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Abstract
A set of 263 plant-derived compounds with larvicidal activity against Aedes aegypti L. (Diptera: Culicidae) vector is collected
from the literature, and is studied by means of a non-conformational quantitative structure-activity relationships (QSAR) ap-
proach. The balanced subsets method (BSM) is employed to split the complete dataset into training, validation and test sets. From
26,775 freely available molecular descriptors, the most relevant structural features of compounds affecting the bioactivity are
taken. The molecular descriptors are calculated through four different freewares, such as PaDEL, Mold2, EPI Suite and QuBiLs-
MAS. The replacement method (RM) variable subset selection technique leads to the best linear regression models. A successful
QSAR equation involves 7-conformation-independent molecular descriptors, fulfiling the evaluated internal (loo, l30%o, VIF
and Y-randomization) and external (test set withNtest = 65 compounds) validation criteria. The practical application of this QSAR
model reveals promising predicted values for some natural compounds with unknown experimental larvicidal activity. Therefore,
the present model constitutes the first one based on a large molecular set, being a useful computational tool for identifying and
guiding the synthesis of new active molecules inspired by natural products.
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Introduction

Mosquitoes are one of the deadliest arthropods ever known
worldwide; their ability to carry and spread out infectious

diseases on the human race leads annually to more than one
million deaths in risk zones (tropical and subtropical coun-
tries). Several vector-borne diseases such as dengue, yellow
fever and Chikungunya fever (flaviviruses) are transmitted by
the genus Aedes, mainly the Aedes aegypti (Diptera:
Culicidae) mosquito, which is also responsible for transmit-
ting Zika virus (ZIKV) (Department of control of neglected
tropical diseases/WHO et al. 2017).

The predominant mode of transmission for ZIKV is
through the infected mosquito’s bite. However, this virus
may also be propagated by sexual contact, blood transfusions
and perinatal transmission (ECDC 2017). The ZIKV has be-
come increasingly notorious due to the fact that it coincides
with increased microcephaly cases, the Guillain-Barré syn-
drome (GBS) and other neurological disorders associated with
intrauterine central nervous system (CNS) infection
(Srinivasan et al. 2015). Hence, the A. aegypti vector is con-
sidered a potential threat to the world public health.

There exist three main strategies for controlling and
preventing the transmission of vector-borne infections: vaccines,
antivirus and mosquito control programs. Unfortunately, to date,
these methods have not proven to be successful. Within the mos-
quito control programs, larvicidal products are found to be effec-
tive, although their repeated and indiscriminate use has triggered
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negative environmental impacts, the development of resistance
in mosquito populations and bioaccumulation in non-target or-
ganisms (Lima et al. 2015; World Health Organization
(WHO)1992). Consequently, many studies have focused on de-
veloping new strategies based upon plant-derived larvicides and
their analogues, which allow performing a selective, environ-
mentally friendly and effective larval control, being renewable
and biodegradable feedstocks with low mammalian toxicity
(Kim et al. 2013; Yu et al. 2015).

It is well-known that the experimental design of new active
natural larvicides is limited, as the biological and clinical as-
says require time and economical resources. Therefore, the
search, identification and development of new selective and
potent biomolecules against vectors have usually been
assisted by in silico techniques.

The main hypothesis behind the quantitat ive
structure-activity relationships (QSAR) theory (Hansch
et al. 1995) relies on the fact that the molecular struc-
ture of a chemical compound determines its observed
properties. The QSAR formalism has proved to be a
successful computational tool for studying biological,
organoleptic and physicochemical properties of interest.
The essence of any QSAR study is not to predict the
involved mechanism of action but the property, which is
a final result of this mechanism.

A QSAR model allows finding a logical mathematical re-
lationship between the biological response (bioactivity) and a
set of representative molecular descriptors capturing specific
structural information of the constitutional, topological, geo-
metrical or electronic type. Such correlation between the mo-
lecular descriptors and a biological activity may be established
through linear or non-linear techniques, leading to the best
possible structure-activity parallelisms (Hansch and Verma,
2009; Katritzky and Goordeva 1993; Roy et al. 2015;
Devillers et al. 2014).

