validation on training set where the t
parameter with the minimal corresponding error is selected. In the next section
Lasso method is used to select a subset genes in both steps of the data pipeline.

4.6 Computational tools

All the experiments have been executed in Python 3.6. Feature selection and
support vector classification engine have been used from the Scikit-Learn Python
library (https://scikit-learn.org/) [29].
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5 Results and Discussion

The methods and techniques detailed in the previous section have been imple-
mented on the datasets according to the data analysis pipeline presented in this
work. Feature selection and classification results are discussed and analyzed by
comparing classification performance and KTA scores obtained for each step of
the data analysis pipeline.

5.1 HCC Tumor sub-type classification using Simple Somatic

Mutations

As described in section 2.2 the first step of the data analysis pipeline use Sim-
ple Somatic Mutation as features for the two HCC tumor sub-types: Virus and
Alcohol associated. The objective of this step is to discriminate accurately both
classes and obtain a reduced feature subset that improves the classification per-
formance. Kernel Gram Matrix is built using gaussian kernel before and after
the feature selection process and KTA is computed for both matrices (Figure 2).

Before feature selection. KTA = 0.19 After feature selection. KTA = 0.35

Fig. 2: Gram matrix obtained after tuning of sigma parameter using simple somatic
mutations as features. Samples are sorted by class along the matrix axis.

Lasso feature selection step identified in a subset of 70 genes with a t =
0.00084 after 5 folds cross validation on training data. The selected genes are
associated to non-zero βi parameters of Lasso. Then for different values of sigma
a gaussian kernel is built in both scenarios. The KTA score (Table 3) and Support
vector classification performance (table 4) are compared using the same kernel
before and after feature selection. Given different values of sigma, Table 3 shows
that the reduced feature subset produces a higher KTA than the original feature
set.
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Table 3: KTA score along different values of sigma before and after feature selection
using SSM data.

Features Score σ = 0.1 σ = 1 σ = 5 σ = 10

19990 KTA 0.001 0.075 0.051 0.050

70 KTA 0.001 0.031 0.3499 0.207

It is clear in Table 4 that the classifier trained in the reduced feature subset
has a better performance with almost every value of sigma than the one trained
in the original feature set.

Table 4: Classification performance along different values of sigma before and after
feature selection using SSM data.

Features Score σ = 0.1 σ = 1 σ = 5 σ = 10

19990 AUC 0.929 0.942 0.925 0.510

70 AUC 0.923 0.963 0.969 0.932

Finally the search of the sigma parameter is refined independently for both
scenarios with the objective to obtain a sigma value that improves as much
as possible the KTA with the corresponding feature set. Figure 4 shows the
Gaussian Kernel tuning process along different values of sigma and the KTA
score. Table 3 shows the classification performance using the Kernel with the
highest KTA obtained from Figure 4 before and after feature selection. The
results show again an improvement of the KTA using the reduced feature subset.

Table 5: Classification performance before and after feature selection using SSM data.

Num. of features KTA AUC σ

19990 0.19 0.942 2.06

70 0.35 0.969 5.19

Despite the classification performance with the original feature set is accept-
able, for biomedical and pattern recognition purposes it is convenient to handle
less than 100 genes than a set of almost 20,000. The 70 selected genes make a
biological gene signature to discriminate tumor subtypes and improves the clas-
sification performance. This signature can be further analyzed in the literature
and with biological wet lab experiments. Sigma parameter of Gaussian kernel is
tuned by considering the value which improves KTA score (Figure 4).
The maximum KTA score achieved by the Gaussian kernel after feature selection
is 0.35 against 0.19 in the original full feature set. This let us observe that high
dimensional feature spaces product of somatic mutations in genetic data with
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close to 20,000 features does not help to increase the separability between the
clusters of each class. In addition, the majority of mutated genes add noise to the
classification problem. There is a correlation between the sample to feature ratio
and the KTA score obtained. Before feature selection the sample to feature ratio
is 0.025. After the feature selection process the sample to feature ratio obtained
is 7.28. Figure 2 shows how samples of the same class in the symetric Gram
matrix (sorted by class) are more similar using the reduced feature subset than
the original one, where two clusters corresponding to both classes are clearly
visible.

KTA before feature selection. KTA after feature selection.

Fig. 4: KTA by different values of sigma. Maximum KTA score is highlighted with the
dashed line.

5.2 HCC Tumor stage classification using Gene Expression data

In this section results of the early and late stage classification for the HCC tumor
subtype are shown. The importance of the results relies on the early detection of
the tumor and on the selected gene expression panel that improves classification
performance. These gene expression panel will help biomedicine scientists to
explore the related pathways that impact on the tumor.

Before feature selection. KTA = 0.12. After feature selection. KTA = 0.18.

Fig. 6: Gram matrix obtained after tuning of sigma before and after feature selection
using gene expression data.
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During the feature selection process the Lasso algorithm selected 9 deferen-
tially expressed genes and transcript locations. Lasso is tuned by a 5 folds cross
validation on training set and the penalization parameter result in t = 0.252.
Using the same benchmark process as the previous section for different values of
sigma, the KTA (Table 6) and classification performance (Table 7) are analyzed
before and after feature selection.

