
Electronic Journal of SADIO
http://www.dc.uba.ar/sadio/ejs

vol. 2, no. 1, pp. 30-47 (1999)

Mediators Metadata Management Services : An
Implementation Using GOA++ System

Thaís Saldunbides Brügger1 Paulo de Figueiredo Pires1 Marta Mattoso 1

1Computer Science Department
COPPE/UFRJ - Federal University of Rio de Janeiro
P.O. Box 68511, Rio de Janeiro, RJ, Brasil, 21945-970
Fax: +55 21 2906626
e-mail: thais, pires, marta @cos.ufrj.br

Abstract
The main contribution of this work is the development of a Metadata
Manager to interconnect heterogeneous and autonomous information
sources in a flexible, expandable and transparent way. The
interoperability at the semantic level is reached using an integration
layer, structured in a hierarchical way, based on the concept of
Mediators. Services of a Mediator Metadata Manager (MMM) are
specified and implemented using functions based on the Outlines of
GOA++. The MMM services e are available in the form of a GOA++
API and they can be accessed remotely via CORBA or through local API
calls.

http://www.dc.uba.ar/sadio/ejs
cos.ufrj.br

Brugger et al. ,Mediators Metadata Management Services, 2(1) 30-47(1999) 31

1 Introduction
During the last years, a great research effort has been directed to the integration of
Heterogeneous and Distributed Database Systems (HDDS) (BUKHRES, 1996). HDDS
provide transparent and simultaneous access to independent databases using one single
data manipulation and definition language. The implementation of a HDDS requires a
more complex technology than the centralized systems. To solve the conflicts generated
by the different models and schema, the HDDS must provide additional functionalities to
the ones found in current centralized systems.
To address these issues the heterogeneous architecture HIMPAR - Heterogeneous
Interoperable Mediators and Parallel Architecture (PIRES, 1997) has been
implemented. HIMPAR is based on the concepts of HDDS and adopts the technologies
of client/server, object orientation and open systems as an infrastructure for the
integration of several different data repositories. The semantic aspects of the
interoperability is addressed by HIMPAR through an integration layer hierarchically
structured based on the concept of Mediators (WIEDERHOLD, 1992) and Wrappers. At
the communication level the interoperability is achieved through the CORBA (OMG,
1995, 1998) standard. The data model used by HIMPAR for the data integration is an
extension of the ODMG-93 (CATTEL, 1997) model. This architecture is still under
development, however a first prototype has been developed, providing the integration of
three object oriented database systems, the O2 (O2, 1996), the GOA++ (MAURO, 1997)
and the PARGOA system (MEYER, 1997). This prototype has been built using a
CORBA compliant implementation from Visigenic Software, Inc. (VISIGENIC, 1996)
called VisiBroker C++, and its current version is running on Sun workstations with
Solaris 2.x. operational system.
Despite the many research projects in HDDS, the HIMPAR architecture is innovative
because it uses Mediators with a strongly adherence to the object technology standards.
The adoption of Mediators, with a canonical data model based on the ODMG-93
standard, to achieve interoperability at the semantic level is not an innovation, since other
projects, such as the DISCO (TOMASIC, 1995) and the Garlic (CAREY et al, 1995),
apply the same idea. However, the use of a Distributed Object Management (DOM)
platform compatible with the CORBA standard to provide interoperability at the
communication level has not yet been fully explored by the other projects based on the
concept of Mediators. In addition, these works do not present specific services for the
Mediator’s metadata management. This metadata management influences directly the
flexibility and extensibility of a Mediator based architecture.
This work presents a Mediator Metadata Manager (MMM) that provides the necessary
services for the definition of the data types stored at the repository of a mediator. This
definition of mediators offers type construction through aggregation, generalization and
specification. Besides, the MMM handles ad-hoc queries and manipulation of the defined
types. The MMM implementation uses services of the GOA++ object server, particularly
schema manager and query processing. MMM services are available through an API on
top of GOA++ and can be issued remotely through CORBA or by local API calls. MMM
was designed for the HIMPAR architecture, however its services may be used by other
HDDSs based on mediators. The MMM enhanced the previous HIMPAR (PIRES, 1996)
architecture adding flexibility on the mediators management.
The remaining of this work is organized as follows. Section 2 presents the HIMPAR
architecture. The specification of the mediators manage is found in Section 3 as well as a

Brugger et al.,Mediators Metadata Management Services, 2(1) 30-47(1999) 32

case study. Implementation issues of MMM are discussed in Section 4. Finally, Section 5
concludes this work.

2 HIMPAR architecture
HIMPAR (PIRES, 1996; 1997a, 1998) - Heterogeneous Interoperable Mediators and
Parallelism Architecture - is a project, based on the HDDS notion that is being
developed at PESC/COPPE1. HIMPAR enables users to access distributed databases
transparently and with no concern about local operational details, such as query
languages or operational procedures. End users see a set of homogeneous objects that
can be accessed through a standard interface. This architecture is based on components
named Mediators. According to Wiederhold (1992), a Mediator is a software
component, which explores the knowledge represented in a set or subset of data to
generate information for applications residing in an upper layer. Each Mediator
encapsulates the representation of multiple data sources and provides the functionality of
uniform access to data. Thus, this component solves conflicts that commonly arise in an
environment like this, such as those concerning knowledge representation (different
schemas).

