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Symmetrical Basis for Faddeev Equations.
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Summary. — It is shown that the Faddeev equations can be treated
in the frame of a three-body basis that takes into account the proper
symmetries of the three-nucleon states.

The angular-momentum reduction of the Faddeev equations (!) can be
carried out following different approaches. If the frame of the SU, repre-
sentation of the three-particle states (2) is used, it is known that the three-body
problem reduces to solving a coupled set of integral equations in only one va-
riable. The analysis of this reduction for spinless particles has been carried
out by LEE (3). In this orbital-momentum case an intermediate step through
the introduction of the Omnés basis is explicitly used for the reduction in order
to obtain a symmetrical description. In ref. (]) the way for including the
spin and isospin of the particles is also given.

The main purpose of this note is to present the generalization of an alter-
native treatment of the orbital-angular-momentum analysis, for any value
of 1, of the three-body equations in the ST, representation, without the above-
mentioned intermediate step. This generalization permits us to take into account
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SYMMETRICAL BASIS FOR FADDEEV EQUATIONS 495

the internal degrees of freedom of the particles preserving the symmetry pro-
perties of the basis.

Let us start constructing a spin basis for three particles, symmetrical under
the interchange of the particle indices. Consider first the usual coupled basis

M) SM; 8> = (5382 88D = 3 |Sym, Sy, Syms)
{m}
(8 ymy 8ymy|8; 858 1,my) - (B12Mys 83my |81, 8,8 M >

where the notation used is self-evident.

Our first step is to impose the spin states (1) to be invariant under the action
of the symmetric group of three objects, §,. We can build up the elements
of this group from the transpositions P,, = (12)(3) and the cyclic permutation
C = (123). The operator P,, acting on the basis (1) changes it in a phase factor
(—)5+& 5 4. P, is diagonal in this basis. On the contrary, the matrix
elements of the cyclic permutation C are

2) (SMys; 81|CISM; 81> = [(281 + 1)(285 + 1)
'(_)S'+S’I_SW(8281SS:1§ S{ZSIZ) ’
W being a Racah coefficient.
Since € is a unitary operator, it can be diagonalized through a unitary

transformation U. Thus, we take for our spin basis the eigenvectors of ma-
trix (2), 4.e.

(3) ISM vy =3 Us|SMg 25,
P

where » stands for a set of quantum numbers that labels the basis unambi-
guously. For the most interesting case of three spin-{ particles coupled to
8 =1, the symmetrical basis is determined by

SMv—=1> =27X|8M,; T=0>+ilSM; Z=1)),

4
® ISMgv=—1)=2i|SM; X =0>+ [SM; E=1))

with the vectors satisfying (%)

(ba) Pu|SMg;vp = w|SMg; —v)
(5b) C|SMy; vy = exp [2’;—”] ISM; 9> .

(*) Clearly the complete symmetry is obtained when the usual procedure of Young
tableaux is applied to the basis. We do not need it explicitly in our calculations.
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It will not escape the reader’s attention that, in the case of higher spin, an
additional set of operators will be needed in order to break up all the possible
degeneracies (4).

It is clear that a similar analysis can be carried out in connection with the
isospin. We call the resulting isospin basis [I1,; g).

Having at our disposal the proper spin basis, our next step is to couple it
with the orbital SU, basis obtained from Dragt’s (?) results, to get the
total-angular-momentum basis. Formally

(6)  |P2A%y; LSIMY = 3 (LM, SMLSJTM|P*A*% LM|SM,; v,

Mr, Ms

where A*= (4, u, w) are the eigenvalues of the Casimir operators of SU, and
the additional indices required to break down all the degeneracies; L is the or-
bital angular momentum and P2=g + @2 -+ ¢Z = p'"* -+ p'* the kinetic energy
in the centre-of-momentum frame of reference.