Nowadays, fewQSAR studies have been focused on natural
or semi-synthetic classes of molecules with larvicidal activity
against A. aegypti. Besides, all the published models are based
on small-size datasets (Devillers et al. 2014; Da Silva et al.
2015). In 2014, Scotti and co-workers develop a chemometric
study with 55 larvicides. Principal component analysis (PCA),
consensus PCA (CPCA) and partial least squares regression
(PLS) methods are employed for analysing 128 3D-molecular
interaction fields (MIFs) with GRID force field descriptors ob-
tained from VolSurf+ program, establishing a suitable model

with correlation coefficients: R2
train ¼ 0:71;R2

test ¼ 0:68, (with

14 compounds) and R2
LOO ¼ 0:67 through the PCA technique

(Scotti et al. 2014). Subsequently, a set of 31 monoterpenes
with acute toxicity against the A. aegypti larvae is studied by
Alencar Filho and co-workers in 2016 (Alencar Filho et al.
2016), bymeans ofmultivariable linear regression (MLR) tech-
nique. They find a QSAR model with 3-molecular descriptors

from E-Dragon that has good predictive ability
R2
train

� ¼ 0:83; Strain ¼ 0:19;R2
test ¼ 0:83 with 7 moleculesð Þ and R2

LOO ¼ 0:77.
Recently, we have performed a QSAR study for 62 plant-
derived compounds against Zika A. aegypti vector (Saavedra
et al. 2018a). The replacement method (RM) variable subset
selection technique coupled with MLR (Duchowicz et al.
2006) proves to be useful for exploring 4885 Dragon 6 descrip-
tors. A suitable QSAR model involving five descriptors
with acceptable predictive capability for both the training
set N train ¼ 52ð ;R2

train ¼ 0:69; Strain ¼ 0:28Þ and the test

N testð ¼ 10;R2
test ¼ 0:78; Stest ¼ 0:39Þ is established.

In a next study, we have proposed an alternative QSAR
model for the same molecular set (excluding two molecules
with high experimental measurement error), with the purpose
of applying non-conformational descriptors calculated with
freely available softwares. The RM technique is applied on
18,326 conformation-independent descriptors (Saavedra et al.
2018b). Thus, a robust and reliable 5-descriptors model
N train ¼ 50;R2

train ¼ 0:84; Strain ¼ 0:20
� �

is achieved with a

high predictive capability N test ¼ 10;R2
test ¼ 0:92; Stest ¼ 0:23

� �

that surpasses previously published ones.
The main objective of the present work is based on our

continuous efforts for developing predictive QSAR models
that contribute to the A. aegypti vector control. It is our pur-
pose to establish a mathematical model that predicts the larvi-
cidal activity of a molecular structure set based on 263 plant-
derived compounds, which are extracted from the literature,
thus demonstrating the structure-activity hypothesis of QSAR.
In this way, the so-developed QSAR model may serve as a
useful computational tool for identifying and guiding the syn-
thesis of new active molecules inspired by natural products.
Simple and interpretable models solely based on 1D and 2D
structural information are established, employing several free-
ly available programs, such as PaDEL (Yap, 2011; PaDEL,
2018), Mold2 (Hong, et al. 2008), EPI Suite (US EPA, 2016)
and QuBiLs-MAS software (Valdes-Martini, 2012).

Materials and methods

Experimental dataset

The QSAR study is performed on 263 plant-derived mole-
cules with larvicidal activity against A. aegypti. This molecu-
lar set comprises structurally diverse larvicidal compounds,
including quinones, polyketides, phenylpropanoids, couma-
rins, flavonoids, terpenoids, alkaloids and their analogues.
The larvicidal activity is defined as the median lethal concen-
tration LC50 (μg mL−1), which represents the concentration at
which 50% of third or early fourth instar larvae show lethal
effects after 24 to 48 h of treatment with the testing solution.
The dataset is collected from the literature (Geris et al. 2012;
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Dias and Fernandes 2014; Kishore et al. 2014) and for model-
ling purposes, each LC50 value is converted into the logarith-
mic scale (log10LC50) The complete list of molecules studied
here is provided in Table 1S as Supplementary material.

Molecular modelling and molecular descriptors
calculation

The analysed 263 chemical structures are generated in both
canonical SMILES notation and 2D structures are drawn with
the ACDLabs ChemSketch open-source software (Weininger
1988; ACD/ChemSketch program 2016), without performing
geometrical optimization, and saved in MDL mol (V2000)
format. All the compounds studied here are listed in
Table 1S of the Supplementary material section. The file for-
mat conversions are performed with Open Babel for Windows
(O’Boyle et al. 2011).

