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Abstract

A design pattern describes a structure of communicating 
components that solves a commonly occurring design problem. 
Designing with patterns offers the possibility of raising the 
abstraction level at which design is performed, with 
improvements in clarity, understanding, and facility of 
maintenance of applications. However, in their most common 
presentation, design patterns are informal pieces of design 
process, which application is not reflected in the operational 
system, and the potential advantages of a more principled 
design are not realized. This work proposes to organize design 
in such a way that pattern applications remain explicit in the 
operational systems. A reflective architecture is proposed, 
where patterns are reified as metalevel constructs.
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1. Introduction

The continuous evolution in information technologies leads to building 
information systems with ever more ambitious requirements. A fundamental property of 
software, in order to satisfy its evolution, is its adaptability. A system is said to be 
adaptable when it can be modified to satisfy new requirements at a reasonable cost 
compared to that of the required to re-implementing the system. The construction of such 
systems, however, is not easy, mainly because it requires much design experience. 
Experience and knowledge of experimented designers are captured by design patterns 
[Gamma, 1995]. One of their objectives is also to convey knowledge and experience 
from expert to novice designers.

A design pattern is an abstract solution of a design problem. A pattern 
prescribes a generic organization of classes, their roles and collaborations, and the 
distribution of responsibilities among them. The solution given by a pattern is abstract in 
that, each time a pattern is used in an application, the elements prescribed by the pattern 
must be identified: the name of the application classes and the methods that represent the 
elements prescribed by the pattern must be specified. No single definitive list of patterns 
has been proposed yet. Several catalogues of patterns have been published, [Gamma, 
1995], [Buschmann, 1996], [Tichy, 1997], and each one gives a different classification 
and description of patterns.

Patterns make possible to deal with designs in a higher level of abstraction. This 
raises the level in which designers communicate and discuss design decisions. In this 
sense, one of the potential benefits that the use of patterns brings to software 
development is the understanding and maintenance of designs.

However, to be effectively useful in the maintenance phase, this is necessary 
that they are well documented and reflected in the program code. Unfortunately, this not 
always happens. In the literature, several approaches were proposed to make design 
patterns visible for the maintenance phase. For example, in [Campo, 1997] and [Lange, 
1995] works design patterns are recovered from application code. In these works, 
particular characteristics of each pattern have been identified. These characteristics allow 
the identification of the potential patterns used in an application. The definition of 
pattern characteristics is a very hard task. It has been very difficult to make a 
differentiation among the characteristics of similar patterns. Furthermore, for some 
patterns, it was not possible to find them. To solve this problem, the authors took into 
account specific aspects of a particular implementation language. This allows finding 
more potential patterns but it depends on a specific programming language.

Another approach is the construction of a tool for automatically generating 
pattern code from information supplied by the designer [Eden, 1997a], [Eden, 1997b], 
[Budinsky, 1996], and [Bosh, 1996]. These tools introduce new notations by which the 
user can specify the patterns to be applied in the application. The tool uses this 
information to generate the code corresponding to those patterns in a specific 
programming language. Each time a pattern needs to be incorporated or deleted, the 
application code must be regenerated. This can produce errors in the classes affected by 
the pattern. Moreover, when new patterns are added those tools must be modified.
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In this work we present an alternative approach to this problem based on a 
reflective model that allows the representation of design patterns as an explicit part of 
applications. A reflective metalevel architecture allows the representation of patterns as 
first-class entities. This architecture is composed of two levels: base level and metalevel. 
The metalevel represents design patterns and the base level contains the information of 
the specific application that is under development. A metaobject class at the metalevel 
represents each pattern. When a pattern is used in an application, the association between 
base level and metalevel is established. At run-time, the metalevel manipulates the 
objects at the base level according to the architecture defined by the patterns used in the 
application.

The rest of this paper is organized as follows. In the next section the main 
characteristics of the reflective metalevel architecture for the representation of design 
patterns are described. Section 3 presents, as an illustrative example, the representation 
of the Composite design pattern with the reflective architecture proposed. Section 4 
presents the design of the reflective architecture. Finally, in Section 5 some conclusions 
are presented.

2. Reflective Architecture for Design Patterns

The design of a software artifact is an integral part of the essence of such 
artifact. However, particularly in object oriented systems, implementation languages do 
not provide means to reflect design decisions directly in the code. This limitation brings 
many well-known problems during the maintenance phase. These problems are due, at 
least in part, to the fact that is necessary to recognize that the design lives inside the 
running system, defining the way such system behaves at runtime. Statically, on the other 
hand, the design also defines how the different components of the system are structured 
to implement such behavior. In other words, the design can be seen as a meta-model of 
the software system, which defines how such software is structured and behaves. If a 
mean to represent and implement such a meta-model at runtime were available then an 
explicit trace of the involved design structures can be deduced from the code itself.

