
Electronic Journal of SADIO

http://www.dc.uba.ar/sadio/ejs

vol. 2, no. 1, pp. 5-16 (1999)

Object-Agent Oriented Programming

Analía Amandi1 Ramiro Iturregui1 Alejandro Zunino1

Universidad Nacional de Centro de la Provincia de Buenos Aires
Facultad de Ciencias Exactas - ISISTAN
Campus Universitario Paraje Arroyo Seco - (7000) Tandil - Buenos Aires - Argentina
email: {amandi,riturr,azunino}@exa.unicen.edu.ar

Abstract
Object-oriented programming has been used for building
intelligent agents, with the limitation it cannot represent
complex mental attitudes. With logic programming it is
possible to represent and infer relationships among mental
attitudes such as intentions, goals and beliefs, with limitations
in the usage of capabilities of action.
This paper presents two alternatives for integrating object-
oriented with logic programming, which enable agent
programming. Java and Smalltalk have been used for
providing one typed and another non-typed integration with
Prolog.

Keywords: agent-oriented programming, logic programming.

http://www.dc.uba.ar/sadio/ejs

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 6

1. Introduction
Agent-oriented programming (AOP) has been presented by Y. Shoham [Shoham, 1993]
as a specialization of object-oriented programming (OOP). In this context, objects are
considered the base for the design of intelligent agents.
The definition of objects as base for agent design is specially supported by two facts. The
first, agents possess a bounded set of action abilities that can be mapped to a set of
objects classes methods. The second, agents maintain an internal private state known as
mental state, which is equivalent to the internal and private state of the objects.
Far from Shoham's definition, many languages designed for agent programming (i.e.
AgentSpeak [Weerasooriya, 1995], Daisy [Poggi, 1995], Metatem [Fisher, 1994],
CooL [Kolb, 1995]) have been built using concepts from object-oriented paradigm and
many specific agents (such as [Vere, 1990] [Ciancarini, 1997]) have been implemented
in object oriented languages such as C++, Smalltalk or Java.
These experiences of agent language definitions based on concepts of object-orientation
and the development of multi-agent systems using object-oriented languages put in
evidence one limitation in the possibilities for managing mental attitudes. In those
experiences, mental attitudes are manipulated as simple data whose relationships are
freely interpreted in decision algorithms used by agents.

That limitation is imposed by the complexity of relationships among mental attitudes
such as beliefs, goals, preferences, intentions, commitments and possibilities. These
relationships among mental attitudes are exposed in several logic formalisms [Cohen,
1990] [Rao, 1991] [Linder, 1996] [Huang, 1996]. In spite of these theoretical
developments, complex relationships among mental attitudes are not found in multi-
agent developments.
Object-oriented programming resolves the problem that means the hiding of behavior of
each type of agents and administration of private knowledge. On the other hand, logic
programming allows logic clauses being used for representing mental attitudes.
This paper presents two experiences to integrate object-oriented programming and logic
programming as a base for agent development. The next section describes the two basic
lines of integration between object-oriented programming and logic programming.
Section 3 shows the integration between Java and a Prolog interpreter. Section 4 exposes
the integration of Smalltalk and Prolog and an example of agent programming. Finally,
at the end of this paper, the conclusions are presented.

2. Integration of Objects and Logic
In the tentative of taking advantages of the modularization and reusability provided by
object-oriented languages and of the inference of knowledge provided by logic
languages, several alternatives has been analyzed. These alternatives of integration can
be characterized in two main lines: extension of logic programming with object-oriented
programming concepts and extension of object-oriented programming languages with
logic programming concepts.

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 7

Extensión of logic programming with object-orientedprogramming concepts
The building of large systems with logic languages presents well-known problems of
performance. Furthermore, these systems cannot be reused because of their complexity.
For this reason, great efforts have been made for modularizing logic programs.