1 Programa de Engenharia de Sistemas e Computagao (PESC) do Instituto Alberto Luiz Coimbra de
Pós-Graduagao e Pesquisa em Engenharia (COPPE).

The user accesses system data through queries, written in a global language, and it is the
Mediator that submits them to the local systems. The Mediator transforms the queries
into sub-queries and sends them to the adequate local data repositories.
The sub-queries generated by the Mediators must be translated from the global language
into the query language of each data repository. The Wrapper components are
responsible for this functionality. These components map the sub-queries written in the
global language into the local query language and return the reformatted responses to the
appropriate Mediator. This component solves problems related to differences in the
query expressiveness of each repository.
In the HIMPAR architecture, the interoperability of Mediators and Wrappers is
accomplished through the CORBA standard. The access to local data repositories is
achieved through an ORB, using a subset of commands from the OQL (Object Query
Language). When a client application activates an OQL global query to access multiple
bases, this query is decomposed into local sub-queries by the Mediator that sends them to
the ORB. The ORB transfers the sub-queries to the corresponding Wrappers, which act
as object servers. At the server node, the local sub-query is executed by the local routine
and the response is returned through the ORB. The returned responses receive further
treatment at the client, if necessary. The definition of Wrappers is based on a generic
database interface. Once this interface is defined, other interfaces are specialized and
implemented according to the particular functionality of each component system.
Multiple implementations of the same interface are provided for component systems that
support the same functionality.
Each Mediator is implemented by two CORBA objects: The Mediator Query Manager
(MQM) and the Mediator Metadata Manager (MMM). The Wrapper layer is
implemented by other two CORBA objects: the Wrapper and the Container. There is
another object, named HIMPAR Service Manager (HSM), responsible for management
services and system maintenance. All the components are connected through a local

Brugger et al. Mediators Metadata Management Services, 2(1) 30-47(1999) 33

network where the communication agent is the ORB. Figure 1 shows the architecture
components in detail. The arrows are directed from the requesting object to the provider.

Our experience with the project and implementation of the HIMPAR prototype has
shown that the CORBA standard provides a very useful methodology to be applied in the
design and implementation of distributed systems based on the object technology. This
becomes quite clear if we consider the implementation of an object-oriented HDDS
without the resources provided by CORBA implementations. Without the use of an ORB,
the implementation tools would be the client-server architecture with a communication
protocol, such as, for instance, the TCP/IP. To build the required interoperability layer it
would be firstly necessary to implement the functionality that are equivalent to those
provided by ORBs. Since this task involves a lot of effort to be spent in programming, its
cost is too high to justify its use in the implementation of a specific HDDS. Note that
such a system would face interoperability problems on account of the lack of standards to
relate the HDDS and the other information systems that one might need to integrate.
Also, a system based on proprietary solutions increases interoperability problems
because of the lack of standards between the HDDS and the candidate systems to be
integrated.

2.1 Related work
We can find in the literature a large variety of projects concerning HDDSs. The proposed
solutions can be classified according to their autonomy degree and the type of integration
among the components of the system, which range from strongly coupled to weakly
coupled systems (RAM, 1991; SHET, 1990). Strongly coupled systems have the
advantage of the high level of synchronization among the components of the system,
which leads to an efficient global processing. However, the creation and maintenance of

