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S u m m a r y .  - -  It  is shown that the Faddeev equations can be treated 
in the frame of a three-body basis that takes into account the proper 
symmetries of the three-nucleon states. 

The angular -momentum reduct ion of the Faddeev  equations (1) can be 

carried out following different approaches. I f  the  f rame of the S U3 repre- 
sentat ion of the  three-part icle states (3) is used, it is known tha t  the three-body 
problem reduces to solving a coupled set of integral equations in only one va- 
riable. The  analysis of this reduct ion for spinless particles has been carried 
out by  LEE (a). In  this orbi ta l -momentum ease an intermediate  step through 
the  in t roduct ion of the Omn~s basis is explicitly used for the  reduct ion in order 
to obtain a symmetr ical  description. In  ref. (3) the way for including the 
spin and isospin of the  particles is also given. 

The main  purpose of this note  is to present  the  generalization of an alter- 

nat ive t r e a tm en t  of the orbi ta l-angular-momentum analysis, for any  value 

of l, of the  th ree-body  equations in the S U3 representation,  without  the above- 

ment ioned in termedia te  step. This generalization permits  us to take  into account 
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the internal  degrees of f reedom of the particles preserving the symmet ry  pro- 
pert ies of the basis• 

Le t  us s tar t  construct ing a spin basis for three  particles, symmetrical  under  
the  interchange of the part icle indices• Consider first the  usual coupled basis 

(1) ISM~; S~> = l(S~$2)$12S/~> = ~ [SxmxS2meSama>. 
{m} 

• <S~m~S~m2 IS1 $2 $12m1~>- <S~2mI2S3m31S~2S3SMz>, 

where the nota t ion  used is self-evident• 
Our first step is to impose the  spin states (1) to be invar iant  under the action 

of the  symmetr ic  group of three  objects, $3. We can build up the  elements 
of this group from the  transposit ions /)~2 --  (12)(3) and the cyclic permuta t ion  

C = (123). The operator/)13 acting on the basis (1) changes it in a phase factor 
(--)~+~-~, i.e. P~2 is diagonal in this basis. On the contrary,  the mat r ix  
elements of the cyclic permuta t ion  C are 

(2) (SMz; S12]C]SM~.; S'1~> = [(2S12 q- 1)(2S~2 ÷ 1)] ½. 

W being a l~acah coefficient. 
Since C is a un i ta ry  operator~ it can be diagonalized through a uni ta ry  

t ransformat ion U. Thus, we take  for our spin basis the eigenvectors of ma- 
t r ix  (2), i.e. 

(3) [SM~,; v> = ~ U~]SMs; I> , 

where v stands for a set of quan tum numbers  tha t  labels the basis unambi- 
guously. For  the most interest ing case of three  spin-½ particles coupled to 
S = ½, the symmetr ical  basis is determined by  

(4) { [ S M s ; v = l >  = 2-½([SM~; I = O > q - i I S M z ; I : l > )  , 

[SMs; v = - - 1 >  = 2-½(i[SMz; I =  O> q-[SM~; I ~ - 1 > )  

with the vectors satisfying (*) 

(5a) P121sM~; v> = i~,lSM~; - -  v > ,  

C]SMz; v> = exp [2~iv] ,SMs; v>. (5b) 
/ o  ] 

(*) Clearly the complete symmetry is obtained when the usual procedure of Young 
tableaux is applied to the basis. We do not need it explicitly in our calculations. 
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I t  will not  escape the reader's a t tent ion that~ in the case of higher spin, an 
additional set of operators will be needed in order to break up all the possible 
degeneracies (~). 

I t  is clear tha t  a similar analysis can be carried out in connection with the 
isospin. We call the resulting isospin basis I//~; ~>- 

Having at our disposal the proper spin basis, our next  step is to couple it 
with the orbital SU3 basis obtained from Dragt~s (3) results, to get the 
total-angular-momentum basis. Formal ly  

(6) lP3~:v; ZSJM)  = ~ ( Z M ~ S M ~ I L , . q J M ) I P ~  , IM~)]SMs; ~,) , 
Mz,, M,s 

where 2~-- = (2, #~ ~o) are the eigenvalues of the Casimir operators of SU3 and 
the additional indices required to break down all the degeneracies; Z is the or- 
bital angular momentum and p3 -- ~ _+ ~/~ ~_ ~3 3 = ~<1>3 g_ ~3)3 the kinetic energy 
in the centre-of-momentum frame of reference. 