Taking into account this view, we propose a reflective model that allows 
representing design patterns as an explicit part of applications. In this model, patterns are 
reified as metalevel constructs, which provide the essential control structure that drives 
the program behavior during runtime.

Reflection is the capability of a computational system to reason about and act 
upon itself [Maes, 1987]. A reflective system incorporates data representing static and 
dynamic aspects of itself; this activity is called reification. This self-representation makes 
it possible for the system to answer questions about and support actions on it. In a 
reflective architecture, a computational system is viewed as incorporating an object part 
and a reflective part. The task of the object computation is to solve problems and return 
information about an external domain, while the task of the reflective is to solve 
problems and return information about the system itself.

The reflective architecture proposed has two levels: metalevel, or reflective 
level, and base level (Fig.1). The metalevel allows representing design patterns and the 
base level contains the specific information of the application under development. 
Application classes, their methods, and relationships among classes are designed at this
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Fig. 1 Representation of design patterns in the reflective architecture

level. At run-time, the metalevel manipulates the objects at the base level according to 
the architecture defined by the patterns used in the application.

Designing the proposed reflective architecture involves decisions about the 
representation of patterns at the metalevel, the association between base level and 
metalevel, and the behavior of the reflective architecture, called reflection mechanism.

• Representation of Design Patterns at the Metalevel. A pattern can be see as 
a fine-grained framework. It prescribes a template of the control structure to 
solve a design problem, leaving the implementation of some methods to the 
programmer. A metaobject class [Maes, 1988] at the metalevel (Fig. 1) 
represents this template prescribed by the pattern. The metaobject classes 
representing patterns are implemented independently from the base level 
classes and can be reused for the construction of different applications.

• Association between Base Level and Metalevel. When a design pattern is 
used in an application the metaobject corresponding to the pattern is created. 
Then, the association between base level and metalevel is established 
(Fig.2). This association can be established between a class, a method, or an 
object at the base level and the metaobject at the metalevel.

• Reflection Mechanism. At execution time, when an object at the base level 
receives a message, e.g. M1 (Fig.2), the reflection mechanism intercepts the 
message. Then, the reflection mechanism redirects the thread of control to 
the associated metaobject of the object at the base level, for example, 
invoking the M2 method. At the metalevel, the metaobject does its 
corresponding computation and, when its execution finishes, the reflection 
mechanism decided whether or not return the thread of control to the method 
at the base level.

Application
Representation

Associated Metaobject Call Control Flow
(pattern applied)

Fig.2 Reflective architecture behavior

Design 
Patterns
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3. An Example

In the previous section, a reflective metalevel architecture based on metaobjects 
for the representation of design patterns has been presented. In this section, we illustrate 
our approach by representing the Composite design pattern [Gamma, 1995]. The 
Composite design pattern composes objects into tree structures to represent part-whole 
hierarchies. It defines the way in which simple and compound objects can be treated 
uniformly.

For example, consider a graphic editor that allows the user to make figures, such 
as lines or rectangles. The user can group figures to form a complex figure, which can be 
used for the construction of another complex figure. The Composite design pattern can 
be used to describe how to use recursive composition, in such a way that simple and 
complex figures can be treated uniformly. This pattern prescribes an abstract class to 
represent both kinds of objects: simple and complex ones. In the graphic editor problem, 
this abstract class is the Graphic class (Fig.3)1. This class defines specific operations for 
all graphic objects, such as Draw. The subclasses of Graphic that represent simple 
objects, Line, Rectangle, implement the Draw method to draw simple figures. The 
subclass of Graphic representing complex figures, Figure, implements the Draw method 
invoking this operation to all the objects that compound it. The Figure class defines the 
components variable, which maintains the information of its components.

1 In this document, the design of classes is based on OMT diagrams [Rumbaugh91]. 
Classes are represented as rectangles, with the class name in bold type at the top, and objects as 
circles. Elements at the metalevel are designed with a shadow and in a grey colour. The 
pseudocode of methods is represented by a shadow rectangle.

Fig.3 Application of the Composite design pattern

This pattern can be used to represent recursive part-whole hierarchies whose 
clients are be able to treat all objects in the composite structure uniformly and ignore the 
difference between simple and composite objects.



C.Marcos et al., Reifying Design Patterns..., EJS, 2(1) 17-29(1999) 22

3.1 Metaobject Class for Representing the Composite Design Pattern

We represent the Composite design pattern through the metaobject class 
MOComposite. The objective of this class is to appropriately dispatch an operation 
requested for a complex object to all the components of the object.