Brugger et al.,Mediators Metadata Management Services, 2(1) 30-47(1999) 34

a unified global integration schema becomes increasingly hard to manage as the number
of component systems increase. On the other hand, in weakly coupled systems there is no
integration schema. Since no global structure exists, the problems associated with the
creation, maintenance and storage of the global schema are eliminated. However, global
users must know the local representation of the data that they intend to access, as well as
its location. In this Section, we present a description of some projects concerning the
several different research fields on HDDSs. At the end of this Section, we point out the
differences and similarities between these works and our own.
HDDSs with Global Schema. Projects Pegasus (DU, 1996), UniSQL/M (KIM et al,
1993), MERMAID (TEMPLETON, 1987), and IRO-DB (GARDARIN, 1996) are
examples of systems adopting the global schema solution. These projects have research
lines that study the resolution of conflicts among different schemas and data models.
Although the existence of a unified global schema provides complete transparency to
data access, the global system scaling is an unsolved problem.
Federate Databases. In these systems, there is no unified global schema; each local
component has both an import and an export schemas (HEIMBIGNER, 1985; PU, 1987).
The import schema is a description of the information shared between the local
component and the global system. The import schema is a description of the origin and
representation of the data from the remote nodes that can be globally accessed. The
integration of the schemas is static. The alteration of local schemas and the addition of
new information sources require the import schemas to be changed accordingly. Thus,
the scaling and maintenance of such systems is hard to accomplish when one requires the
integration of a large number of information sources.
Multibase Query Languages. In contrast to the idea of a unified system capable of
resolving all the conflicts involving entities of the local schema, systems based on
multibase query languages have no integration schema. In this model, the global system
supports all the global transactions through the use of query language tools which
provide the integration of information at the local DBMSs. MRDSM (LITWIN, 1987),
OMNIBASE (RUSINKIEWICZ, 1989) and CALIDA (JACOB SON et al, 1988) are
projects that accomplish database interaction using multibase query languages. This
proposal faces no problems related to the creation and maintenance of a global schema.
However, this approach does not provide a transparent data access to accomplish query
formulation, users must have information about the distribution and the semantics of
data.
Distributed Object Management (DOM). Another way to model heterogeneous
distributed systems is to represent the resources of the system as a collection of
interacting objects (PITOURA, 1995; OZU, 1994; MANOLA et al, 1992). Each
component system defines a service interface and provides the implementation of such
services. The OMA (OMG, 1995) architecture and the ODMG (CATTEL, 1997) model
are important research works devoted to this approach. MIND - METU Interoperable
DBMS - - (DOGAC et al., 1995; DOGAC, 1996) and Jupiter (MURPHY, 1995) are
HDDSs designed on a DOM platform. In the MIND system, the integration of local
sources is done through the classical approach of global schema, while Jupiter uses the
multibase language approach.
Mediators. Another proposal of a generic architecture for the integration of information
sources involves the systems based on Mediators (Intelligent Information Integration (I3)
Mediation) (WIEDERHOLD, 1992; WIEDERHOLD, 1995). Several projects based on
this model have been developed, such as the projects TSIMMIS

Brugger et al. ,Mediators Metadata Management Services, 2(1) 30-47(1999) 35

(PAPAKONSTANTINOU, 1995), Garlic (CAREY et al., 1995), DISCO (TOMASIC,
1995) and DIOM (LIU, 1996). These projects intend to integrate structured and non-
structured (with no data schema) data sources. They also deal with issues related to the
diversity in querying power of the different data sources and propose several techniques
to handle the reformulation of queries so as to resolve this mismatch.
The HIMPAR system is based on the architecture of Mediators. In this kind of
architecture, we create specialized Mediators that apply to a specific application domain.
Differently from the strongly coupled systems, in HIMPAR there is no unified
integration schema to integrate all the information sources. Thus, this architecture does
not present the problems concerning the creation and maintenance of the global schema.
On the other hand, data access is transparent in this approach, differently from the
weakly coupled systems, such as the multibase languages, for instance. Each Mediator
represents a customized view that is intended to meet the needs of a specific group of
users. This domain fragmentation enables a high level of autonomy and isolation of the
architectural components. Thus, Mediators can be constructed and maintained
independently. A Mediator that represents complex objects can be constructed out of
simpler Mediators. Architectures based on Mediators are strongly scalable and comprise
the integration of an increasing number of information sources. They are also capable of
meeting the needs of different groups of users and reflect the natural organization usually
observed in integrated systems. In many cases, there is no need that every data from
every information source in the HDDS represent one only view. However, if an
application requires such an integration level, the adequate Mediator is equivalent to a
global schema, but only in this particular case.
The HIMPAR architecture has the same advantages as the other systems based on
Mediators, additionally its approach is strongly based on standards. The data model used
is based on the ODMG standard, while other projects, such as the TSIMMIS and the
DIOM use specific models. The interoperability of architectural components is achieved
through the CORBA standard. The communication between two Mediators and between
a Mediator and a Wrapper uses a standard query language, the OQL (Object Query
Language). The DISCO project also uses the ODMG data model, yet the communication
among Mediators and Wrappers is accomplished through the use of logical operators
instead of a standard query language defined by the ODMG specification (OQL). The
use of these standards is intended to ease the integration of new systems. Database
systems, which are compatible with the ODMG data model, are automatically integrated
without the inclusion of specific Wrappers. It is important to note that the new generation
Object Relational Database Management Systems (ORDBMS) also support OQL
(through SQL3), so they can be also automatically integrated in the same way ODMG
compatibles do. The use of the CORBA standard at the interoperability layer favors
implementation of the system, since both the Wrapper modules and the Mediators can be
implemented in any programming language, according to the preferences of each user
group. In summary, the HIMPAR architecture is the combination of some features of the
Mediators technology and the new standards for the object technology.
3 Mediator Metadata Management
Each Mediator component of the heterogeneous architecture must have a repository that
stores the required information to the integration of the data involved in the application
domain relative to this Mediator. These informations are called metadata of the
Mediators. More precisely, these informations consist of data structures that store the
Mediator’s “global” schema, the export schemas of the repository sources (local

Brugger et al.,Mediators Metadata Management Services, 2(1) 30-47(1999) 36

repositories or other integrated Mediators) and the mapping among the Mediator’s global
schema and the data schemas of the repositories that are integrated by the Mediator.
The main objective of these metadata is to allow the clients of a Mediator to issue its
queries based on the “global” data model of the Mediator. These queries are decomposed
automatically in subqueries that will be sent to the corresponding repositories. Partial
query results received by the Mediator, will be packed and sent to the clients in a
transparent way. Also, the incorporation of new repositories of data, to an already
existent Mediator, should not demand changes to the query model of the Mediator
clients. Therefore, we propose a specification of special interfaces of metadata and a
group of services for these metadata management.

