
Electronic Journal of SADIO

http://www.dc.uba.ar/sadio/ejs

vol. 2, no. 1, pp. 17-29 (1999)

Reifying Design Patterns as Metalevel Constructs

Claudia Marcos1,2 Marcelo Campo1 Alain Pirotte2

1Univ. Nacional del Centro Prov. Bs. As. - Fac. Ciencias Exactas
ISISTAN - Grupo de Objetos y Visualización,
San Martín 57, (7000) Tandil, Bs. As., Argentina

2Université catholique de Louvain - UCL
IAG - Institute d’Administration et Gestion
1 Place Doyens, (1348) Louvain-la-Neuve, Belgium

E-Mail: {cmarcos, mcampo}@exa.unicen.edu.ar, pirotte@info.ucl.ac.be

Abstract

A design pattern describes a structure of communicating
components that solves a commonly occurring design problem.
Designing with patterns offers the possibility of raising the
abstraction level at which design is performed, with
improvements in clarity, understanding, and facility of
maintenance of applications. However, in their most common
presentation, design patterns are informal pieces of design
process, which application is not reflected in the operational
system, and the potential advantages of a more principled
design are not realized. This work proposes to organize design
in such a way that pattern applications remain explicit in the
operational systems. A reflective architecture is proposed,
where patterns are reified as metalevel constructs.

Keyword: design patterns - metalevel architecture -
metaobjects -computational reflection

http://www.dc.uba.ar/sadio/ejs
mailto:pirotte@info.ucl.ac.be

C.Marcos et al., Reifying Design PatternsEJS, 2(1) 17-29(1999) 18

1. Introduction

The continuous evolution in information technologies leads to building
information systems with ever more ambitious requirements. A fundamental property of
software, in order to satisfy its evolution, is its adaptability. A system is said to be
adaptable when it can be modified to satisfy new requirements at a reasonable cost
compared to that of the required to re-implementing the system. The construction of such
systems, however, is not easy, mainly because it requires much design experience.
Experience and knowledge of experimented designers are captured by design patterns
[Gamma, 1995]. One of their objectives is also to convey knowledge and experience
from expert to novice designers.

A design pattern is an abstract solution of a design problem. A pattern
prescribes a generic organization of classes, their roles and collaborations, and the
distribution of responsibilities among them. The solution given by a pattern is abstract in
that, each time a pattern is used in an application, the elements prescribed by the pattern
must be identified: the name of the application classes and the methods that represent the
elements prescribed by the pattern must be specified. No single definitive list of patterns
has been proposed yet. Several catalogues of patterns have been published, [Gamma,
1995], [Buschmann, 1996], [Tichy, 1997], and each one gives a different classification
and description of patterns.

Patterns make possible to deal with designs in a higher level of abstraction. This
raises the level in which designers communicate and discuss design decisions. In this
sense, one of the potential benefits that the use of patterns brings to software
development is the understanding and maintenance of designs.

However, to be effectively useful in the maintenance phase, this is necessary
that they are well documented and reflected in the program code. Unfortunately, this not
always happens. In the literature, several approaches were proposed to make design
patterns visible for the maintenance phase. For example, in [Campo, 1997] and [Lange,
1995] works design patterns are recovered from application code. In these works,
particular characteristics of each pattern have been identified. These characteristics allow
the identification of the potential patterns used in an application. The definition of
pattern characteristics is a very hard task. It has been very difficult to make a
differentiation among the characteristics of similar patterns. Furthermore, for some
patterns, it was not possible to find them. To solve this problem, the authors took into
account specific aspects of a particular implementation language. This allows finding
more potential patterns but it depends on a specific programming language.

Another approach is the construction of a tool for automatically generating
pattern code from information supplied by the designer [Eden, 1997a], [Eden, 1997b],
[Budinsky, 1996], and [Bosh, 1996]. These tools introduce new notations by which the
user can specify the patterns to be applied in the application. The tool uses this
information to generate the code corresponding to those patterns in a specific
programming language. Each time a pattern needs to be incorporated or deleted, the
application code must be regenerated. This can produce errors in the classes affected by
the pattern. Moreover, when new patterns are added those tools must be modified.