An advantage of not analysing molecular conformations is
that the only experimental data required for developing the
QSAR models is the studied experimental larvicidal activity.
In addition, it is known that the exclusion of geometrical (3D)
descriptors, e.g. the charge distribution descriptor which re-
quires optimizing the molecular structure, avoids ambiguities
arising from the existence of a molecule in various conforma-
tional states (Doucet et al. 2017).

The set of non-conformational descriptors is calculated
using PaDEL version 2.20 freely-available software (Yap
2011; PaDEL 2018). PaDEL currently calculates 1444 0D-
2D descriptors and 12 types of fingerprints (16,092 bits).
Also, Mold2 version 2.0 freeware is used to compute a set of
777 descriptors, by encoding the 2D chemical structure infor-
mation frommolecules inMDL sdf format (Hong et al. 2008).
Furthermore, 14 semiempirical descriptors from EPI Suite are
added (US EPA 2016); these variables are based on physico-
chemical properties and environmental fate estimations, such
as the Henry’s law constant (logKHEPI), the sorption coeffi-
cient for soil and sediment (logKocEPI) and the logarithm of
the octanol/water partition coefficient (logKowEPI). Finally,
two-dimensional descriptors are calculated through quadratic
bilinear and N-Linear maps (QuBiLs) (Valdes-Martini et al.
2012), employing the graph-theoretic electronic-density ma-
trices and atomic weightings (MAS) module from the
ToMoCoMD-CARDD free multi-platform software. The
QuBiLs-MAS algebraic module has the capability of calculat-
ing 8448 tensor-based indices belonging to 176 types of bilin-
ear, quadratic and linear algebraic maps, which are based on
N-tuple spatial metric (dis-similarity matrices and atomic
weightings) indices. The N-tuple matrices are used to repre-
sent the relationships among two, three and four atoms, and
can also be used to codify information related to groups or
atom-types belonging to a specific molecular fragment
(Valdes-Martini et al. 2017).

The QuBiLs-MAS freeware is used by selecting the fol-
lowing options: ‘bilinear (B)’, ‘quadratic (Q)’ and ‘linear (F)’
algebraic forms; ‘atom-based (AB)’, ‘non-chiral (nCi)’, ‘du-
plex’ constraints; ‘non-stochastic (NS)’, ‘simple stochastic
(SS)’, ‘double stochastic (DS)’, ‘mutual probability (MP)’
matrix forms with 15 of maximum order; ‘keep all (KA)’ cut
off; ‘total’ groups. Moreover, the included atomic properties
are ‘Ghose-Crippen LogP (A)’, ‘charge (C)’, ‘electronegativ-
ity (E)’, ‘mass (M)’, ‘polarizability (P)’, ‘polar surface area
(PSA)’, ‘refractivity (R)’, ‘mass and van der Waals volume
(V)’; ‘Euclidean distance (N2)’, ‘arithmetic mean (alpha = 1)
(AM)’ and ‘standard deviation (SD)’, invariants with non-
standardized option.

A great number of 26,775 non-conformational descriptors
are calculated in this work, in order to explore the most rele-
vant structural characteristics affecting the analysed larvicidal
activity. Afterwards, linearly dependent descriptor pairs are
identified, and one variable is removed from each pair. Also,
non-informative descriptors (i.e. variables with constant or
near-constant values and variables with at least one missing
value) are excluded from the original matrix of variables in
order to remove redundant information. Thus, a matrix with
10,604 linearly independent non-conformational descriptors
is achieved.

Molecular descriptors selection based on MLR

TheMLR technique has proven to be of great utility in several
disciplines for establishing predictive QSAR models. MLR
models clearly show the effect of including/excluding descrip-
tors in the linear equation; then, it is possible to suggest cause/
effect relationships through such simple parallelisms. Another
advantage of MLR based models is that they do not require
too many optimized parameters during the model design (just
a regression coefficient per descriptor) (Duchowicz et al.
2017; Duchowicz 2018). Thus, we employ the replacement
method (RM) variable subset selection technique in order to
generate MLR models on the training set (train), by searching
in a pool having D = 10,604 descriptors for an optimal subset
containing d descriptor (D ≫ d),with smallest standard devia-
tion (Strain) or smallest root mean square error (RMStrain)
(Duchowicz et al. 2005; Duchowicz et al. 2006).

