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ABSTRACT. A method for processing signals containing information about the state distri­
bution of a physical system is presented. The concomitant algorithm is specifically devised 
to suitably adapt lineal restrictions so as to take into account the presence of noise due to 
experimental errors. 

1. Introduction 
We call Statistical Signals the ones which convey information about systems that consist 
of subsystems of known properties whose relative proportions we want to find. We shall 
adopt a vectorial representation denoting a signal f as a vector If) and a measurement as 
a mapping that assigns to it a real number. 

For the sake of definiteness we assume that the system S we are interested in consists 
of a number M of subsystems Sn. Our purpose is that of finding out the relative population 
of S, assuming that the one corresponding to Sn is Cn ~ 0 (unknown). We take the view [1] 
that in order to study S one interacts with it by means of an input signal II), the interaction 
between the signal II) and S resulting in a response signal If). The corresponding process 
is represented according to 

WII) = If), (1) 

where the linear operator W portrays the effect that the system produces upon the input 
signal and can be decomposed in the following fashion 

M 

W= 2:CnWn, (2) 
n=l 

where WnII) = In). We work under the hypothesis that we know the response In) evoked 
by Sn and that this set of vectors gives rise to a linear space UM of dimension M. From 
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(1) and (2) it is clear that the response If) is contained whiting UM and carries informa­
tion concerning the numbers Cn we are tying to find out. In order to accomplish such a 
goal one needs to perform observations upon If}. The corresponding measurement pro­
cedure provides numbers {II, ... , fN} out of If} which can be regarded as the numerical 
representation of the signal. 

2. Treatment of a Numerical Representation 
Let's suppose that the numerical representation of If) is obtained in such a way that 
measurements are performed as a function of a parameter x which adopts the values Xi 

with (i = 1, ... ,N). If the measurements are performed independently, we can regard the 
Xi as defining an (orthogonal) set of vectors IXi) that span an N-dimensional linear space 
E. We associate this space with the measurement instrument [2]. 

Let us If)p be the projection of If) in E, Le. 

N 

If)p = 2)Xilf)l xi). (3) 
i=l 

The expressions (Xi If) in a general case represent bilinear forms [2] and they are supposed 
to be given by experimental observations, so what we really have are numbers ff affected 
by uncertainties 6.ff. Thus, instead of (3) we have, for the representation of If) in E 

N 

Ir)p = L:mXi). (4) 
i=l 

The problem we face is that of building up a vector IJ*) E UM 

M 

IJ*)= L: C~ln) (5) 
n=l 

out of the {If, i = 1, ... , N}-set, such that the C~ constitute a good approximation to the 
"true" Cn . For this purpose we construct the representatives in E of In) and IJ*) 

N M 

In)p = L:(x;!n)lxi) ; 1J*)p = L: C~ln)p. (6) 
i=1 n=1 

The nearest vector If*)p to Ir)p that can be built is the one that fulfills the least distance 
equations [2]. These equations can be written in the form 

M 

Fn = L: C;an,k 
k=1 

; n= 1, ... ,M. (7) 

where the an,k are constructed out of the projections ofvector In) in E while the Fn contains 
the experimental data 

N N 

an,k = L:(nlxi)(xilk) Fn = L:(xiln)ft. (8) 
i=l i=l 
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Of course, as the It are affected by the experimental uncertainties !l.1t so will the Fn be 
subjected to corresponding uncertainties !l.Fn . Furthermore, the set of conditions (7) do 
not restrict the C~ to the domain of the non-negative real numbers, so we will adopt an 
algorithm to obtain a non-negative set of Cn that fulfills the set of equations (7), within 
the margin allowed by the uncertainties !l.Fn. 

3. A Maximum Entropy Algorithm 
We start by writing the equations (7) in the form 

M 

Fk = A LPnak,n ; k = 1, .. . ,111f, 
n=l 

(9) 

where A ~ 0 is a constant such that L!l Pn = 1. We can now think of the weights Pn as 
defining a probability space over a discrete set of M events whose informational content is 
given by 

M 

H = - LPnlnpn. (10) 
n=l 

We regard each Fk in (9) as proportional to the mean value of a random variable that adopts 
the values ak,n j (n = 1, ... , M) with a probability distribution given by the {Pn}-set. As A 
is an unknown constant, we employ one of the equations, say the l-th one, to determine it 
and are now in a position to solve the set of equations in an iterative fashion. We start our 
iterative process, by employing the Maximum Entropy Principle [3] in each step in order to 
construct an "optimal conjecture", that improves upon the results obtained in the previous 
step. 

The zeroth-order approximation (first step) is devised by requiring that the zeroth­
order weights Pn maximize H. This entails p~O) = 11M so that we predict a zeroth-order 
value for the Fk. The quality of our conjecture can be measured by defining the "predictive 
error" fk as 

j k= 1, ... ,M. (11) 

In order to construct our first order approximation we select, among the fk' the largest one, 
let us call it fll. We shall then obtain the first-order weights p~l) by requiring that they 
maximize H with a constraint that ensures that the ll-th equation in (9) be fulfilled. We 
evaluate now the F!ll and the concomitant (new) set of fk. After selecting the largest one, 
f12, say, we obtain the p~2) by maximizing H with the constraint that both the equations 
(9) for k = 11 and k = 12 be fulfilled, etc ,etc. The j-th order approximation is given by 