C.Marcos et al., Reifying Design Patterns..., EJS, 2(1) 17-29(1999) 19

In this work we present an alternative approach to this problem based on a
reflective model that allows the representation of design patterns as an explicit part of
applications. A reflective metalevel architecture allows the representation of patterns as
first-class entities. This architecture is composed of two levels: base level and metalevel.
The metalevel represents design patterns and the base level contains the information of
the specific application that is under development. A metaobject class at the metalevel
represents each pattern. When a pattern is used in an application, the association between
base level and metalevel is established. At run-time, the metalevel manipulates the
objects at the base level according to the architecture defined by the patterns used in the
application.

The rest of this paper is organized as follows. In the next section the main
characteristics of the reflective metalevel architecture for the representation of design
patterns are described. Section 3 presents, as an illustrative example, the representation
of the Composite design pattern with the reflective architecture proposed. Section 4
presents the design of the reflective architecture. Finally, in Section 5 some conclusions
are presented.

2. Reflective Architecture for Design Patterns

The design of a software artifact is an integral part of the essence of such
artifact. However, particularly in object oriented systems, implementation languages do
not provide means to reflect design decisions directly in the code. This limitation brings
many well-known problems during the maintenance phase. These problems are due, at
least in part, to the fact that is necessary to recognize that the design lives inside the
running system, defining the way such system behaves at runtime. Statically, on the other
hand, the design also defines how the different components of the system are structured
to implement such behavior. In other words, the design can be seen as a meta-model of
the software system, which defines how such software is structured and behaves. If a
mean to represent and implement such a meta-model at runtime were available then an
explicit trace of the involved design structures can be deduced from the code itself.

Taking into account this view, we propose a reflective model that allows
representing design patterns as an explicit part of applications. In this model, patterns are
reified as metalevel constructs, which provide the essential control structure that drives
the program behavior during runtime.

Reflection is the capability of a computational system to reason about and act
upon itself [Maes, 1987]. A reflective system incorporates data representing static and
dynamic aspects of itself; this activity is called reification. This self-representation makes
it possible for the system to answer questions about and support actions on it. In a
reflective architecture, a computational system is viewed as incorporating an object part
and a reflective part. The task of the object computation is to solve problems and return
information about an external domain, while the task of the reflective is to solve
problems and return information about the system itself.

The reflective architecture proposed has two levels: metalevel, or reflective
level, and base level (Fig.1). The metalevel allows representing design patterns and the
base level contains the specific information of the application under development.
Application classes, their methods, and relationships among classes are designed at this

C.Marcos et al., Reifying Design Patterns ..., EJS, 2(1) 17-29(1999) 20

Design Patterns
Representation

DesignPatternA
MetaMethod1 ()

DesignPatternB
MetaMethod2 ()

Metalevel
(metaobject

classes)

Application
Representation

AppClassí
BaseMethodA ()

AppClass2
BaseMethodB ()

Base Level
(application

classes)

Fig. 1 Representation of design patterns in the reflective architecture

level. At run-time, the metalevel manipulates the objects at the base level according to
the architecture defined by the patterns used in the application.

Designing the proposed reflective architecture involves decisions about the
representation of patterns at the metalevel, the association between base level and
metalevel, and the behavior of the reflective architecture, called reflection mechanism.

• Representation of Design Patterns at the Metalevel. A pattern can be see as
a fine-grained framework. It prescribes a template of the control structure to
solve a design problem, leaving the implementation of some methods to the
programmer. A metaobject class [Maes, 1988] at the metalevel (Fig. 1)
represents this template prescribed by the pattern. The metaobject classes
representing patterns are implemented independently from the base level
classes and can be reused for the construction of different applications.

• Association between Base Level and Metalevel. When a design pattern is
used in an application the metaobject corresponding to the pattern is created.
Then, the association between base level and metalevel is established
(Fig.2). This association can be established between a class, a method, or an
object at the base level and the metaobject at the metalevel.

• Reflection Mechanism. At execution time, when an object at the base level
receives a message, e.g. M1 (Fig.2), the reflection mechanism intercepts the
message. Then, the reflection mechanism redirects the thread of control to
the associated metaobject of the object at the base level, for example,
invoking the M2 method. At the metalevel, the metaobject does its
corresponding computation and, when its execution finishes, the reflection
mechanism decided whether or not return the thread of control to the method
at the base level.