3.1 Mediators Metadata Specification
The data model used by the HIMPAR architecture is based on the ODMG-2.0 standard
(CATTEL, 1997). This model consists of an object data model, an object definition
language (ODL), a query language (OQL) and programming language interfaces
(bindings). In this data model, an interface defines a signature associated with a type (or
class) to allow the access to a certain object. An extent, associated with an interface,
indicates the system to automatically maintain a collection of objects of the interface.
Thus, a variable extent contains the collection of all the objects of the associated
interface. Extents are the entry points to access the stored data.
TOMASIC (1995) proposes the extention of the interface and extent concepts of an
interface to represent Mediators. The HIMPAR architecture adopts this idea of extending
the concepts of the interface and extent of an interface. The extents of a Mediator
interface type are composed by a group of other extents. Each extent of this group points
to a collection of objects from a particular information source, associated to the interface
type of the Mediator. Thus, the HIMPAR architecture defines a special metadata
interface named ComponentExtent and its respective extent named as
componentExtents.
ComponentExtent is a standard interface that associates multiple extensions to a type
interface defined in the Mediator. Each ComponentExtent is associated to a type
interface that represents resident objects in a local information source; this interface
contains methods responsible for the mapping of the information between the data types
of the Mediator and the data types of the local sources. The interface ComponentExtent
is defined as follows:

interface ComponentExtent
(extent componentExtents
key name)
{ attribute String name;

attribute Type interface;
attribute String localTypeName;
attribute Map mapList (MAX _NUM_ATRIB);
attribute String origin;

// operations
Id idGlobalAttrib(string globalAttribName);
String globalAttribName (Id idGlobalAttrib);
Map returnLocalAttrib(in Id idGlobalAttrib);

}__
The name attribute stores the name of the extent that contains the data of the origin
repository identified in the attribute origin. The interface attribute contains a reference

Brugger et al.,Mediators Metadata Management Services, 2(1) 30-47(1999) 37

to the object interface of the Mediator that integrates the type of the origin repository
specified in the localTypeName attribute. The mapList attribute holds an indexed list
of references to objects of the type specified by the Map interface which maps the
attributes of the “global” interface of the Mediator into the attributes of the origin
repository. The Mediator uses the returnLocalAttrib mapping function on the global
queries to build the derived local queries.______________________________________

interface Map
{

Id idLocalAttrib;
String nameLocalAttrib;
String sigMethodDomainMap;
String sigMethodMapKey;

}

In the Map interface the idLocalAttrib attribute stores an index that identifies the
attribute inside of its own local interface. The sigMethodDomainMap attribute contains
the signature of the method (stored in the repository of the metadata of the Mediator) that
converts the value of the attribute of the domain of the Mediator into the domain of the
origin repository, if necessary. The sigMethodMapKey attribute is only used when the
attribute influences the indexation of the involved extent. In this case, a conversion from
the value of the key in the domain of the Mediator into the domain of the origin
repository takes place.

Figure 2 - Mediator Interface Mapping.

Brugger et al. Mediators Metadata Management Services, 2(1) 30-47(1999) 38

The extents of the types of the Mediator are maintained through the instanciation or
exclusion of objects of the ComponentExtent type. The mapList attribute and the
returnLocalAttrib operation of the ComponentExtent interface aim at the conversion of
attributes among the types defined in the Mediator and the types defined in the repository
sources. The specification of the Map metadata is an extension of the MMM of
HIMPAR presented in (PIRES, 1996), which was restricted to the automatic conversion
of attributes names. Using the information contained in these metadata, one can query all
the extensions associated to a type interface of the Mediator, as illustrated in Figure 2.
For example, consider two repositories of data that contain information on employees of
a company. The repository R1 contains the type Employee where its extension is named
EMP and the repository R2 contains the type Emp where its extension is named emps,
according to the IDL definitions (export schema) as follows:

interface Employee
{

attribute Integer registration;
attribute Integer officeHours;
attribute String name;

}

interface Emp
{

attribute Integer insc;
attribute Integer hours;
attribute String name;

}
For integration of these information a type must be defined in the Mediator which
corresponds to the data types of each local repository. Thus, using ODL, the interface
type Employee is defined as follows:___

Interface Employee
{

attribute Integer registration;
attribute Integer officeHours;
attribute String name;