When projected in momentum space, the three-body wave function is written
in terms of P?, the Dalitz-Fabri co-ordinates and the Euler angles. These va-
riables describe the size, shape and orientation of the triangle defined by the
tips of the momentum vectors of the particles (henceforth called the momentum
triangle). The body-fixed reference frame is chosen with the z-axis being
normal to the momentum triangle plane, and the z- and y-axis lying along the
principal directions of the inertia tensor of the momentum triangle (2).

The transformation brackets from the momentum basis to the SU,; basis
with spin can be written as follows:

5(P2 — i ﬁz(i))

) POPD; Sgmg|PPA%v; JMy = A + S Gié(op) D3x(R)
K

where explicit use of the group properties of rotation matrices has been done
and where we have defined

(8) 5 (0p) = 2, 9iF*(0p)<8;my|SK ; vy (LK, SK |LSJK),
KLEs
(9) <8ymy|SK ; vy = 2 (8pmyg|(8,8,) ZSKy .

In eq. (8), gix*(o, ) stands for the (g, ¢)-component of the normalized « an-
gular » eigenfunctions introduced in ref. (?). The normalization factor 4 is
chosen such that

(10)  <P2A%», LSTMIQ2A%v's L'S'J' M"> = 8(P* — Q%) 803000, 050 8,0 By -

(% J. M. LEvy-LEBLOND and M. Levy-Nauas: Journ. Math. Phys., 6, 1372 (1965).
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We shall need later a rotated fixed-body system, such that its z-axis lies
along the momentum p'® (which is proportional to q;). In this case the wave
function can be written as

( P2 z ﬁzm)

(11)  FVP?; Symy| P22, JM>—Av———ZG X7 (&) (R),

E= (69, /2, 0) being the necessary rotation. Certainly, similar rotations on
the other momentum vectors can be performed if needed.

Having obtained the appropriate symmetrical basis for three particles
with spin, we shall show how the Faddeev equations look in terms of the
angular-momentum reduction we have just presented.

We shall restrict ourselves to the case of identical particles in order to sim-
plify the algebraic manipulations. The generalization to nonidentical particles
follows the same steps in a straighforward manner. In the present case, the
Faddeev equations reduce to only one operator equation

e

(12) T(2) = 31(2) + 21(2) Gol2) T(2)

where T(z) is the total three-body scattering operator, Gy(z) is the resolvent and
#(z) is the two-body scattering operator. When matrix elements of eq. (12)
are considered, the main problem is the evaluation of the quantity

(13) O = (P2 )%y JMIE(2)Q2 2% v'; ' M .

Now we use the well-known expression for the two-body 7-matrix in the three-
particle space

(14) Pp%; Sﬁmﬂl’t\(z)lq(l)q(z); Sﬂm;;> =
= 8(p® — q){(8;m4|83ms> {pV; 8, m jtz —P*P) g5 8, m)> (¢ =1,2).

If we define
a4 =pdodp, AR =sinpdfdady, {K}={K,K,K, K},

and perform the integrations over P? and @7, we obtain

fdA dedA dR/ ( ——g‘?)) <Sam3|S3mal>

8 8

(15) O = (A A*)PQ

2 Gittle, G & 9 DoalR) Dile (R Dl §) 9558
¥4
P Bamalt(z' = 2 — p#)|gV; Sami

where we have used explicitly the transformation bracket (11).

32 — 11 Nuovo Cimento A.
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The angles B and R’ and the kets |S,m,> and [S;my> in eq. (15) are
related by means of a rotation of the body-fixed system through the two-body
scattering angle. Intreducing now the partial-wave decomposition

(16)  BD; S,mJt() ]G5 Bumyy = 3 Vin(@P) X7, @) T 30D, ¢; 2')
{2
' <Sls2slzm12|slmlszm2> ‘ <8182812m{2|5’1m182m;> :
~{Im Slzmlzns1zjjz> <l’ Sm?.jz]l’m’ S1zmiz>

with {2} ={I, V', m, m', 83, My, j}, We can carry out the integration over the
Euler angles, showing explicitly the conservation of the total angular momen-
tum. We then obtain