Several object-oriented languages have been designed to incorporate modularity to logic
languages. Generally, these languages have a Prolog-like syntax. As example, the
languages CPU [Mello, 1987], SPOOL [Fukunaga, 1986], LoO [Marcarella, 1995] and
SCOOP [Vaucher, 1988] can be mentioned. These languages show different alternatives
to incorporate modularity in logic programming from the use of object-orientation
concepts.
These languages define classes as a set of clauses, where each clause is a method.
Inheritance is managed in two different ways for these languages. For introducing these
two alternatives, let two classes A and B (B as subclass of A) composed by the following
methods in form of clauses:

Class A:
qualification(Student, 'A') :-passed(Student, finalTest).
passed(Student, finalTest) :-passed(Student, exercisel),

passed(Student, exercise2).

Class B:
passed(Student), finalTest) :-passed(Student, exercise4).

Inheritance is viewed from two points of view. The first considers that clauses in a
subclass with the same head that those clauses in the superclass not redefines those
methods. In this case, objects B use the clauses defined in A more the classes defined in
B. This conjunction of clauses for representing inheritance not accept the redefinition of
methods.
In the example, an object of class B has all the clauses defined in A and B available. In
the example, an object B has two ways of considering satisfactory student's final test:
when the student passes the exercise 1 and 2, and when he passes the exercise 4.
The second inheritance view is when a clause in a subclass with the same name that
those clauses in the superclass redefines those inhered methods. This combination of
clauses is one that rewrites clauses with the same name, allowing thus the redefinition of
clauses.
In the example, an object of class B has all the clauses defined in B more the clauses of A
with head different of the all clause of B are available. In the example, an object B has
one way of considering satisfactory student's final test: when the student passes the
exercise 4.
In the first alternative, a subclass can add new clauses with the same name, but it can not
redefine clauses; in the second, it is considered the alternative in which the subclass
redefine clauses with the same name, but it can not add clauses with the same name.
The examples above show two possibilities of combining logical modules by means of

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 8

inheritance: the first alternative was adopted by SPOOL [Fukunaga, 1986] and the
second by SCOOP [Vaucher, 1988]. Both combinations of logical formulae are useful in
the programming of object-oriented applications.

Extension of object orientedprogramming with concepts of logic programming

The object-oriented programming has certain advantages over other paradigms. These
advantages are information hiding, inheritance and modularity. However, in some
applications is necessary to manipulate knowledge responding to some kind of logic that
logic languages provide. For this reason, the possibility to add knowledge in a
declarative form to an object-oriented program became relevant. Examples of languages
that integrate knowledge in objects are shown in [Ishikawa, 1986] and [Amaral, 1993].
These languages allow the creation of a knowledge base in each object and the
management of it through a set of facilities.
Both of the extensions presented in this paper are in this last category. The reason is that
agents behave as objects from an action point of view and internally manage logical
relationships for making intelligent decisions.

3. JavaLog: integrating Java and Prolog
JavaLog is an integration of Java and Prolog that allows the resolution of problems using
both languages. This capability of interaction between Prolog and Java enable us to take
advantageous of the facilities of both paradigms.
This integration has been entirely developed in Java. The development of JavaLog has
been made in two stages. In the first stage, a Prolog interpreter was designed and
implemented in Java. In the second stage, the machinery that supports the codification of
Java methods in Prolog and the use of Java objects in Prolog programs was developed.
The next two subsections present the integration from Java to Prolog and from Prolog to
Java.

3.1. Java using Prolog
The possibility of writing Prolog code inside Java programs allows the production of
natural solutions to problems that requires logic inference. These problems are common
in intelligent agents since the mental attitudes of agents are supported by particular
logics.
By means of a preprocessor is possible to embed Prolog into a Java program. JavaLog
marks between the strings ”{%” and “%}” the Prolog code included in Java methods.
For example, the code below shows a Java method that is part of the implementation of
an intelligent agent. These intelligent agents generate plans to achieve their goals. Here,
the Prolog code between the marks generates an agent plan. A planning algorithm
written in Prolog generates the plan. In the example, the characters “#” are used to
include Java variables in the Prolog code.