}___
Objects of the ComponentExtent type, representing the objects of the local repositories
must be created. The HIMPAR architecture provides a specific syntax for creation of
new objects of the ComponentExtent type:____________________________________
create ComponentExtent EMP of Employee

localType = Employee origin = WA repository = R1
create ComponentExtent emps of Employee

localType = Emp origin = WB repository = R2

Here WA and WB are object Wrapper identifiers which access the repositories R1 and
R2, respectively. These expressions create two objects of the ComponentExtent type
inserting them, automatically, to the componentExtents extend. The names EMP and
emps of each ComponentExtent are determined by the collection names, which
contains the objects (data) of each local repository. Thus, each ComponentExtent
represents a collection of data in a local repository. As can be seen in this example, the
extents associated to a type of the Mediator can be inserted through the insertion of
objects of the ComponentExtent type.
The use of this metadata provides the recovery of all the extents associated to a type of
the Mediator, starting with the declaration of an extension in the definition of the
interface. Thus, the following declaration of the Employee interface assumes implicitly
the definition of a corresponding query to the employees extent:___________________
Interface Employee
(extent employees)
{

Brugger et al.,Mediators Metadata Management Services, 2(1) 30-47(1999) 39

attribute Integer registration;
attribute Integer officeHours;
attribute String name;

}

define employees as
flatten (select x from x in componentExtents

where x.interface = Employee);

This query definition expression accesses the componentExtents extent that is stored in
the repository of the Mediator and dynamically select all of the extents that are
associated with the Employee type. Thus, the following query dynamically accesses all
the extents defined for the Employee type._____________________________________
select x.name from x in employee

where x.registration > 190865;

A query involving the Employee type issued by a client program to this Mediator, with
the previous ODL definitions, will have access to the repositories R1 and R2 generating
the desired results. Notice that the extents associated to the types of the Mediators are
always associated to the views, while the extents associated to the types of the local
repositories are stored as objects of the ComponentExtent type. This model allow the
management of the insertions and exclusions of data repositories in a simple way,
facilitating the integration of a great number of information into the system, without
alterations inside the schema of the Mediator.
The interfaces are classified in two categories: base interfaces and composed interfaces.
The semantics of the construction of interfaces, as specified by ODMG 2.0 standard, is
extended with operations for the creation of inter-repository views, through the
composition of interfaces. These operations are aggregation, generalization,
specialization, and import/ suppression of attributes. These view definitions are stored in
the metadata repository of the Mediator under the form of complex objects (LIU, 1996).
A base interface refers to the interface in which all the types involved in the definition
are originating from only one data source. With the objective of providing connections
and abstract relationships among data from different repositories, each entity type,
defined in the repositories, of data that it is visible for the Mediator, should be declared
in terms of an base interface.
The composed interfaces are built through successive applications of the available
composition operators in HIMPAR: specialization, generalization, aggregation, and
importation/ suppression of attributes. These operators will be described further on. A
composed interface can be seen as a strongly typed contract among interfaces to provide
a small collection of data and operations semantically related. Each interface defines an
expected behavior and a group of responsibilities of a group of data and operations. The
scope of a composed interface is the number of data repositories on which the definition
of the interface is based.
Next, we describe the operators for the creation of composed interfaces:
Aggregation - this operator composes a new interface starting from a number of existent
interfaces so that the new generated interface constitutes a joined view of the component
interfaces. Objects of the newly created interface have direct access to the objects of the
component interfaces that are manipulated in a transparent way. Therefore, the
operations defined in the component interfaces can be invoked through the aggregated

Brugger et al. Mediators Metadata Management Services, 2(1) 30-47(1999) 40

interface. One of the advantages of the use of the aggregation operation is to allow
objects that are located in different repositories to be connected in agreement with the
necessity of the consumers of the information, controlled by the Mediator.
Generalization - this operator provides the merging of several semantically similar
interfaces (although different) in a more generalized interface. The intention of the
generalization is to define a new interface starting from the extraction of the common
properties and operations of some existent base or composed interfaces. This operation
allows the manipulation of objects, which reside in different data repositories, through
the generalized interface.
Specialization - this operator is used for the construction of a new interface in terms of
some pre-existent interface, through the addition of new attributes, relationships and/or
operations. This operator defines a new interface through the specialization of an existent
base interface, followed by the inclusion of the new properties.
Import/Suppression of Attributes - the import operator is used to import selected data
portions of a certain information source instead of importing everything that is available.
This operator is used with the others operators during the definition of the desired
composed interface, allowing a great flexibility in view creation.

3.2 Case Study
This section presents a case study to exemplify the definition of the data types of a
Mediator and the definition of views on these types. The following example describes the
application: a university needs to control the publications produced by its teachers and
masters degree students. Assuming that, the available important sources of information
include three repositories, their description is as follows: R1 - a library with information
about books, published by the university teachers, and stored in a relational DBMS
(Oracle). R2 - a documentation center, with information about papers and technical
reports, and stored in an object database (O2). R3 - another documentation center, with
information about published theses, and stored in another object database (O2).
The export schemas are defined through OMG IDL as described following (an IDL
module for each data repository):___
module R1
{

interface Book;
interface Author;
interface Publisher;

interface Book {
attribute string bookName;
attribute string code;
attribute long pubYear;
attribute sequence<Author> authors;
attribute Publisher publisher;