(j) _ exp( - L1=1 Ai[F/ali,n - .F}ial,nJ) 
P .. - M j , 

L.=l exp( - Li=l Ai [.F}ali,. - .F};al,.J) 

where the j Lagrange multipliers Ai are obtained by solving the j equations 

M 

LPWl[.F}ali,n - .F}jal, .. ] = 0 j i = 1, ... ,j. 
n=l 

(12) 

(13) 
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The iterative process is to be stopped when 

(14) 

Let us assume that the "convergence" (14) is attained at the L-th iteration. With this 
solution we can evaluate the numerical values 

M 

(xil/(L)) = LC~L)(xiln) ; i = 1, ... ,N. (15) 
n=l 

If these conjectures are such that 

(16) 

the number of iterations can be augmented until the direction of the inequality is reversed. 
However, there is no guarantee that this type of convergence will always be achieved. Even 
more, in the realistic cases where we only can guess same estimations for the errors, to 
require that the direction of the inequality be reversed for all i it becomes a too stringent 
requirement. Although in the application we will discuss this type of convergence can be 
achieved, we wish to keep the discussion open so as to suitably adapt the "stop" point to 
the errors concomitant to any given particular model. 

4. Numerical Text 
Consider that we have a mixture of M = 11 different rare earth elements which satisfies 
a simple paramgnetic model [4], their respective proportions in the mixture being denoted 
by Pn. For any given n we list the corresponding quantum number Sn, Ln and I n in Table 
I and set In) == ISnLnJn). We take a series of N =40 values of the magnetic field at the 
temperature T, which generates the parameters Xi = H;/T ; (i = 1, ... ,40) The projection 
of vector In) for a given value Xi is given by the magnetization of the ion n in Table I 

(17) 

where JIB is the Bohr magneton, gn is the spectral factor for the ion n, and Bn(Xi) the 
appropriate Brillouin function[4] 

(18) 

( ) 2Jn + 1 h[2Jn + 1] 1 [ Xi ] Bn Xi = --J- cotg --J- Xi - -J cotgh -J . 2n 2n 2n 2n 
(19) 

Two sets of "weights" {Pn} and {p~} are listed in Table I which correspond to two 
hypothetical mixtures S and Sf. By recourse to these sets we have numerically simulated 
a series of measurements of the magnetization and have randomly distorted them within a 
3% range (bars in Fig 1) where a) correspond to Sand b) to Sf. 
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n Ion 8" L" J" p" p~ 
(1) 

pI" ll~ p,(2) Pn n 

1 Ce3+ ! 3 ~ 0.003 2661 O.OO() 0.549 535 0.457 2 
2 Pr3+ 1 5 4 0.004 -5966 0.003 0.329 -1246 0.296 
3 Nd3+ 1 6 4 0.005 6886 0.003 0.076 1432 0.110 2" 2" 
4 Pm3+ 2 6 4 0.006 -2979 0.005 0.042 -598 0.137 
5 Gd3+ 1 0 7 0.055 496 0.600 0.000 93 0.000 2 2" 
6 Tb3+ 3 3 6 0.156 1606 0.163 0.000 310 0.000 
7 Dy3+ §. 5 II 0.338 -8984 0.334 0.000 -1653 0.000 2 2 
8 H 03+ 2 6 8 0.301 9517 0.296 0.000 1751 0.000 
9 Er3+ 3 6 15 0.104 -2510 0.106 0.000 -477 0.000 2" 2" 
10 Tm3+ 1 5 6 0.019 -34 0.019 0.000 -4 0.000 
11 Yb3+ 1 3 7 0.005 -6124 0.004 0.000 -124 0.000 ? 'i 

Table I.For each rare-earth ion the pertinent quantum numbers are given. The relative properties in the 

rare-earth mixture are denoted by Pn (system 8) and p~ (system S').p~1) and p~ are theoretical 

results for system S that allow for a 3% error in the input data (see fig W). The p~ correspond to 

a least-square treatment and the p~1) to a first-order version of the present approach. p'; and p~2) 
are theoretical results for system S'. 

The algorithm of section 3 gives the weights p~1) (up to first order) for the mixture 
S and the weights p~2) (up to second order) for mixture S'. If we employ a Marquardt's 
algorithm [5] in order to get a real least-distance solution (it is known as a least-square 
approximation), we obtain the p~ and coefficients for the systems S and S' respectively. 
(All the pertinent figures are listed in Table I) 

6. Conclusions 
We have discussed a method, based upon the optimum conjecture derived from the Max­
imum Entropy Principle, that on the basis of measurements performed on the signal the 
system produces, allows one to find out its state distribution. The main idea is to build-up 
a signal belonging to a subspace determined by the system whose projection in a subspace, 
determined by the measurements instrument, is close to a vector constructed by experi­
mental observations. The algorithm presented has been specifically devised so as to deal 
with lineal restrictions. It was achieved by a Maximum Entropy criterion and the require­
ment that the distance between observed measurements and predicted measurements be 
bounded by experimental errors. In order to compare the present approach with a least 
square approximation a low dimension numerical test has been performed. A larger dimen­
sion realistic situation involving X ray diffraction has also been tackled but is not included 
in this paper [2]. In both cases the algorithm has reached a rapid convergence, and few 
parameters are needed. 
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Fig. 1.Magnetizat.ion vs external applied field at the temperatllre T .The error bars are the input data of 

the munerical test and allow for a 3% distortion. The continuous curve represents both the predictions 

obtained with the present. approach and with the least-squares approximation. Curve a) correspond 

to system 5 and curve b) to system 5' 
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