MOComposite class defines four methods: MMComposite, MMAdd, 
MMRemove, MMActualizeComponents, and MMGetComponents.

MMGetComponents returns the components of a complex object. This method 
calls the GetComponents method at the base level, which returns the components of an 
object. The information of which are the components of a complex object is maintained 
in the components variable defined in the class representing complex objects. 
MMActualizeComponents actualize the components of an object at the base level with a 
new value. The MMComposite method recovers the components of the complex object 
received as parameter invoking the MMGetComponents method. Then, MMComposite 
dispatches the operation received as parameter to each component at the base level. At 
the end, the thread of control is returned to the base level.

The MMAdd and MMRemove methods incorporate and delete, respectively, a 
component to a complex object. To obtain and to actualize the components of the 
complex object, these methods invoke the MMGetComponents and the 
MMActualizeComponents methods respectively.

3.2 Association between Base Level and Metalevel

To use the Composite pattern using the reflective architecture, it is necessary to 
specify which application classes represent the classes prescribed by the pattern, i.e., 
which classes are involved in the pattern. For example, for the graphic editor problem 
(Fig.3), the Graphic class represents figures; Line and Rectangle subclasses represent 
simple figures, i.e., simple objects; and the Figure subclass represents complex figures, 
i.e., complex objects. Then, the name of the operation has to be specified, in this case 
Draw.

When those application classes, involved by the pattern, have been designed, the 
association between base level and metalevel is established. This association is 
established between the Figure class at the base level and an object of the MOComposite 
class, i.e., a metaobject, at the metalevel. For example, in the following way:

moComposite new MOComposite 
creates the metaobject moComposite as an instance 
of the MOComposite class

classreflection (Figure, moComposite)
creates the association between the Figure class 
and the metaobject moComposite

In the implementation phase, the programmer has to implement only the Draw 
method of the Line and Rectangle classes and the GetComponents method of the Figure 
class. It is necessary to implement this last method because the structure of the 
components variable can not be the same in different applications of the pattern. The 
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methods defined in the Figure class are involved in the reflection mechanism and they do 
not need any implementation.

3.3 Reflection Mechanism

Consider the creation of the myline and myrectangle simple objects and the 
complex object complexfigure by the user. Then, the simple objects myline and 
myrectangle are added as components of the complexfigure object.

omplexfigure Add (myline) 
adds the object myline to the complex structure 

complexfigure
complexfigure Add (myrectangle) 

adds the object myrectangle to the complex structure 
complexfigure

When the complexfigure object receives the Draw message (1) (Fig.4), the 
thread of control is redirected to the MMComposite method (2) at the metalevel. The 
MMComposite method calls the MMGetComponents method (3) to recover the 
components of the complexfigure object. This method consults the components variable 
of the complexfigure object and returns its components: myline and myrectangle objects. 
Then, the MMComposite invokes the Draw method on myline (4) and on myrectangle 
(5). At the end, the thread of control is returned to the Draw method of complexfigure at 
the base level, which finalizes its execution.

If the myline or myrectangle objects receive the Draw message, the reflection 
mechanism does not redirect the thread of control to the metalevel.
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Fig.4 Reflection mechanism when the Draw method is invoked

4. Metaobject Protocol

Most current programming languages do not directly support the metaobject 
concept, but a basic support can be incorporated implementing the following facilities 
[Ferber, 1989]:

• Representation of system information as data.

• Association between objects at the base level with their metaobjects.

• Metaobject activation when an object at the base level is invoked.

The implementation of those functions in a programming language is called a 
Metaobject Protocol (MOP), for the language. The first aspect describes how and which 
data will be represented at the metalevel, is related to the reification process. The other 
two aspects are related to the mechanisms that define how the association between both 
levels is implemented and how the reflection mechanism is activated. There are two 
different ways to implement these aspects [Maes, 1988]: i) the responsibility of the 
activation of the reflection process can be assigned to the object at the base level, which 
has the information of the associated metaobjects, or ii) it can be assigned to the system.
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We use the CLOS programming language [Kiczalzes, 1991] to implement the 
proposed reflective architecture. The general model for this reflective architecture can be 
divided in three models (Fig.5): Reflection Mechanism Model, which implements the 
reflection mechanism; Design Patterns Model, in which patterns are represented by 
metaobject classes; and Application Model, where the application classes are defined.