Application
Representation

Associated Metaobject Call Control Flow
(pattern applied)

Fig.2 Reflective architecture behavior

Design
Patterns

C.Marcos et al., Reifying Design Patterns..., EJS, 2(1) 17-29(1999) 21

3. An Example

In the previous section, a reflective metalevel architecture based on metaobjects
for the representation of design patterns has been presented. In this section, we illustrate
our approach by representing the Composite design pattern [Gamma, 1995]. The
Composite design pattern composes objects into tree structures to represent part-whole
hierarchies. It defines the way in which simple and compound objects can be treated
uniformly.

For example, consider a graphic editor that allows the user to make figures, such
as lines or rectangles. The user can group figures to form a complex figure, which can be
used for the construction of another complex figure. The Composite design pattern can
be used to describe how to use recursive composition, in such a way that simple and
complex figures can be treated uniformly. This pattern prescribes an abstract class to
represent both kinds of objects: simple and complex ones. In the graphic editor problem,
this abstract class is the Graphic class (Fig.3)1. This class defines specific operations for
all graphic objects, such as Draw. The subclasses of Graphic that represent simple
objects, Line, Rectangle, implement the Draw method to draw simple figures. The
subclass of Graphic representing complex figures, Figure, implements the Draw method
invoking this operation to all the objects that compound it. The Figure class defines the
components variable, which maintains the information of its components.

1 In this document, the design of classes is based on OMT diagrams [Rumbaugh91].
Classes are represented as rectangles, with the class name in bold type at the top, and objects as
circles. Elements at the metalevel are designed with a shadow and in a grey colour. The
pseudocode of methods is represented by a shadow rectangle.

Fig.3 Application of the Composite design pattern

This pattern can be used to represent recursive part-whole hierarchies whose
clients are be able to treat all objects in the composite structure uniformly and ignore the
difference between simple and composite objects.

C.Marcos et al., Reifying Design Patterns..., EJS, 2(1) 17-29(1999) 22

3.1 Metaobject Class for Representing the Composite Design Pattern

We represent the Composite design pattern through the metaobject class
MOComposite. The objective of this class is to appropriately dispatch an operation
requested for a complex object to all the components of the object.

MOComposite class defines four methods: MMComposite, MMAdd,
MMRemove, MMActualizeComponents, and MMGetComponents.

MMGetComponents returns the components of a complex object. This method
calls the GetComponents method at the base level, which returns the components of an
object. The information of which are the components of a complex object is maintained
in the components variable defined in the class representing complex objects.
MMActualizeComponents actualize the components of an object at the base level with a
new value. The MMComposite method recovers the components of the complex object
received as parameter invoking the MMGetComponents method. Then, MMComposite
dispatches the operation received as parameter to each component at the base level. At
the end, the thread of control is returned to the base level.

The MMAdd and MMRemove methods incorporate and delete, respectively, a
component to a complex object. To obtain and to actualize the components of the
complex object, these methods invoke the MMGetComponents and the
MMActualizeComponents methods respectively.

3.2 Association between Base Level and Metalevel

To use the Composite pattern using the reflective architecture, it is necessary to
specify which application classes represent the classes prescribed by the pattern, i.e.,
which classes are involved in the pattern. For example, for the graphic editor problem
(Fig.3), the Graphic class represents figures; Line and Rectangle subclasses represent
simple figures, i.e., simple objects; and the Figure subclass represents complex figures,
i.e., complex objects. Then, the name of the operation has to be specified, in this case
Draw.

When those application classes, involved by the pattern, have been designed, the
association between base level and metalevel is established. This association is
established between the Figure class at the base level and an object of the MOComposite
class, i.e., a metaobject, at the metalevel. For example, in the following way:

moComposite new MOComposite
creates the metaobject moComposite as an instance
of the MOComposite class

classreflection (Figure, moComposite)
creates the association between the Figure class
and the metaobject moComposite

In the implementation phase, the programmer has to implement only the Draw
method of the Line and Rectangle classes and the GetComponents method of the Figure
class. It is necessary to implement this last method because the structure of the
components variable can not be the same in different applications of the pattern. The

C.Marcos et al., Reifying Design Patterns..., EJS, 2(1) 17-29(1999) 23

methods defined in the Figure class are involved in the reflection mechanism and they do
not need any implementation.