LinkGraph links = new LinkGraph(50);
Graph constraints = new Graph(50);
links.initialize(PlList.empty());

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 9

boolean prologResult;
{% getActions(Domain),
planning(Domain, #links#, #constraints#). %}

This integration of objects and logic requires the existence of the following variables in
the scope where the embedded Prolog is located:

• A variable named prologResult of type boolean.

• An instance of the Prolog interpreter in prolog.

• All Java variables declared between “#”.
Another use of Prolog does not preprocess the code. It consists of the inclusion of atoms
with the form Si in the Prolog program, where Si denotes the i-th array element
composed of Java objects. When Si is used in the Prolog program, the i-th array element
is taken and it is converted to a Prolog-compatible object.
The example below shows a Prolog predicate that returns true if it can successfully send
the message size to the object in the location S0 (an instance of Person class) and the
predicate stores its result in the Prolog variableX. In this example, the variable X=’Ann’,
the name of the person that is sent as argument.

Object obj[] = {new Person};
prolog.call("send($0,age,[],X)", obj);

3.2. Using Java objects from Prolog clauses
This connection allows the use of Java objects in a Prolog program. A Java object is like
a Prolog atom, but it can receive messages. Prolog has been extended to send messages
to Java objects embedded in a Prolog program. By means of these extensions it is
possible to overcome the well-known Prolog's efficiency problems.
There are two ways to use Java objects in Prolog:

• Creating new instances of a class in a clause body in Prolog.

• Passing objects as arguments to the Prolog interpreter, and then using the
objects in a clause body.

The creation of new instances of a class is made by the new predicate. It receives three
arguments: Class, Arguments, Object; when new(Class, Arguments, Object) is evaluated,
it generates a new instance of Class using the constructor with the same number and type
of arguments as Arguments, finally it stores the new object in Object.
For example, the evaluation of new('java.util.Vector',[10],Vec) generates a new instance
of java.util.Vector using the constructor that receives an integer (in this case, the number
10) as argument, then it stores the new vector in Vec.
It is also possible to send messages to Java objects from a clause body using an especial
Prolog predicate: send. The send predicate allows the sending of a message to a Java
object. The message can include arguments. It supports two types of arguments: Prolog
objects or Java objects.
The evaluation of send(Object, Message, Arguments, Result) has the following steps:

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 10

1. It obtains the runtime class of the object Object.
2. It obtains the public member methods of the class of Object and its superclasses. After
that, for each method mi:
(a) If the name of the method m, is Message and the number of arguments of m, is equal
to the length of Arguments, then, each element ai of Arguments is converted to the same
class of the i-th method's formal parameter type.
(b) If no method matches, the method send fails.
3. The method mi is invoked with Arguments.
4. If m, returns an object, it is converted to a Prolog-compatible form.
When a Java object sends a message to an object it knows the class of the object, the
message's name and method's formal parameter types. These data are provided at
compile-time by the Java compiler. Prolog does not have all the information about
classes and methods, because the send predicate is not compiled. For this reason,
JavaLog obtains the information that describes classes and methods at runtime.
There are four rules that describe the compatibility between Java and Prolog types. These
rules are applied when the send predicate is evaluated, and the arguments of the message
include a Prolog object:
1. If the parameter type is consistent with the formal parameter type of the message, no
explicit conversion is done.
2. If the formal parameter type is consistent with String, the parameter is converted to a
String.
3. If the formal parameter type is consistent with int, a conversion of the parameter to
Integer is made.
4. If the parameter type is a wrapper of a Java object, compatibility between the
parameter and a Java object is verified.
When JavaLog evaluates the send predicate it only knows the receptor of the message,
the message name and the arguments. With this information, JavaLog obtains the object
class and its superclass. Then, it searches a method with the desired name and
compatible arguments. Finally, if the method is found, it is invoked.
The inclusion of Java objects in Prolog is made possible by using wrappers. A Java
object with an associate wrapper acquires the same behavior than a Prolog atom. In this
way, a Java object within Prolog is like an atom, but it can be used in the send predicate.
The next paragraphs show an example of the use of Java objects inside Prolog clauses:

There is an intelligent agent that needs to use a planning algorithm to generate a plan
to achieve its goals. The planning algorithm has been written in Prolog, using all its
capabilities in unification and backtracking. The result of the algorithm is a plan,
that is, a set of partially ordered actions that the agent has to follow. The plan is
represented by a directed graph. The planning algorithm uses another graph to detect
when a newly introduced action interferes with past decisions.
In the described situation, a typical representation for a graph using Prolog is a list
containing the edges. Each element of the list is a pair |a,.b,|that represents an edge
(ai,bi) in the graph. The algorithm needs to known the existence of an edge. This

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 11

action involves a search over all the list of edges. In Java, in contrast, the same
results can be achieved by using an adjacency matrix, in which an edge (ai,bi)
appears in the matrix as an element in the position i, j. Thus, to know the existence
of an edge in the graph using an adjacency graph it is only necessary to read one
position of the matrix.

By using JavaLog it is possible to implement the planning algorithm in Prolog taking
advantages of preconditions matching and backtracking and to use Java for
implementing the action graph taking advantageous of the Java efficiency achieved in
the representation and searching in graphs.
The usage of Java objects in a Prolog program requires a special treatment, since an
object with an associated wrapper does not have the same behavior than standard Prolog
atoms. A Prolog variable can change its state only once; on the other hand, a Java object
can change its state every time that it receives a message. It affects the normal way of
Prolog programs since objects changes their state during the normal recursion. The cause
of this is that a Java object with a wrapper associated is only a reference to a Java object.
The existence of Java objects inside Prolog clauses has one important implication: in a
recursive Prolog clause that uses Java objects the programmer has to consider the
necessity to save/restore Java objects at the beginning and end of a clause respectively.
Two implementations of the POP [Weld, 1994] planning algorithm have been made to
measure the improvements of JavaLog over traditional Prolog. One of the experiences
has been made using only Prolog. The other experience has been implemented using
JavaLog in which Prolog was used for implementing the general planning algorithm and
Java was used to manage the action graph of restrictions.
These two versions of the algorithm have been tested using the Sussman anomaly
problem as input. The implementations were executed using the following resources:
Pentium 233 Mhz, 32 MB of RAM, JDK 1.1.3 on GNU/Linux 2.0 and JavaLog.

After ten iterations, the results show the potentiality of the integration offered by
JavaLog:

• Using only Prolog: 20.124 sec.

• Using JavaLog: 4.047 sec.
The difference in performance is due to the representation of the directed graph of
restrictions in Java by using an adjacency matrix. In this way, the time O(n) (n is the
number of restrictions) that takes the process of consistency check in the Prolog version
of the algorithm is reduced to O(1) by combining Java and Prolog.

4. OWB: Integrating Smalltalk and Prolog

Object With Brain (OWB) integrates Smalltalk objects and Prolog clauses allowing
objects to define part of its private knowledge with logic clauses and methods
implemented partially or fully in Prolog. The design of this integration is based on the
following points:
1. Meta-objects which manage knowledge in logic format as a part of objects. These
objects have no conscience about meta-level that adds this functionality.

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 12

2. Logic modules that encapsulate logic clauses. These modules can be located in
instance variables and methods, and they can be combined for using in queries.
3. The possibility that objects can become clauses and that clauses can use objects as
constant type.
In the following section, details of the integration of Smalltalk-Prolog-Smalltalk are
exposed.