When projected in momentum space, the three-body wave function is wri t ten 
in terms of p2, the  Dalitz-Fabri  co-ordinates and the Euler  angles. These va- 
riables describe the  size, shape and orientation of the triangle defined by  the 
tips of the momentum vectors of the particles (henceforth called the momentum 
triangle). The body-fixed reference frame is chosen with the z-axis being 
noImal  to the momentum triangle plane~ and the x- and y-axis lying along the 
principal directions of the inertia tensor of the momentum triangle (3). 

The t ransformation brackets from the momentum basis to the S Us basis 
with spin can be wri t ten as follows: 

i = l  J K  "~J (7) (~<1)~(3); S~m~lp3;t~'v; JM)  A p3 Z 
K 

where explicit use of the group properties of rotat ion matrices has been done 
~nd where we have defined 

(s) 

(9) 

JK 

K L E S  

(Spm~lSKs; ~> = ~, (Stm~I(S, S3)ISKs). 
I 

In  eq. (8) ,  ,~L ga~ (~, ~0) stands for the (0, ~0)-component of the normalized << an- 
gular ,)eigenfunctions introduced in ref. (3). The normalization factor A is 
chosen such tha t  

(4) J .  M. L~vY-LEBLOND and  M. LEVY-NAHAS: Journ.  Math. Phys . ,  6, 1372 (!965). 
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We shall need la ter  a ro ta ted  f ixed-body system, such tha t  its z-axis lies 
along the  momen tum p(.2) (which is proport ional  to q3)- In  this case the wave 
funct ion curt be wri t ten  as 

• J K  ~ J  ~ ~ J  (11) (~(1)~(2); Szmplp~2,%, JM) = A p,2 ~G~(~cf) ~,~.~,(~)~E,~(R), 
K K '  

= (~(2), ~/2, 0) being the necessary rotat ion.  Certainly, similar rotat ions on 
the  other  momen tum vectors can be performed if needed. 

Having obta ined the  appropria te  symmetrical  basis for three particles 
with spin, we shall show how the Fuddeev  equations look in terms of the 

~ngular-momentum reduct ion we have just presented. 
We shall restr ict  ourselves to the case of identical particles in order to sim- 

plify the algebraic manipulations.  The generalization to nonidentical  particles 
follows the  same steps in a straighforward manner.  In  the present  case, the 
Faddeev  equations reduce to only one operator  equation 

(12) ~(z) = 37(z) + 27(z)Go(z)~r(z), 

where T(z) is the total  three-body scattering operator,  Go(z) is the resolvent and 
t'(z) is the two-body scat ter ing operator.  When mat r ix  elements of eq. (12) 

are considered, the main problem is the evaluation of the  quant i ty  

(13) 0 ~ , ~  = (P~).~;. JMtT(z)lp~2~'~'; J 'M'} .  

~ o w  we use the  well-known expression for the two-body t -ma t r ix  in the three- 
part icle space 

! 

(14) (p(~)p(~); Szm~lt(z)lq(~)q(2); S~m~} : 

- -  (~(p(~)--q(:))(S~m~lS3m'~} (p(~); S~m~ft(z--~(~))lq(~) ; S~m',} (~ 1, 2). 

I f  we define 

dd = ~d~d~v, dR = sinfldfld~dy, {K} {K, K', K, K'} ,  

and perform the integrations over P1 ~ and Q~, we obtain 

(15) 
~_ A p.2Q~ Oi~"'= m£(~'~ ) -4- fdAdRf dA'dR'~(~(2)-~`~))(s3m~'S~m;~" 

~2 f2' 

S J K  J ' K '  ! r J gcJ '  l J ~ $ J ~  ~'~! 

• (~('); S~m,~lt(z'= z--p(2>)l~(~) ; S.,m',), 

where we have used explicitly the t ransformat ion bracket  {]1). 

32 - 1l  N u o v o  C i m e n l o  A .  
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The angles R and R'  and the kets ]S~m,> and [Same} in eq. (15) are 
related by means of a rotat ion of the body-fixed system through the two-body 
scattering angle. Introducing now the partial-wave decomposition 

(16) <~(x); S~,m~,[t(z,)l-~(,; S~,m'~>=- ~, Y~m(~'~)) :Y*~'m',~,~̀x)~'~''~(~', ,,, ,. , q('; z').  

with {D} -- {1, l', m, m', $1~, ml~, j}, we can carry out the integration over the 
Euler  angles, showing explicitly the conservation of the total  angular momen- 
tum.  We then  obtain 

f f f f (17) Oa~.x~'-----\8 8 ] 4(2Jq-1)  (~:J'(~' ~d~ d~ 0'd~' d~' .  
0 0 0 0 

. 4v~  nips(1 + q cos~) -Q~(1 + q' cos ~')] 
@ 

.P(1 + qeosq~)~ ,.z'.~,,,~ ~-~,,.~/~ ~) q(l~; z') 

• ~ , ~ , , : Z ~ , . , ( ~ , ;  o)~* ,R,,~). o) ~ g ~ ( Q ,  ~'~ ' t ' ,m '~ l  ~ 
~a,m' ' Eb,E$,E',E' 

. = .~ ,+~_ ,.~+,~(~; ~/2; 01~*(~,(~'; ~/2; 0) ,  

where K'~ ---- K ' - -  K s + m'--  m and 

5 = <S,~(K s -  K '  + m'), S~(K'--  m')]8,~8~SK~>. 