3.3 Reflection Mechanism

Consider the creation of the myline and myrectangle simple objects and the
complex object complexfigure by the user. Then, the simple objects myline and
myrectangle are added as components of the complexfigure object.

omplexfigure Add (myline)
adds the object myline to the complex structure

complexfigure
complexfigure Add (myrectangle)

adds the object myrectangle to the complex structure
complexfigure

When the complexfigure object receives the Draw message (1) (Fig.4), the
thread of control is redirected to the MMComposite method (2) at the metalevel. The
MMComposite method calls the MMGetComponents method (3) to recover the
components of the complexfigure object. This method consults the components variable
of the complexfigure object and returns its components: myline and myrectangle objects.
Then, the MMComposite invokes the Draw method on myline (4) and on myrectangle
(5). At the end, the thread of control is returned to the Draw method of complexfigure at
the base level, which finalizes its execution.

If the myline or myrectangle objects receive the Draw message, the reflection
mechanism does not redirect the thread of control to the metalevel.

C.Marcos et al., Reifying Design Patterns..., EJS, 2(1) 17-29(1999) 24

Call Control Flow

Base Level / Metalevel
Association

<.... Instance-of

Modify or consult the
components variable of

Fig.4 Reflection mechanism when the Draw method is invoked

4. Metaobject Protocol

Most current programming languages do not directly support the metaobject
concept, but a basic support can be incorporated implementing the following facilities
[Ferber, 1989]:

• Representation of system information as data.

• Association between objects at the base level with their metaobjects.

• Metaobject activation when an object at the base level is invoked.

The implementation of those functions in a programming language is called a
Metaobject Protocol (MOP), for the language. The first aspect describes how and which
data will be represented at the metalevel, is related to the reification process. The other
two aspects are related to the mechanisms that define how the association between both
levels is implemented and how the reflection mechanism is activated. There are two
different ways to implement these aspects [Maes, 1988]: i) the responsibility of the
activation of the reflection process can be assigned to the object at the base level, which
has the information of the associated metaobjects, or ii) it can be assigned to the system.

C.Marcos et al., Reifying Design Patterns..., EJS, 2(1) 17-29(1999) 25

We use the CLOS programming language [Kiczalzes, 1991] to implement the
proposed reflective architecture. The general model for this reflective architecture can be
divided in three models (Fig.5): Reflection Mechanism Model, which implements the
reflection mechanism; Design Patterns Model, in which patterns are represented by
metaobject classes; and Application Model, where the application classes are defined.

Fig.5 Reflective Architecture Model

4.1 Design Patterns Model

This model represents metaobject classes. The abstract class MODPatterns
represents all patterns supported by the reflective architecture (Fig.6). Each design
pattern has its corresponding subclass in this hierarchy. For example, the Composite
design pattern is represented by the MOComposite class, the State pattern by the
MOState class, and the Strategy by the MOStrategy class.

C.Marcos et al., Reifying Design Patterns ..., EJS, 2(1) 17-29(1999) 26

Fig.6 Design patterns metaobject classes hierarchy

4.1.1 Reflection Mechanism Model

The reflection mechanism model represents three strategies for conducting the
reflection mechanism, that is the detail of when the thread of control is redirected to the
metalevel: class reflection, object reflection, and method reflection [Marcos, 1997]. This
model maintains information about which objects, methods, or classes of the base level
are involved in the reflection mechanism and which are the associated metaobjects. The
abstract class RTaxonomies (Fig.7) represents the possible strategies. For each strategy, it
is necessary to maintain common information: the associated metaobject and the
metamethod to which the reflection mechanism will redirect the thread of control at the
metalevel. Additionally, for the class reflection, the information of the reflected class at
the base level is required. For the object reflection, the object involved in the reflection
mechanism, that is the reflected object, is maintained. For the method reflection, it is
necessary to maintain the information of the reflected method and the class at the base
level that defines this method.