4.1. Smalltalk objects using Prolog
Simple objects, generally, have not the capability to manage knowledge in logic format.
The possibility that old or new objects manage this type of knowledge will make feasible
that these objects combine and infer knowledge without using complex algorithms. By
using meta-objects, this problem has been solved. A meta-object with knowledge
associated to a particular object allows the usage of a protocol defined to manage
knowledge in logic format.
On the other hand, in OWB, an object may have instance variables of any object class,
including objects of the LogicModule class. This class of objects represents logic
modules defined as sets of clauses expressed in Prolog syntax. A logic module
encapsulates a set of clauses and it can be combined in defined ways. The logic modules
aim the modularization of logic programs.
In this way, an object can have private knowledge expressed in logic form, through rules
and facts, which are available only in methods of the own object class. An object can
have zero, one or more instance variables referring clauses, allowing thus the separation
of concepts that the developer wishes to record in different variables. For example, let a
Professor class that define instance variables in which each professor can register his
way for evaluating students of a course, for accepting requests of new students and for
altering his schedule.
OWB allows classes to use logic modules as method parts. This enables classes to record
facts and rules that represent common knowledge for their instances.
The logic modules defined in class methods represent common knowledge of the objects
of that class. Those logic modules that are defined in the instance variables of objects
represent proper knowledge of each object. Figure 1 shows a distribution of logic
modules.

módulos lógicos
en objetos

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 13

Figure 1 - Logic modules.

An important point in the use of variables with logic knowledge is that an object can
have some instance variables to register different views of the same concept. These
views can be used separately or can be combined using operators defined for such goal.
For example, the Professor class above mentioned may have different instance variables
(a, b and c) to register different ways for evaluating changes of his schedule from some
request. In this way, a professor, in front of a particular situation, can use one of these
forms (achieved by one of these variables) or one of its combinations.
The following operators have been defined and implemented by combining logic
modules referenced by variables:

• re-write: let the knowledge bases a and b, “a reWrite b" define a logic module
that contains all clauses defined in b added to the clauses defined in a whose
head name is not the same of some clause of b.

• plus: let the knowledge bases a and b, “aplus b” define a logic module which
contains all clauses of a and b.

Figure 2 shows how an object may have multiple instance variables with logic
knowledge and how this object can be combined using the plus operator. The
addKnowledge() message make available the logic module sent as argument in
knowledge meta-object associated with the base object. This knowledge can be queried
from this moment.

a meta-object pass(Student, test):- pass(Student, ex1),

pass(Student,ex2).

addKnowledge: (ap1 plus: ap2)

variable ap1

zz

pass(Student, test):- |
pass(Student, ex1), aprobado(Alumno,ex2). É

an object
variable ap2

pass(Student, test):- pass(Student, ex4).

addKnowledge: (ap1 plus: ap2)y
Figure 2 - Combining logic modules.

Furthermore, an object can have defined in its class methods, which are written in
Smalltalk 80, both methods fully implemented in logic and methods that combine
Smalltalk and Prolog.
This integration allows the combination of Smalltalk and Prolog syntax in a method to
express declarative knowledge in declarative form and operational behavior in
procedural form. However, both forms of programming share the same world. For this

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 14

reason, both forms can access to the same information. So, objects can work with clauses
and clauses can work with objects.

4.2. Prolog using Smalltalk objects
In the body of Prolog clauses it is possible to send messages to objects, to create new
objects and to use objects as atoms.
Furthermore, a logic module in a method, which is between double braces, can use local,
global, or class variables and any method arguments directly in its clauses. The following
example shows how the student referenced by anStudent variable, which is passed as
parameter of eval method is used in qualification clauses.

eval: anStudent
{{qualification({anStudent}, 'A')

finalTest({anStudent, passed).
qualification({anStudent}, 'B') :-

finalTest({anStudent}, unpassed),
exercises({anStudent}, passed).}}

5. Conclusions
In this paper the basis for the development of software intelligent agents from the
programming point of view has been presented. Two alternatives were presented. The
difference between the presented options is based on the typed characteristics of
programming languages used. Smalltalk allows the easy usage of dynamic structures
such meta-objects. Java in contrast involves code preprocessing and the necessity to
consider types compatibility.
On the other hand, the fact of that the Prolog interpreter was implemented in the proper
language allows extensions to this interpreter. These extensions can supports the
management of mental attitudes.