The RM technique has been successfully applied in differ-
ent QSAR studies (Aranda et al. 2016; Duchowicz et al. 2017;
Duchowicz 2018), and the quality of the results achieved with
this technique is quite similar to that obtained by performing
an exact (combinatorial) full search (FS) of molecular descrip-
tors, although, of course, it requires much less computational
work. The RM provides models with better statistical param-
eters than the ones obtained with the forward stepwise regres-
sion (FSR) procedure, and quite similar to the results found by
the genetic algorithms (GA) approach (Morales et al. 2006).
Table 2S includes a list of mathematical equations used in the
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present study. The Matlab-programmed algorithms involved
in our calculations are available upon request (Matlab n.d.).

Model validation

The analysis of an external test set of molecules, never seen by
the model during the calibration of its parameters, is known as
the most reliable validation criterion. In this sense, the com-
plete molecular set of 263 plant-derived larvicides is split into
three subsets: training (train), validation (val) and test sets.
The training set is used for calibrating and obtaining the pa-
rameters of the QSAR model, employing the RM technique,
while the validation set helps to calibrate and partially validate
the model by predicting the bioactivity of molecules not in-
cluded in the training set. Finally, the test set contains com-
pounds “never seen” during the model calibration with the
training and the validation sets, and thus, it can demonstrate
the real predictive power of the QSAR.

A rational partition into training, validation and test sets
should lead to similar structure-activity relationships in each
set, due to the fact that a random splitting of compounds does
not lead to suitable prediction results. Hence, we perform a
rational splitting of the molecular set through the balanced
subsets method (BSM) (Rojas et al. 2015; Aranda et al.
2017), which has been developed by our group, and is based
upon the k-means cluster analysis (k-MCA) method executed
in Matlab. The main idea behind the BSM technique is to
create k-clusters or groups of compounds in such a way that
compounds in the same cluster are very similar in terms of a
distance metrics (i.e. Euclidean distance), and compounds in
different clusters are very distinct. Thus, the BMS procedure
ensures that the training set is representative of both the vali-
dation and test sets.

Afterwards, the QSAR model is theoretically validated
through the leave-one-out (loo) cross-validation technique
(Wold et al. 1995; Hawkins et al. 2003; Gramatica 2007).

The statistical parameters R2
loo and (RMSloo) (square correla-

tion coefficient and root mean square error of(loo)) measure
the stability of the QSAR model upon inclusion/exclusion of
molecules. Moreover, the more rigorous leave-30%-out
(130%o) cross-validation technique is employed; it uses 40
molecules of the training set. Throughout 80,000 cases of

random data removal, the results are expressed by the R2
l30%

and RMSl 30%statistical parameters (Rücker et al. 2007).
On the other hand, we verify the model’s robustness

through the Y-randomization procedure (Stanton et al.
1993), which scrambles the experimental property values in
such a way that they do not correspond to the respective com-
pounds. After calculating 150,000 cases, the obtained root
mean square error (RMSrand) has to be a poorer value than
the one found by considering the true calibration(RMStrain).
Thus, if, RMSrand > RMStrain it is assumed that the QSAR is

not fortuitous and does not result from happenstance,
confirming a genuine structure-activity relationship.

Owing to the need of checking the inter-correlation effect
among molecular descriptors, we also analyse the variance
inflation factor (VIF). The VIF values indicate how much the
variance of the descriptor coefficient is inflated as compared to
the case where the descriptors are completely orthogonal to
each other. Ideally, the VIF value of each descriptor should be
lower than 10 (Mullen et al. 2011; Rafiei et al. 2016).

Additionally, some important validation criteria proposed by
Golbraikh et al. (2003) are used here, wherein some model’s
parameters should fulfil specific requirements for ensuring the
predictive capability: 0:85≤k ≤1:15 or 0:85≤k 0 ≤1:15; as well
as 1− R2

0=R
2
test < 0:1 or 1−R02

0=R
2
test < 0:1; and R2

m > 0:5

Applicability domain analysis

A predictive model is only able to predict molecules falling
within its applicability domain (AD), so that the predicted
activity is not a result of substantial extrapolation, considering
that not even a predictive model has the capability to reliably
predict the modelled activity for the whole universe of mole-
cules (Roy et al. 2015). The AD is a theoretically defined area
that depends on the model’s descriptors and the experimental
activity.