• <S,~SaS(K~ + m - - m ' ) ] S , ~ ( K s - - K ' - / m ) ,  Sa(K'--m')>.  

• <lm, S**(Kz-- K '  + m')]lS,, j(K~ --  K '  ÷ m + m')>- <LK~SKs[LSJ(K ~ + Ks)>" 

• <I 'S**~(Kz--K'+ m + m')l l 'm'  , Sl ,(m ~- K z - - K ' ) > .  

• < L S J K ' I Z ( K ' - - K ~ -  m ' - -m) ,  S ( K s +  m - - m ' ) } .  

The delta-function tha t  appears in the above equations is eliminated when 
the integration over the Dalitz-Fabri co-ordinates is performed. In  order to 
show this explicitly and, at  the same time, recast eq. (17) in a more symmetric  
way, we introduce Cartesian co-ordinates in the Dalitz plot through 

x = e cos ~ ,  y = e sin ~v. 

Thus the final expression for the matr ix  element (13) takes the form 

,1 Oz,~,'---- 2 J  q- 1 s,, t,v,j z~,Zs 
(181 ~' ~,,,O~,~,PZQZ ~ U*" U ~' 

m , m '  ~K',-~' 
+I +I 

[P~O- + x)p + x )] Sy(x)S*/.. '(x')~,~;, '(p(.(x), q(.(x), z'(x)), 
--1 --1 
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where we have ia t roduced 

(19) 

(20) ~,,~a,(X, . ,  , - , a , , ,  , y , Y ~ , ( f l " ' ;  0 ) .  

We note  tha t  in eq. (18) the  ment ioned &funct ion only implies a restr ict ion 
on the  (x, x')-integration. I t  is also worth mentioning tha t  the integrat ion in- 
volved in the definitions of ~ ,q*~'~'~ '~ S)" (x) and _j, ~x , ,  eqs. (19) and (20) respectively, 
can be performed in many  cases analytically.  This means a considerable sim- 
plification in computing the kernel  and the inhomogeneous t e rm of the Faddeev  
equation, t ha t  follows immedia te ly  from eq. (18). As we have already men- 
tioned, the inclusion of the  isospin does not  offer any  difficulties: we have to  
consider the direct p roduc t  of our to ta l ly  symmetr ic  IPZ2~v; JM> basis with 

the above-ment ioned isospin basis. 
The awe-inspiring set of channels t ha t  could be present  in eq. (18) is not  

a serious computat ional  trouble, a t  least for the  case of identical particles. 
Indeed,  the number  of channels is considerably reduced by  the  requirement  of 
an t i symmet ry  of the three-nucleon states. This last coadition requires 

(21) 

and 

Pl~[~ ~, v, ~>~ = ( - ) 1 ~  ~, v, e>,, 

(22) c l  ~ ,  , ,  e>~, = I ~ ,  ~, e>~.  

F ro m  eq. (5b) and relat ion (22) we can obtain the restr ict ion 

(23) ~ ~- v ÷ q --= 0 (mod 3) 

on the symmetr ic  quan tum numbers  defining our state. This means a reduct ion 

of the number  of ehaImels appearing in eq. {18). At  the same time, condition (21) 

together  with (5a) implies, for the spin and isospin case, 

(2~) I x ~ e > ~  = 2 - ~ [ I x ~ e >  + ~Q 14 - ~ - ~ - e>] ,  

which halves the number  of physical  channels to be considered. Similar restric- 
t ions hold for the  spin (or isospin)-zero case. 
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I f  we are interested in the calculation of three-nucleon low-energy para- 

meters,  we shall find tha t  only small values of 2 are important .  This means 

that  the rate of convergence found for this symmetr ical  basis is extremely 
good (5). 
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• R I A S S U N T O  (*) 

Si dimostra eho le equazioni di Faddeev possono essero trattate nel quadro di una baso 
di tre corpi ohe tiene conto delle simmetrie proprie degli stati di tre nucleoni. 

(*) Traduz io~e  a cuva della Redazione.  
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