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 15

6. References

[Amaral, 1993] J. Amaral, Um Estudo sobre Comportamento Inteligente, Technical
Report CPGCC of UFRGS, Porto Alegre, Jan. 1993.
[Ciancarini, 1997] P. Ciancarini, A. Knoche, D. Rossi, R. Tolksdorf, F. Vitali,
Coordinating Java Agents for Financial Applications on the WWW, Proc. of The
Practical Application of Agents and Multi-Agents Technology, Apr. 1997, pp.179-191.
[Cohen, 1990] P. R. Cohen, H. J. Levesque, Intention is Choice with Commitment,
Artificial Intelligence, Vol. 42, No. 2, 1990.

[Fukunaga, 1986] K. Fukunaga, S. Hirose, An Experience with a Prolog-Based Object-
Oriented Language, Sigplan Notices (Proc. of OOPSLA '86 Conference), Nov. 1986, pp.
224-231.
[Fisher, 1994] M. Fisher, Representing and Executing Agent-Based Systems, ECAI-94
Workshop on Agent Theories, Architectures, and Languages, Aug. 1994, pp. 307-323.
[Huang, 1996] Z. Huang, M. Masuch, L. Pólos, Alx, an Action Logic for Agents with
Bounded Rationality, Artificial Intelligence, Vol. 82, No. 1, 1996, pp. 75-127.
[Ishikawa, 1986] Y. Ishikawa, M. Tokoro, A Concurrent Object-Oriented Knowledge
Representation Language Oriente84/k: It's features and implementation, SIGPLAN
Notices, Vol. 21, No. 11, Nov. 1986, pp. 232-241.
[Kolb, 1995] M. Kolb, A Cooperation Language, Proc. of the International Conference
of Multi-agent Systems, 1995, pp. 233-238.
[Mello, 1987] P. Mello and A. Natali, Objects as Communicating Prolog Units. Proc. of
ECOOP'87 European Conference on Object-Oriented Programming, Jun. 1987, pp. 181
191.

[Marcarella, 1995] P. Marcarella, A. Raffaeta, and F. Turini, Loo: An Object-Oriented
Logic Programming Language, Proc. of Italian Conference on Logic Programming
(GULP '95), Sep. 1995.
[Poggy, 1994] A. Poggy, Daisy: an Object-Oriented System for Distributed Artificial
Intelligence, ECAI-94 Workshop on Agent Theories, Architectures, and Languages,
Aug. 1994, pp. 341-354.
[Rao, 1991] A. Rao, M. Georgeff, Modeling rational agents within a BDI-architecture,
Proc. of knowledge, representation and reasoning (KR '91), pages 473-484, April 1991.
[Shoham, 1993] Y. Shohan, Agent-Oriented Programming. Artificial Intelligence, Vol.
60, No. 1, Mar. 1993, pp. 51-92.
[Vaucher, 1988] J. Vaucher, G. Lapalme, and J. Malenfant, Scoop: Structured
Concurrent Object-Oriented Prolog. In Proc. of ECOOP'88 European Conference on
Object-Oriented Programming, pages 191-211. Springer-Verlag, August 1988.
[Linder, 1996] B. van Linder, W. van der Hoek, and J.-J. Ch. Meyer, Formalising
Motivational Attitudes of Agents: On preferences, goals and commitments. In M.
Wooldrige, J. Muller, and M. Tambe, editors, Intelligent agents II, pp. 17-31. Springer,
New York, 1996.

Amandi et al., Object-Agent Oriented Programming, EJS, 2(1) 5-16(1999) 16

[Weld, 1994] Daniel S. Weld, An Introduction to Least commitment Planning, AI
Magazine, Vol. 15, No. 4, 1994, pp.27-61.

[Weerasooriya, 1994] D. Weerasooriya, A. Rao, K. Ramamohanarao, Design of a
Concurrent Agent-Oriented Language, ECAI-94 Workshop on Agent Theories,
Architectures, and Languages, Aug. 1994, pp. 386-401.