Table 6: KTA score along different values of sigma before and after feature selection
using Gene Expression data.

Features Score σ = 0.1 σ = 1 σ = 5 σ = 10

22913 KTA 0.078 0.078 0.078 0.078

9 KTA 0.070 0.169 0.078 0.078

The highest KTA and classification performance along the different sigma
values is obtained with the reduced feature subset (KTA = 0.169).

Table 7: Classification performance along different values of sigma before and after
feature selection using Gene Expression data.

Features Score σ = 0.1 σ = 1 σ = 5 σ = 10

22913 AUC 0.5 0.5 0.5 0.5

9 AUC 0.824 0.812 0.5 0.5

Once again, following the same analysis as the previous section, the sigma
parameter is tuned at each scenario independently with the objective to obtain a
sigma value that improves the KTA with the corresponding feature set. Table 8
shows the results of KTA and classification performance before and after feature
selection. In this case the difference between full and reduced feature subset is
very significant regarding classification performance. AUC improved by 13%.

Table 8: Classification performance before and after feature selection using SSM data.

Features KTA AUC σ

22913 0.12 0.682 0.014

9 0.18 0.832 0.71

Gaussian Kernel has been tuned by the sigma parameter with the highest
KTA score obtained as seen in Figure 8. Despite the improvement, the KTA is
not high enough to distinguish both cluster classes in the gram matrix (Figure 6).
Nevertheless the classification performance is acceptable and much better than
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the original scenario. It is visible in the Gram Matrix after feature selection
that one of the classes at the lower right side of the matrix (early stage) is well
defined but the other one at the upper left (late stage) is more spread. This can
be explored by the fact that at late stage cancer cells deferentially express from
one to another.

KTA before feature selection. KTA = 0.12 KTA after feature selection. KTA = 0.18

Fig. 8: KTA by different values of sigma. Maximum KTA score is detailed with a dashed
line.

Despite this observation, support vector classifier could classify well according
to the complexity of the data when the two classes belong to the same tumor
subtype. Figure 10 details the area under the curve ROC for test set using
Gene Expression data for the classification between early and late stage of HCC.
We benchmark our result with Roessler et Al. [8] work where Tumor Relapse
detection in Early Stage is achieved with also an AUC-ROC score of 0.83 even
though both results came from different datasets. This comparison indicates that
the results obtained are acceptable.

Figure 10 also describes how the full dataset samples distribute considering
the hyperplane decision function learned, where one of the selected features the
gene ’CDK14’ is used as Y axis for visualization purposes only. The mean and
standard deviation in the early stage samples (triangles and positive) of the
value for the hyperplane decision boundary is 0.75 and 0.51. On the other hand
for the late stage samples mean is -0.25 and standard deviation 0.73. It is visible
that early stage (triangles) samples tend to be far away of the hyperplane than
the late stage samples (circles) which present more dispersion and are closer to
the hyperplane.

Table 9 shows 5 of the 9 deferentially expressed genes between early and
late stages that were identified by other HCC virus associated studies in the
literature. The gene names (Gene Symbol) are EXOC4 [26], IER3IP1 [25],CDK14
[24],ENO1 [27] and PPP2R1A [28]. A Mann-Whitney U test has been applied
to the expression between classes for each gene and the corresponding p-value is
reported. Despite this statistical evidence, additional biomedical validation has
to be done on these genes.
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Area under the ROC curve = 0.832. Test samples and the decision function.

Fig. 10: Area under the ROC curve and distribution of samples along the hyperplane
decision function for test data.

Table 9: Deferentially expressed genes: list of selected genes and analysis of significant
differences between early and late stages.

Chromosome Gene symbol p-value

7 EXOC4 6.57e-07

18 IER3IP1 6.30e-06

7 CDK14 1.73e-05

1 ENO1 1.61e-05

19 PPP2R1A 4.01e-05

6 Conclusion and future work

We have presented an data analysis pipeline to classify Virus associated against
Alcohol associated Hepatocellular carcinoma tumor sub-types using Simple So-
matic Mutations per gene in tumor samples of patients. Then during the second
step of the data analysis pipeline gene expression data is used to characterize
early and late stages of the Virus associated tumor sub-type. In both steps of the
data analysis pipeline, feature selection by Lasso and Classification with Sup-
port Vector Machines is performed. Kernel target alignment is measured with
the full and reduced feature subset and KTA evolution is observed during Gaus-
sian Kernel tuning process. This work has two main contributions. The first
one is a bioinformatics and biomedical approach, where two gene signatures are
identified: one for SSM and the other for Gene expression. These signatures have
been obtained as biomarkers to accurately classify tumor sub-types and early
stages of HCC Virus subtype. The second contribution is the clear evidence of
the impact of kernel tuning applied in genomics and transcriptomics data of
cancer by considering KTA the as objective function. Finally, the tumor clas-
sification and detection problem is approached from a multi-omics perspective,
considering two layer of biological information. Future work should include a
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multi-kernel learning approach to combine different multi-omics layers like ge-
nomics, transcriptomics, proteomics and metabolomics for each patient. Also
the development of new feature selection methods by kernel learning [30] is an
opportunity to detect complex patterns in biomedical data.
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