Fig.5 Reflective Architecture Model

4.1 Design Patterns Model

This model represents metaobject classes. The abstract class MODPatterns 
represents all patterns supported by the reflective architecture (Fig.6). Each design 
pattern has its corresponding subclass in this hierarchy. For example, the Composite 
design pattern is represented by the MOComposite class, the State pattern by the 
MOState class, and the Strategy by the MOStrategy class.
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Fig.6 Design patterns metaobject classes hierarchy

4.1.1 Reflection Mechanism Model

The reflection mechanism model represents three strategies for conducting the 
reflection mechanism, that is the detail of when the thread of control is redirected to the 
metalevel: class reflection, object reflection, and method reflection [Marcos, 1997]. This 
model maintains information about which objects, methods, or classes of the base level 
are involved in the reflection mechanism and which are the associated metaobjects. The 
abstract class RTaxonomies (Fig.7) represents the possible strategies. For each strategy, it 
is necessary to maintain common information: the associated metaobject and the 
metamethod to which the reflection mechanism will redirect the thread of control at the 
metalevel. Additionally, for the class reflection, the information of the reflected class at 
the base level is required. For the object reflection, the object involved in the reflection 
mechanism, that is the reflected object, is maintained. For the method reflection, it is 
necessary to maintain the information of the reflected method and the class at the base 
level that defines this method.

For implementing message interception in CLOS it is necessary to introduce

Fig.7 Reflection information hierarchy

changes to the kernel language. The most important change concerns to the definition of 
the primitive message-passing function, which checks if there is a metaobject bound to 
the receiver object. If there is one, the message is delegated to the metaobject. In CLOS- 
like languages, reflection takes place via generic functions. This mechanism must be 
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implemented by redefining the method selection and the effective method construction 
machinery, which is defined on generic function classes. The method that has this 
responsibility is the compute-discriminating-function method. For this reason, we have 
redefined the compute-discriminating-function method, which finds the associated 
metaobjects and changes the thread of control to the corresponding metaobject at the 
metalevel. The associated-metaobject-of method returns a list of RTaxonomies objects 
with the information of the associated metaobjects of an object. Then the analize- 
metainfo method is invoked. This function traverses the list of metainformation and 
changes the control to the corresponding metaobject. Then, the default message 
interpretation is used whether or not the receiver object has an associated metaobject.

(defmethod compute-discriminating-function ((mogf mobject- 
generic-function) args)

(let ((normal-dfun (call-next-method))
(list-metaobj (send associated-metaobject-of 

parameters)))
;; finds the corresponding metainformation

(send analize-metainfo mogf list-metaobj args)
;; analize the metainformation and change the control to 

the metalevel
(apply normal-dfun args)

)
)
(defmethod analize-metainfo ((mogf mobject-generic-function) 

metainfo args)
(cond ((not (null metainfo))

(send call-metaobject mogf (car metainfo) args)
;; calls the corresponding metamethod at the metalevel 
(send analize-metainfo mogf (cdr metainfo) args)

; ; does a recursive invocation for the rest of the 
associated metaobjects

)))
Only the methods belonging to a reflection mechanism, i.e., the reflected 

methods, or all methods defined in a reflected class, are analyzed by the compute- 
discriminating-function method. To support this, we change the class of the generic 
function corresponding to those methods to the mobject-generic-function class. When the 
association between a method at the base level and a metaobject is established in a 
method reflection case, the reflection-method method is invoked. This function creates 
an instance of the RMethod class, with the reflective information, and changes the class 
of the corresponding generic function to the mobject-generic-function class.

(defmethod reflection-method (method class mobject mmethod 
methname)

(progn
(make-instance 'RMethod

:method method
:class class
:metaobject mobject
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:metamethod mmethod)
;; makes an instance of the RMethod class 

(ensure-generic-function methname
:lambda-list (method-lambda-list method) 
:generic-function-class (find-class 'mobject-generic- 

function))))
;; changes the class of the corresponding generic-function

5. Conclusion

In this work a reflective architecture based on metaobjects for the representation 
of design patterns has been presented. In this architecture the metalevel represents the 
design patterns template of the control structure and the base level represents the specific 
elements of an application. The reflective level should manipulate the objects at the base 
level according to the architecture defined by the design patterns.

Each design pattern has been analyzed and its template of the control structure is 
represented by a metaobject class at the metalevel. When a pattern is used in an 
application the association between the base and metalevel is done. At run-time, when an 
object receives a message the reflection mechanism will take the decision whether or not 
redirects the thread of control to the metalevel, according to the applied pattern.

By the use of metaobjects for the representation of the design patterns it would 
be possible to maintain traceability to preserve patterns information for helping in the 
understanding and maintenance of applications. The representation of the design pattern 
template of the control structure is by metaobjects classes allows reusing this structure 
whenever the patterns are used in the same or different applications. If a new pattern is 
needed in an application, it is possible to incorporate dynamically a new design pattern. 
To do this, it is necessary to identify the pattern that we want to use and the application 
classes involved in the pattern, and codify some methods prescribed by the pattern.
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