In this study, we determine the AD through the well-known
leverage approach (Gramatica 2007), where a test set com-
pound i must have a calculated leverage (hi) smaller than the
warning leverage (h∗). Table 2S includes the definitions for
(hi) and h

∗. Then, when hi > h∗or hi is quite similar to h∗ for a
test set compound, a warning should be given: this means that
the prediction for this test set compound is a result of substan-
tial extrapolation of the model and cannot be considered as
reliable (Eriksson et al. 2003). In order to represent the AD
from the selected model, the Williams plot is drawn.

The degree of importance of selected descriptors

The relative importance of the jth descriptor of the linear mod-
el is determined by standardizing its regression coefficient (bsj,
see Table 2S). Thus, the larger is the absolute value of bsj, the
greater is the importance of such descriptor (Draper and Smith
1998; Cañizares-Carmenate et al. 2017).

Results and discussion

We begin our QSAR analysis with a large set of 263molecular
structures built upon secondary metabolites and their ana-
logues, with larvicidal activity against A. aegypti mosquito.
In order to split the dataset into training (Ntrain = 133),
validation (Nval = 65) ans test (Ntest = 65) sets, the BSM is
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employed to ensure that representative sets are obtained. Thus,
the calibration compounds in the training and validation sets
constitute 75% of the whole dataset. Table 1S from the
Supplementary material denotes the members of val (*) and
test (^) sets.

The most relevant structural characteristics of the training
set are searched by means of the RM technique, providing a
way to explore 10,604 linearly independent descriptors. The
model selection criteria are based upon the minimum RMS,
the maximum coefficient of determination (R2) and the mini-
mum R2

i jmax value between descriptor pairs in the model.

Thus, the best MLR models involving the most representative
1-8 molecular descriptors are detailed in Table 1. A brief de-
scription of such descriptors is also given in Table 3S. From
the results of Table 1, it is clearly appreciated that both the

R2
train andRMStrain parameters improve with the addition of

molecular descriptors into the linear equation until. d = 8 We
use the criterion of keeping the model’s dimension as small as
possible, thereby allowing us to select the 7 descriptors model
whose statistical quality for both the training and validation
sets is acceptable. Besides, it is the only model from Table 1
capable of accomplishing with the internal and external vali-
dation criteria employed in this work.

log10LC50 ¼ 5:6þ 08 �0:3ð ÞM16−1:8 �0:3ð ÞPC34þ 0:6 �0:2ð ÞPC199−
0:7 �0:2ð ÞKR1592þ 1:1 �0:3ð ÞAP653−1:2 �0:2ð ÞSub282−1:2 �0:1ð ÞD589

ð1Þ
N train ¼ 133; d ¼ 7;R2

train ¼ 0:68;RMStrain ¼ 0:43;N train=d ¼ 19;
R2

i jmaxð Þ ¼ 0:19;VI Fmax ¼ 1:1; o3 ¼ 0

R2
loo ¼ 0:64;RMSloo ¼ 0:46;R2

130%o ¼ 0:55;RMS130%o ¼ 0:50;RMSrand ¼ 0:64

Nval ¼ 65;R2
val ¼ 0:72;RMSval ¼ 0:41

Ntest ¼ 65;R2
test ¼ 0:58;RMStest ¼ 0:37

Here, N denotes the number of compounds in each set, the
o3 indicates the number of outlier compounds having a resid-
ual (difference between experimental and predicted activity
value) greater than three-times RMS train , and the Ntrain/d

ratio indicates that the model satisfies the rule of thumb.
A plot for the log10LC50 prediction given by Eq. 1 as a

function of the experimental value in each molecular set is
provided by Fig. 1 (numerical data provided in Table 4S).
Figure 2 draws the dispersion plot of residuals (residual as a
function of the predicted log10 LC50 value), which tends to
obey a random pattern around the zero line, suggesting that
Eq. 1 predicts the whole dataset without systematic errors.