};

interface Author{
attribute string name;
attribute string espec;
attribute sequence <Book> books;

};

interface Publisher {

Brugger et al.,Mediators Metadata Management Services, 2(1) 30-47(1999) 41

attribute string name;
attribute string place;
attribute sequence<Book> books;

};

}

module R2
{ interface TecPub;

interface Paper;
interface TechnicalReport;

interface TecPub{
attribute string title;
attribute long pubDate;
attribute sequence<string> authorsNames;

};
interface Paper: TecPub {

attribute string congress;
attribute long pages;

};
interface TechnicalReport: TecPub {

attribute string code;
};

};

module R3
{

interface Thesis;
interface Student;
interface Advisor;

interface Thesis {
attribute string title;
attribute string grade;
attribute long date;
attribute Student student;

};

interface Student {
attribute string name;
attribute string regist;
attribute string time;
attribute sequence < Thesis > thesis;
attribute sequence < Advisor > advisor;

};

interface Advisor {
attribute string name;
attribute sequence< Student > students;

Brugger et al.,Mediators Metadata Management Services, 2(1) 30-47(1999) 42

attribute string dep;
J__
After the identification of the possible equivalencies among types, which are resident in
different data repositories, the types, corresponding to the types desired in the local data
repositories, are defined in the Mediator. In the case the same type appears in more than
one repository, it will be mapped for one single Mediator type. The composition
operators are used to help the integration and the construction of the user's query._______

interface Publication
(extend publications){

attribute string title;
attribute long publicationDate;

};

interface Book: Publication
(extend books){

attribute string code;
relationship Set<Author> authorsList inverse Author::booksList;
relationship Set< Publisher > publisher inverse Publisher:: publicationList;

};

interface Thesis: Publication
(extend theses){

attribute string grade;
relationship Student student inverse Student::thesesList;

}___
The Publication interface is a generalization of the Book interface and Thesis interface
and implicitly defines the following OQL query for the publications extent:

define publications as
flatten(select x from x in componentExtents

where x.interface = Publication and
x.interface = Book and
x.interface = Thesis);

The next section presents the MMM implementation using some features of the GOA++
system.

4 MMM - The Mediator Metadata Manager and The GOA++

The Mediator Metadata Manager (MMM) stores all the information required for the
integration of data involved in the application domain of the Mediator. This object is
responsible for the creation, maintenance and management of the information contained
in the Mediator metadata repositories. The MMM knows the definition of all the
interfaces that composes the Mediator schema and uses the special interface
ComponentExtent to integrate the information from local repositories. Next, we
describe the MMM available services:
The operation export is invoked by the MQM (Mediator Query Manager) object to
recover the state of an object of the type ComponentExtent. The MQM object uses the
mapping contained in the metadata ComponentExtent to make the attribute conversion
and the automatic decomposition of queries for the target repositories. These objects
have as an entry parameter (extentName), the name of a target extent of a specific

Brugger et al.,Mediators Metadata Management Services, 2(1) 30-47(1999) 43

global query and as out parameter (componentExtentList) a list that contains the
component extents associated to the target extent of the query.
The Clients of HIMPAR to query the Mediator integration schema, and the MQM
objects to syntactically analyze the OQL global queries submitted by the Clients of
HIMPAR, invokes the operation querySchema. The operation querySchema has as
entry parameter (query) an OQL query involving the data schema of the mediator and as
out parameter (result) the objects associated to the result of the query. It is important to
note that, the possibility to have the metadata stored as complex objects of an object
database, that is understood by a standard query language like OQL, allows the
construction of mediators in a flexible and dynamic way.
The operation createBaseInterface is invoked by the Clients of HIMPAR to create an
interface in the metadata repository. This operation has as entry parameter an interface
declaration in ODL. It doesn't have out parameter. Its effect is the creation of an interface
object and the insertion of this object in the collection of the Mediator schema.
The Clients of HIMPAR to create, in the metadata repository of the mediator, a view
composed by interfaces that can reside in distinct data repositories, invokes the operation
createCompositInterface. This operation has as entry parameters a composition
operator and a list of interface names or a key word used to recover a group of interfaces
through OQL. Its effect is the creation of an object that has a view definition and the
insertion of this object in the collection of the mediator schema. The view object
constitutes an OQL definition of a query involving the interfaces that composes the view.
This query will be executed on the target extents of the involved local repositories.
The operations agregateInterfaces, generalizeInterfaces and specializeInterfaces
correspond to the operations of creation of the composed interfaces whose composition
operators are respectively aggregation, generalization and specialization.
The operation hideAttributes is used during the creation of a composed interface to omit
some attributes of the component interfaces. The operation hideInterfaces hides certain
interfaces of an already existent schema, of which one wants to use the definition of a
subset of its interfaces. The operation importInterfaces imports certain interfaces of an
already existent schema, of which one want to use the definition of a subset of its
interfaces. The operation createComponentExtent create an object
ComponentExtent that must be filled with the values of the mapping between the type
interface of the mediator and the type interface of the local repositories.
The following code describes the IDL specification of the MMM object:

interface GMM {
void export(in string extentName, out TComponentExtentList

componentExtentList)
raises(schemaException);

void querySchema(in string query, out ResultType result)
raises(schemaException);

void createBaseInterface (in string ODL_Definition)
raises(schemaException);

void createCompositInterface (in string d_ODL_Est)
raises(schemaException);

void createComponentExtent(TExtComp newExtent)
raises(schemaException);

void agregateInterfaces(TLstInterface lstInterface)
raises(schemaException);