For implementing message interception in CLOS it is necessary to introduce

Fig.7 Reflection information hierarchy

changes to the kernel language. The most important change concerns to the definition of
the primitive message-passing function, which checks if there is a metaobject bound to
the receiver object. If there is one, the message is delegated to the metaobject. In CLOS-
like languages, reflection takes place via generic functions. This mechanism must be

C.Marcos et al., Reifying Design Patterns..., EJS, 2(1) 17-29(1999) 27

implemented by redefining the method selection and the effective method construction
machinery, which is defined on generic function classes. The method that has this
responsibility is the compute-discriminating-function method. For this reason, we have
redefined the compute-discriminating-function method, which finds the associated
metaobjects and changes the thread of control to the corresponding metaobject at the
metalevel. The associated-metaobject-of method returns a list of RTaxonomies objects
with the information of the associated metaobjects of an object. Then the analize-
metainfo method is invoked. This function traverses the list of metainformation and
changes the control to the corresponding metaobject. Then, the default message
interpretation is used whether or not the receiver object has an associated metaobject.

(defmethod compute-discriminating-function ((mogf mobject-
generic-function) args)

(let ((normal-dfun (call-next-method))
(list-metaobj (send associated-metaobject-of

parameters)))
;; finds the corresponding metainformation

(send analize-metainfo mogf list-metaobj args)
;; analize the metainformation and change the control to

the metalevel
(apply normal-dfun args)

)
)
(defmethod analize-metainfo ((mogf mobject-generic-function)

metainfo args)
(cond ((not (null metainfo))

(send call-metaobject mogf (car metainfo) args)
;; calls the corresponding metamethod at the metalevel
(send analize-metainfo mogf (cdr metainfo) args)

; ; does a recursive invocation for the rest of the
associated metaobjects

)))
Only the methods belonging to a reflection mechanism, i.e., the reflected

methods, or all methods defined in a reflected class, are analyzed by the compute-
discriminating-function method. To support this, we change the class of the generic
function corresponding to those methods to the mobject-generic-function class. When the
association between a method at the base level and a metaobject is established in a
method reflection case, the reflection-method method is invoked. This function creates
an instance of the RMethod class, with the reflective information, and changes the class
of the corresponding generic function to the mobject-generic-function class.

(defmethod reflection-method (method class mobject mmethod
methname)

(progn
(make-instance 'RMethod

:method method
:class class
:metaobject mobject

C.Marcos et al., Reifying Design Patterns..., EJS, 2(1) 17-29(1999) 28

:metamethod mmethod)
;; makes an instance of the RMethod class

(ensure-generic-function methname
:lambda-list (method-lambda-list method)
:generic-function-class (find-class 'mobject-generic-

function))))
;; changes the class of the corresponding generic-function

5. Conclusion

In this work a reflective architecture based on metaobjects for the representation
of design patterns has been presented. In this architecture the metalevel represents the
design patterns template of the control structure and the base level represents the specific
elements of an application. The reflective level should manipulate the objects at the base
level according to the architecture defined by the design patterns.

Each design pattern has been analyzed and its template of the control structure is
represented by a metaobject class at the metalevel. When a pattern is used in an
application the association between the base and metalevel is done. At run-time, when an
object receives a message the reflection mechanism will take the decision whether or not
redirects the thread of control to the metalevel, according to the applied pattern.

By the use of metaobjects for the representation of the design patterns it would
be possible to maintain traceability to preserve patterns information for helping in the
understanding and maintenance of applications. The representation of the design pattern
template of the control structure is by metaobjects classes allows reusing this structure
whenever the patterns are used in the same or different applications. If a new pattern is
needed in an application, it is possible to incorporate dynamically a new design pattern.
To do this, it is necessary to identify the pattern that we want to use and the application
classes involved in the pattern, and codify some methods prescribed by the pattern.

6. Bibliography
[Beck, 1994] Beck K., and Johnson R. Patterns Generate Architectures. In

Tokoro M., Pareschi R., editors. Proc. of the 8th European
Conference on Object-Oriented Programming,, ECOOP '94.
Bologna, Italy, July 1994, Lecture Notes in Computer Science 821,
Springer-Verlag, Berlin Heidelberg New York, 1994.

[Bosch, 1996] Bosch J. Language Support for Design Patterns. In Proc. of
Technology of Object-Oriented Languages and Systems, Tools
Europe'96. pages 197-210. Paris, France. February 1996.