Our proposed 7-descriptor model approves the internal val-
idation process of loo and 130%o (80,000 cases) cross-
validation procedures through the exclusion of 1 or 40 mole-
cules at a time from the training set, respectively. The obtained
results for both the loo and 130%o techniques indicate that Eq.
1 does not deteriorate so much with the removal of one

(R2
loo=0.64, RMS l o o=0.46) or more compounds

(R2
130%o=0.55, RMS130%o=0.50). According to the special-

ized literature (Hawkins et al. 2003), the cross-validation
R2

loo and R2
130%o explained variances should be greater than

0.5, although this is a necessary but not sufficient condition for
determining the real predictive power of the model.

In order to demonstrate that our proposed QSAR model is
not a result of happenstance correlation, the Y-randomization
technique is employed, showing that RMStrain < RMSrand

(0.64) after analysing 150,000 randomization cases; in this
way, a valid structure-activity relationship is achieved.
Furthermore, the external validation criteria suggested by
Golbraikh et al. (2003) are checked in order to ensure the
predictive power of Eq. 1: 1-R2

0/R
2
test(0.02) < 0.1 or 1-R’2

0/
R2

test(0.2) < 0.1; 0.85≤k(0.97)≤1.15 or 0.85≤k’(0.97)≤1.15;
R2

m(0.52)>0.5. These parameters are calculated with the
equations from Table 2S of the Supplementary material.

We also analyse the R2
ijmax parameter for Eq. 1, which is

the maximum squared correlation coefficient between de-
scriptor pairs: R2

ijmax=0.19 indicates that there is no serious
problem about structural information overlapping. Likewise,
the model’s correlation matrix provided in Table 2 shows that
the 7-descriptors from the QSAR model have very low inter-
correlations; and the VIFmax value for all the descriptors are
lower (close to 1) than 10 (Gramatica 2007), indicating the
absence of multicollinearity.

It is well known that a successful QSARmodel is established
whenever it surpasses the external validation process. For that
reason, we check the model’s ability to predict the experimental
activity of plant-derived compounds that are not considered dur-
ing the model’s calibration. Equation 1 presents an acceptable
predictive power for the external test set with 65 ‘never seen’
experimental log10 LC50 values, according to R2test=0.58 and
RMStest=0.37, and Figs. 1 and 2. In this way, we prove that the
QSAR model given by Eq. 1 can be very useful for predicting
new larvicidal compounds with unknown LC50.

Now, it is possible to provide a brief description for each
non-conformational descriptor included in Eq. 1. The seven
molecular indices are of two different types: six indicator de-
scriptors (fingerprints) and one Mold2 topological descriptor,
which are detailed below:

& a MACCS fingerprint descriptor: M16, which refers to
structures that have cycloalkanes (with 5 or 6 members)
bonded to hydroxyl (-OH), acetyl (-Ac) or acetoxy (-OAc)
groups (Durant et al. 2002).

& two PubChem fingerprint descriptors: PC34, which indi-
cates the presence or count of individual chemical atoms
represented by the atomic symbol 2S; PC199, which de-
notes any ring that does not share three consecutive atoms
with any other ring in the chemical structure (ESSSR). In
this case, the PC199 indicator descriptor details the

6209Environ Sci Pollut Res (2020) 27:6205–6214



presence of any ring of size six, which has one ESSSR
ring (Bolton et al. 2008).

& a Klekota-Roth fingerprint descriptor: KR1592, which in-
dicates the presence of a SMART substructure
representing 3,3'-Dimethyl-1,1'-biphenyl.

& a 2D-Atom-pairs fingerprint descriptor: AP653, which de-
notes the presence of atom pairs (O-Br) at topological
distance 9.

& a Substructure fingerprint descriptor: Sub282, which sym-
bolises the presence of a chemical substructure with 5 or
6-membered ring containing one O and an acetal-like
bond at position 2.

& a Mold2 topological descriptor: D589, which denotes the
highest eigenvalue from Burden matrix weighted by po-
larizabilities order-2.