Brugger et al.,Mediators Metadata Management Services, 2(1) 30-47(1999) 44

void generalizeInterfaces(TLstInterface lstInterface)
raises(schemaException);

void especializeInterfaces(TLstInterface lstInterface)
raises(schemaException);

void hideAttribute(TAttribName attributeName,
TypeInterface interface)

raises(schemaException);
void hideInterfaces(in TLstInterface lstInterface)

raises(schemaException);
void importInterfaces(in TLstInterface lstInterface)

raises(schemaException);}
The implementation of the metadata management services demands some
facilities from an OODBS, such as, the ability to manage schemas and to
execute queries on these schemas. Therefore, the work included the use of
the GOA++ Schema Manager (SM). The SM services are used to create
base classes for metadata creation. These base classes are
GOA_Interface and GOA_View (GOA_Generalization,
GOA_Specialization, and GOA_Aggregation). The mediator metadata
repository contains objects that are instances of these meta classes and
they are inserted in the collection of the mediator schema.

Figure 3 - The GMM to GOA++ interface
The API for the metadata management is built on the top of the Schema Manager of the
GOA++. Figure 3 presents a general view of the architecture.

Brugger et al.,Mediators Metadata Management Services, 2(1) 30-47(1999) 45

5 Conclusion
The integration of different information systems is a crucial issue in many computational
environments. Several research projects indicate that Heterogeneous Database Systems
(HDDSs), in particular those that support object-orientation, are a viable solution to the
problem of integrating information systems in heterogeneous distributed environments.
Within the context of HDDSs, we propose the heterogeneous architecture HIMPAR
(Heterogeneous Interoperable Mediators and Parallel Architecture). The main goal of
this work is to develop an open and extensible architecture, for the interoperability of
resources and services within a distributed and heterogeneous environment.
HIMPAR provides semantic integration through the construction of specialized
mediators that apply to a specific application domain. There is no unique integration
schema to integrate all the information sources, as in the strongly coupled systems
(Global Schema). Therefore, the HIMPAR does not face any problems concerning the
creation and maintenance of the global schema. On the other hand, the HIMPAR
approach provides transparency to data access, differently from the weakly coupled
systems, such as the multibase languages. Each Mediator represents a view designed for
a specific group of information users.
This work presented a metadata management system for mediators providing services for
data type definition of each mediator repository. The definition of interfaces offers type
composition through aggregation and generalization. The MMM implementation uses
schema manager and query processing services of the GOA++ object server. This
implementation has shown a great flexibility due to use of high level services found in
object management systems. MMM services are available through an API on top of
GOA++ and can be issued remotely through CORBA or by local API calls. MMM was
designed for the HIMPAR architecture, however its services may be used by other
HDDS based on mediators.
The architecture of HIMPAR is strongly adherent to object oriented standards. This
approach has shown its adequacy in the integration of new systems. Database systems
that are compatible with the ODMG-93 model are automatically integrated having no
need of specific Wrappers. Note that, in case the data repository is an ODBMS
compatible with the ODMG-93 standard, the Wrapper will send the sub-query directly to
the DBMS, since there is no need of translating it. This is an important advantage of
adopting the OQL as the communication means between the Mediator and the Wrapper.

Brugger et al. Mediators Metadata Management Services, 2(1) 30-47(1999) 46

References

BUKHRES, A.O., ELMAGARMID, A.K., 1996, Object OrientedMultidatabase Systems,
Prentice Hall.

CAREY, M.J., et al, 1995, Towards Heterogeneous Multimedia Information Systems: The
Garlic Approach. Technical Report, IBM Almaden Research Center, USA.

CATTEL, R. G. G., BARRY, D.K. (eds) 1997, The Object Databases Standard: ODMG-
2.0, Morgan Kaufmann Publishers, USA.

DOGAC, A., et al., 1995, METUInteroperable Database System, In: Technical Report 6
1, Software Research and Development Center, Middle East Technical University,
Ankara Turkiye, Jun.

DU, W., SHAN, M., 1996, “Query Processing in Pegasus”. In: (BUKHRES, 1996a), pp.
449-471.

GARDARIN, G., GANNOUNI, S., FINANCE, B., 1996, “IRO-DB: A Distributed System
Federating Object and Relational Databases”, In: (BUKHRES, 1996a), pp. 684-712.

HEIMBIGNER, D., MCLEOD, D., 1985, “A Federated Architecture for Information
Management”. In: ACM Trans. Office Information Systems, v.3(3), pp. 253-278.