[Budinsky, 1996] Budinsky F., Finnie M., Vlissides J., and Yu P. Automatic Code
Generation from Design Patterns.
http://www.almaden.ibm.com/journal/sj/budin/budinsky.html

[Buschmann, 1996] Buschmann F., Meunier R., Rohnert H., Sommerlad P., and Stal
Michael. Pattern-Oriented Software Architecture - A System of
Patterns. John Wiley & Sons, 1996.

[Campo, 1997] Campo M., Marcos C., and Ortigosa A. Framework Understanding
and Design Patterns: A Reverse Engineering Approach. In Proc. of
Ninth International Conference on Software Engineering and
Knowledge Engineering, SEKE’97. Madrid, Spain. June 1997.

http://www.almaden.ibm.com/journal/sj/budin/budinsky.html

C.Marcos et al., Reifying Design PatternsEJS, 2(1) 17-29(1999) 29

[Coad, 1992]

[Cointe, 1987]

[Coplien, 1995]

[Eden, 1997a]

[Eden, 1997b]

[Ferber, 1989]

[Gamma, 1995]

[Johnson, 1997]

[Kiczalzes, 1991]

[Lange, 1995]

[Maes, 1988]

[Marcos, 1997]

[Pree, 1994]

[Riehle, 1996]

[Rumbaugh, 1991]

[Tichy, 1997]

Coad P. Object Oriented Patterns. Communication of the ACM.
September 1992. Vol. 35 No 9.
Cointe P. Metaclasses are First Class: the ObjVlisp Model. In N.K.
Meyrowitz, editor. Proc. of the 2nd Conference on Object-Oriented
Programming Systems Languages and Applications, OOPSLA’87.
ACM SIGPLAN Notices 2212. Orlando, Florida. December 1987.
Coplien J. and Schmidt, editors. Patterns Languages of Program
Design. Addison-Wesley, 1995.
Eden A., Gil J., and Yehudai A. Automating the Application of
Design Patterns. pages 44-46. Report on Object Analysis and
Design ROAD. May 1997.
Eden A., Gil J., and Yehudai A. Precise Specification and
Automatic Application of Design Patterns. In Proc. of Automated
Software Engineering, ASE'97.
Ferber J. Computational Reflection in Class Based Object Oriented
Languages. In Meyrowitz N.K., editor. Proc. of the 4th Conference
on Object-Oriented Programming Systems, Languages and
Applications, OOPSLA'89. ACM SIGPLAN Notices 2410. New
Orleans, Louisiana. October 1989.
Gamma E., Helm R., Johnson R., and Vlissides J. Design Patterns.
Elements of Reusable Object Oriented Software. Addison Wesley
1994.
Johnson R. Frameworks = Components + Patterns. Communication
of the ACM. Volume 40, Number 10, pages 39-42. October 1997.
G. Kiczales, J. des Rivihres, D. Bobrow. The Art of the Metaobject
Protocol. MIT Press, 1991
Lange D. and Yuichi N. Interactive Visualization of Design
Patterns can Help in Framework Understanding. In Wirfs-Brock R.
editor. Proc. of the 10th Conference on Object-Oriented
Programming Systems, Languages and Applications, OOPSLA’95.
ACM SIGPLAN Notices 3010. Austin, Texas. October 1995.
Maes P. Issues in Computational Reflection. In Maes P. and Nardi
D., editors. Metalevel Architecture and Reflection, pages 21-35.
Amsterdam. Elsevier Science 1988.
Marcos C. Design Patterns as First-Class Entities. Technical
Report TR-97/29, IAG-QANT, Université catholique de Louvain,
Belgium, December 1997. Epreuve de confirmation de la these
pour le Doctorat en Sciences Appliquées.
Pree W. Design Pattern for Object Oriented Development. Addison
Wesley 1994.
Riehle D. and Züllighoven H. Understanding and Using Patterns in
Software Development. Theory and Practice of Object Systems 2,
1, 1996.
Rumbaugh J., Blaha M., Permerlani W., Eddy F., and Lorenson W.
Object-Oriented Modelling and Design. Prentice-Hall. Englewood
Cliffs, NJ 1991.
Tichy W. Essential Software Design Patterns. University of
Karsruhe. http://wwwipd.ira.uka.de/~tichy/patterns/overview.html

http://wwwipd.ira.uka.de/%7Etichy/patterns/overview.html