A A%\ 27872 P2Q?
(17) 01"‘,,1“' = (8 8 ) n(2:;_+ 1Q 61! 6L{M f@ded¢fQ dQ quj

' O[P*(1 + g cosp) —Q*(1 + ¢’ cos ¢')] TS (p, g0
V2 P + pcosg)t t.z%.f W €% )

mUs,.EYmﬂ‘” )Yy w(B®;0) 3 g (e, ¢)giEe(es @)

KL EsK K

"B Dy i i (E5 [25 0)9;:,.3'(5’; (25 0) ,
where K, = K'— K, + m'—m and

E = {(8,(K,— K 4+ m'), S(K'—m")|8:,8, 8Ky
(83283 8(Ky + m—m")|Syu(Ky— K' 4 m), 83(K'—m')-
“{Amy 8y (Ky— K'+ m") |18, j(K,— K'+m + m')) -{LK SK |LSJ(K,+ K-
U By j( K y— K+ m + m)) ', Sypm + Ky — K-
“(LSJK'|L(K'— K ,+ m'—m), S(K,+ m—m')) .
The delta-function that appears in the above equations is eliminated when
the integration over the Dalitz-Fabri co-ordinates is performed. In order to

show this explicitly and, at the same time, recast eq. (17) in a more symmetric
way, we introduce Cartesian co-ordinates in the Dalitz plot through

x=ypcos ¢, y=opsing.

Thus the final expression for the matrix element (13) takes the form

v 164/2n3 (A-A* p— -
(18)  Ojsgar= 2J\:L715( )‘Sn S P2Q2 Y UT;,UTI.E 2 E-

i ,O[PYL + @) — Q%1 +2)] (w,  cnpn "y
d LA VA () TS (p(3), ¢ 0(), 2 ’
1l fd e ) s ) i (), 4%, # )
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where we have introduced

Vst
(19) S.zl‘z“(x) - fdygll{'+m—m',KL+Ks(§(2)’ ﬂ/2, O)g;fxn(w’ ('/) ) Yl'ﬂl(ﬁ(”; 0) ?
—Vics
+V1og
(200 SFA(@) = [dy D (s a2 0)gHH', y) X585 0).
— l—x"

We note that in eq. (18) the mentioned §-function only implies a restriction
on the (x,x')-integration. It is also worth mentioning that the integration in-
volved in the definitions of 8%**(z) and S8/ *(z'), eqs. (19) and (20) respectively,
can be performed in many cases analytically. This means a considerable sim-
plification in computing the kernel and the inhomogeneous term of the Faddeev
equation, that follows immediately from eq. (18). As we have already men-
tioned, the inclusion of the isospin does not offer any difficulties: we have to
congider the direet product of our totally symmetric |P2A%v; JM) basis with
the above-mentioned isospin basis.

The awe-inspiring set of channels that could be present in eq. (18) is not
a gserious computational trouble, at least for the case of identical particles.
Indeed, the number of channels is considerably reduced by the requirement of
antisymmetry of the three-nucleon states. This last condition requires

(21) P2 v, 0= (—)A%, 0,
and
(22) CW, v, Q)A = M“} v, 0>4 .

From eq. (5b) and relation (22) we can obtain the restriction
(23) u-+v+p=0 (mod 3)

on the symmetric quantum numbers defining our state. This means a reduction
of the number of channels appearing in eq. (18). At the same time, condition (21)
together with (5a) implies, for the spin and isospin case,

(24) |Ave) o = 27 |hwve) + volh —p—» —o>],

which halves the number of physical channels to be considered. Similar restric-
tions hold for the spin (or isospin)-zero case.
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If we are interested in the calculation of three-nucleon low-energy para-
meters, we shall find that only small values of A are important. This means
that the rate of convergence found for this symmetrical basis is extremely
good (5).
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® RIASSUNTO ()

Si dimostra che le equazioni di Faddeev possono essere trattate nel quadro di una base
di tre corpi che tiene conto delle simmetrie proprie degli stati di tre nucleoni.

(*) Traduzione a cura della Redazione.
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