The contribution degree for each descriptor (b2j) is sup-
plied, showing that D589 has the greatest contribution in Eq.
1, followed by the PC34 and Sub282 fingerprints: D589
(0.65) > PC34 (0.34) > Sub282 (0.32) > PC199 (0.24) >
KR1592 (0.20) > AP653 (0.17) > M16 (0.12). The numerical
values of these descriptors are provided in Table 5S; it can be
appreciated that all of them are indicator descriptors
(fingerprints) that are represented by means of the binary code
with the exception of D589, which has positive numerical
values. Besides, the sign of the regression coefficients in the
linear Eq. 1 indicates when the descriptor contribution in-
creases or decreases the predicted log10LC50 values.

Hence, it is possible to suggest the following useful QSAR
guide for the chemical synthesis of new plant-derived larvicides:
if PC34, Sub282 and KRI592 indicate their presence (positive
numerical values higher than 0) in the chemical structure, while
PC199, AP653 and M16 denote their absence (0 values), and
simultaneously the D589 topological descriptor decreases, then
more potent larvicidal compounds could be achieved, exhibiting
lower predicted log10 LC50 values, as happens with molecules
15, 27-30 from the training set, 26 and 31 from the validation set
and 24 of the test set, which are predicted at concentrations LC50

< 4μg mL-1 against A. aegypti larvae.

Fig. 1 Experimental and predicted log10 LC50 values for the 263 plant-
derived compounds according to the QSAR of Eq. 1

Fig. 2 Dispersion plot of residuals obtained for each analysed subset by
Eq. 1 Fig. 3 Williams plot for Eq. 1

6210 Environ Sci Pollut Res (2020) 27:6205–6214



In order to analyse the applicability domain (AD) of the
proposed QSARmodel, the standardized residual is plotted as
a function of the leverage (hi) value, employing the Williams
plot in Fig. 3. Within the leverage approach, a compound with
high leverage would reinforce the model when the compound
take part of the training or validation set (good leverage); but
when such compound belongs to the test set, it would have an
unreliable predicted data, as the result of substantial extrapo-
lation of the model (poor leverage) (Eriksson et al. 2003). The
obtained leverage values are included in Table S4, revealing
that the compounds 115 and 246 included in the test set do not
fulfil the AD of Eq. 1, with hi > h*= 0.1805. It is noteworthy
that this particular behaviour can be attributed to the complex-
ity of the whole dataset, i.e. the large structural diversity of the
molecules considered in this work. However, Fig. 3 reveals
that the predicted log10LC50 values for most of the test set
compounds have hi values falling under the warning h

* value,
and thus may be considered as reliable.

The regression model of Eq. 1 has proven to successfully
quantify the larvicidal activity (LC50) of 263 plant-derived
molecules. Now, we demonstrate that Eq. 1 can be converted
into a classification model by classifying compounds with
experimental LC50 ≤ 40μg mL-1 as highly active larvicidals,
and compounds with experimental LC50 ≤ 40μg mL-1 as poor-
ly active larvicidals. As the WHO has not established a stan-
dard criterion for determining the larvicidal activity of natural
products, in this study, the classification proposed by Cheng
et al. (2003) is used. Then, through the Cooper statistics

(Cooper et al. 1979), three main statistical parameters are cal-
culated: accuracy (A%) referred to concordance; sensitivity
(SE) that measures correctly predicted toxic compounds, and
specificity (SP), which calculates rightly predicted non-toxic
compounds (Benfenati, 2012). These parameters are defined
as shown in Table 2S from the Supplementary material.

The obtained classification parameters show acceptable
values in the test set: A%= 72, SE= 0.75 and SP= 0.69, indi-
cating that Eq. 1 achieves classifying 65 experimental log10
LC50 values ‘never considered’ during the model’s calibration.
Moreover, in order to evaluate the estimated acute toxicity
(LC50) of the test set compounds, we have grouped them into
four categories: 27 toxic compounds predicted as toxic (TP)
and 9 as non- toxic (FN), as well as 20 non-toxic compounds
predicted as non-toxic (TN) and 9 as toxic (FP). Hence, 73%
of the Ntest compounds are correctly predicted.