JACOBSON, G., et al., 1988, “CALIDA: A Knowledge-based System for Integrating
Multiple Heterogeneous Databases”. In: Proceedings of 3th Int. Conf on Data and
Knowledge Bases, Jerusalem, Israel, Jun.

KIM, W., et al., 1993, “On Resolving Schematic Heterogeneity in Multidatabase Systems”,
In: Distributed andParallel Databases, v.1(3).

LITWIN, W., ABDELLATIF, A., 1987, “An Overview of the Multi-Database
Manipulation Language MDSL”. In: ProceedingsIEEE, v.75(5), pp. 621-632, May.

LIU, L., PU, C., LEE, Y., 1996, “An Adaptive approach to query mediation across
heterogeneous databases”. In: Proceedings of the Int. Conf. on Cooperative
Information Systems, IEEE Press, pp. 144-156, Jun.

MANOLA, F., et al., 1992, Distributed Object Management, In: International Journal of
Intelligent and Cooperative Information Systems, Jun.

MAURO R C, et al., 1997, “GOA++: tecnology, implementation and extensions on the
Object Manager”, In: Proceedings of the XII Brazilian Symp. Databases, Brasil,
Oct.(in Portuguese).

MEYER, L.A.V.C, MATTOSO, M.L.Q. “Parallel Query Processing in Shared-Nothing
Object Database Systems,” in Proc. 3rdInternationalMeeting on Vector and Parallel
Processing (VECPAR'98), Porto, Portugal, June 1998, pp.1007-1020.

MURPHY, J., GRIMSON, J., 1995, “The Jupiter System: An Environment for
Multidatabase Interoperability”, Information and Software Technology, v.37, pp. 503
513.

O2 TECHNOLOGY, 1996, The O2 System Administration Guide, release 4.6, Apr.
OMG (Object Management Group) Home Page, 1998, Avaliable at: http://www.omg.org/,

Abr.
OMG (Object Management Group), 1995, The Common Object Request Broker:

Architecture and Specification, Rev. 2.0, Jul.
PAPAKONSTANTINOU, Y., et al, 1995, “The TSIMMIS Approach to Mediation: Data

Models and Languages”. In: NGITS workshop .
PIRES, P.F., 1997, HIMPAR, uma Arquitetura para Interoperabilidade de Objetos

Distribuidos [HIMPAR, an Architecture for Distributed Object Interoperability],
master’s thesis, COPPE/UFRJ, Rio de Janeiro, Brazil, Apr. (in Portuguese).

http://www.omg.org/

Brugger et al.,Mediators Metadata Management Services, 2(1) 30-47(1999) 47

PIRES, P.F., MATTOSO, M.L.Q., 1996, “Aspectos de Implementacao na Arquitetura
Heterogénea HIMPAR [Interoperability Issues in the HIMPAR Heterogeneous
Architecture],” Proc. of the XXI Brazilian Symp. Databases, Sao Carlos, Brazil, Oct.,
pp.43-57 (in Portuguese).

PIRES, P.F., MATTOSO, M.L.Q., 1998, “A CORBA Based Architecture for
Heterogeneous Information Source Interoperability”, 25th Technology of Object-
Oriented Languages and Systems (TOOLS-25 97), November 24-28, 1997,
Melbourne Australia. IEEE Press, Junho, ISBN 0-8186-8485-2.

PITOURA, E., BUKHERS, O., ELMAGARMID, A., 1995, “Object Orientation in
Multidatabase Systems”. In: ACM Computing Survey, v.27(2), Jun.

PU, C., 1987, “Superdatabases: Transactions Across Database Boundaries”. In: Database
Engineering, v.10(3), pp. 143-149.

RAM, S., 1991, “Guest Editor’s Introduction: Heterogeneous Distributed Database
Systems”. In: IEEE Computer, v.24(12), Dec.

RUSINKIEWICZ, M., et al., 1989, “OMNIBASE: Design and Implementation of a
Multidatabase System”. In: Proceedings of 1th Annual Symposium in Parallel and
Distributed Processing, Dallas, Texas, May.

SHETH, A.P., LARSON, J.A., 1990, “Federated Database System for Managing
Distributed, Heterogeneous, and Autonomous Databases”. In: ACM Computing
Surveys, v.22(3), Sep.

TEMPLETON, M., et al., 1987, “Mermaid - A Front End to Distributed Heterogeneous
Databases”. In: Proceedings of the IEEE, May.

TOMASIC, A. et al., 1995, Scaling Heterogeneous Database and the design of DISCO,
Tech. Report n° 2704, INRIA, France, Nov.

VISIGENIC SOFTWARE, 1996, VisiBroker C++ User's Guide version 2.0, Visigenic
Software, Inc., USA.

WIEDERHOLD, G., 1992, “Mediators in the architecture of future information systems”.
In: IEEE Computer, v.25, pp. 38-49.

WIEDERHOLD, G., 1995, “Value-added Mediation”. In: Proceedings of the IFIP DS-6
Conference.