In order to perform a practical application of the established
QSAR model of Eq. 1, an unknown set of 237 plant-derived
larvicidals against A. aegypti is collected from the literature.
Such compounds have measured activities obtained through
different bioassays not considered in the present study. The
first step to predict the log10 LC50 value consists on calculating
the leverage parameter for each compound from the unknown
set. The calculated leverage values are recorded in Table 6S,
showing that 27 compounds have leverages higher than h*;
then, their predictions cannot be considered reliable.
However, the 210 remaining molecules present leverage
values under the warning leverage, indicating that the

Table 1 The best QSAR models of different size established on 263 plant-derived compounds. The selected model appears in bold

d R2
train RMStrain R2

val RMSval R2
ijmax Molecular descriptors

1 0.31 0.63 0.42 0.59 0 D590

2 0.42 0.58 0.64 0.46 0.01 AATS5v, Sub282

3 0.50 0.54 0.65 0.46 0.01 AATS5v, KR1592, Sub282

4 0.56 0.50 0.67 0.44 0.20 PC34, PC777, Sub282, D589

5 0.62 0.47 0.69 0.43 0.06 VE2_Dze, PC34, KRI592, Sub282, D589

6 0.65 0.45 0.70 0.42 0.47 nRing, PC34, KRI592, KR3584, Sub282, D589

7 0.68 0.43 0.72 0.41 0.19 M16, PC34, PC199, KR1592, AP653, Sub282, D589

8 0.71 0.43 0.69 0.46 0.25 Ve1_Dze, PC34, KR1592, AP653, Sub282, KRC4736, D178,
D589

Table 2 Correlation coefficients
matrix of the selected descriptors
with their VIF values

Model descriptors M16 PC34 PC199 KR1592 AP653 Sub282 D589 VIF

M16 1 0.0004 0.0015 0.0008 0.0002 0.0763 0.0049 1.0

PC34 1 0.0023 0.0013 0.0004 0.0005 0.0062 1.0

PC199 1 0.0055 0.0015 0.0419 0.1852 1.1

KR1592 1 0.0008 0.0011 0.0072 1.0

AP653 1 0.0003 0.0157 1.0

Sub282 1 0.0148 1.0

D589 1 1.1
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established QSAR model (Eq. 1) is able to reliably calculate
the LC50 activity against A. aegypti vector.

Then, from Table 6S, it is observed that the most prominent
compounds exhibit acute toxicity against A. aegypti L in a
range of 1.8‑2.5μg mL-1, such as happens with the natural
molecules 11, 43, 50, 91 and 92, which belong to the
naphthoquinones, terpenes, terpenoids, chromones and alco-
hols chemical groups. In the same manner, Table 6S reveals
those compounds with reduced larvicidal activity at concen-
trations LC50 > 250 μg mL-1, as occurs withmolecules 53, 217
and 218, which are based on triterpenes groups, a member of
furan, an epoxide, an organic heterohexacyclic compound and
a lactone.

Finally, it is known that in silico approaches play key roles
to find out chemical strategies in vector control. In this sense, a
successful QSARmodel employing free available programs is
built here; this constitutes the first one based on a large and
heterogeneous molecular set inspired by phytochemicals.
Through Eq. 1, 78% of the whole molecular set with larvicidal
activity against A. aegypti at concentrations between 0.02 and
790 μg mL-1 is correctly predicted, as well as 89% of the
unknown set is quantified within the AD of the regression
model. For these reasons, we highlight that our linear QSAR
model represents a useful computational tool to guide the
synthesis or discovery of new active molecules with plausible
larvicidal activity.

Conclusions

The Aedes aegypti vector is responsible for transmitting sev-
eral arboviral diseases, such as dengue, chikungunya and zika
worldwide, so the identification of larvicidal compounds in-
spired by natural products has been of great interest during the
last years. In this framework, a linear regression QSARmodel
based upon a large molecular set of 263 plant-derived larvi-
cides is proposed, which involves seven non-conformational
descriptors and has an acceptable predictive capability in the
external test set.

The established QSAR model is able to fulfil other neces-
sary mathematical conditions, such as loo and 130%o cross-
validation, Y-randomization and VIF. For chemical structures
falling within the applicability domain of this model, a QSAR
guide for the synthesis or identification of new plant-derived
larvicides is provided as follows: the molecular structures of
active larvicides should have the PC34, Sub282 and KR1592
fragments present, as well as the PC199, AP653 and M16
absent, and simultaneously lower values of D589 in order to
achieve the best larvicidal effects.

Thus, the simplicity of the linear QSAR model, the easy
interpretation, the availability of the involved descriptors and
the proper predictive power make the proposed approach

attractive for guiding the design of new potentially active
molecules based upon renewable sources.
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