
A Formal Lazy Replication Regime for Spreading
Conversion Functions Over Objectbases

Clara Smith
LINTI, Universidad Nacional de La Plata,
and Consejo Nacional de Investigaciones

Cientificas y Ttcnicas, Argentina.
e-mail: csmith@ada.info.unlp.edu.ar

Carlos A. Tan
LINTI, Universidad Nacional de La Plata,

and L.B.S. Inform~tica.
La Plata, Buenos Aires, Argentina.

Fax: +54 21 258816

Abstract. This paper introduces a functional-flavored formalization of
objectbase evolution processes. It also determines features of the failure
equivalence concept between the two main approaches for the fulfillment of
database conversions: immediate and lazy updates.

1 Introduct ion

Schema evolution commands produce a significant impact on the bases, as objects
have to accomodate theirselves to the new specifications. The updates are usually
expressed using system or user-defined conversion functions. The objective of this
study is to clarify and formally specify objectbase evolution concepts and change
replication regimes, within a mathematical framework. Our work combines some of
the slxongest features of the objectbase literature and formal methods of
specification and design. The source objectbase model, SIGMA, is the result of our
grade thesis [ST93] at the Informatics Department, Universidad Nacional de La
Plata, Buenos Aires, Argentina. SIGMA's formal description, including semantic
domains, interpretation functions and denotations for the Object Manipulation
Language (OML) appear in [Tau94] [Tau95]. Despite the ad hoc choice of SIGMA,
should be noticed that the notions introduced in this article fit any current typical
objectbase model, due to the simplicity and precision achieved on the definitions.

The rest of the paper is organized as next: Section 2 briefly recalls core SIGMA
components. It explains how adjustments and adaptations are applied to concrete
objectbase stores in order to suit new schema organizations, using the renowned
immediate and lazy update replication policies. Furthermore, we analyze two
equivalences between both approaches: observational and failure equivalence.
Section 3 introduces the conversion queue, a representation for retaining updates at
hand. The mix map regime for implementing lazy base updates is also presented.
Section 4 shows how the mix_map regime can be considered failure equivalent to
the immediate approach. Finally, our conclusions are exposed in section 5.

2 M a p p i n g C'om, e r s ions on the Bases

A SIGMA schema is defined as a 5-tuple <sid, T, I, A, R>; where sid is the schema
identifier, T is a certain set of types and relationships selected to conform the
schema, I is a parallel set of well-formed implementations for types in T, R is a set

456

of general integrity constraints defined for the schema, and A is a function providing
customizations for ~pes in T. SCH = (ID x T x I x CUSTOM x AXIOMS) is a
semantic domain for SIGMA schemas, where CUSTOM and AXIOMS are primitive
domains for custom-built axioms and integrity constraints respectively [Tau95], and
ID is a primitive domain for names [Wir86]. A SIGMA base is defined as a 4-tuple
<bid, ~, ~, ~>, where bid is the base identifier, ~ is an object composition
environment (with is-part-of and client references among objects), ~ is the concrete
object store, and ~ is the type-ex,tention (or class) system. The semantic domain
BASE = (ID x COMP_ENV x STORE x CLASS_SYS) for SIGMA bases and its
constituent domains are strictly analyzed and defmed in [Tau95]. Finally, we
describe an objectbase system as a sequence of schemas, each of which governs a
list of bases. This domain is expressed as OBASE_SYS = (SCH x (BASE)*)*.

One single SIGMA schema may serve as the conceptual reference for several
bases. Therefore, there is a need to spread every schema evolution over each
subordinate base, without exception, as they have to be updated to be brought up to
a consistent state with respect to the new governor schema. This kind of propagation
is usually expressed using a map operation, that receives a conversion function and a
group of bases and effectuates every update. Its functional definition follows:
map "" FUNCTION --> BASE* --> BASE*
map cf [] = []
map cf b:tail = apply(cf, b):map(cf tail)

The symbol : above stands for item chaining. Apply is a high order function that
receives a function and an object (a base in this case), and executes the function
using such object as a real parameter. Update mappings are also present in [Mon92].

Following the main two strategies for the accomplishment of database renewals,
namely immediate and lazy updates [Kim89] [Tre93] [Fer94], we can give at least
two meanings from an implementation viewpoint to the map effect: immediate map
and lazy map. The former instantaneously replicates the conversions in every
subordinate base, while the latter keeps pending changes until a base activation is
solicited. But from a formal viewpoint, map should be interpreted within a unique
final semantics: the immediate one. The lazy map effect is guaranteed to be the
same as the immediate map effect if we are sure all bases will be touched once
again during their lifetime.

Definition 2.1 Lazy maps are always equivalent to immediate maps, as bases
accomodate theirselves to changes when they are going to be observed (activated).

This definition (which improves the one given in [Fer94]) determines that every
base conforms to the schema change, due to the fact that we are merely spectators of
base conversions. If we care about the application of conversion functions in a more
detailed way, we will probably conclude things look not so plain. To illustrate,
suppose each of the several serviceable parts of an objectbase system has its own
identity, which we shall call agent. This term is used broadly, but we will refer to
agents when talking about a discrete set of (possibly atomic) actions. Each action is
either an interaction with a neighbour agent, or it may occur independently of them.
Agents are always observable to the system. Definition 2.1 states an observational

457

I set s I set sl / L

I ins t ins t

cA~ (bl... bn)
. . . . o p e n ~ e n bn

op e n ~ b~

b i local r + 1 Cf~ 001)" cf~ (bn)
operations~ ~

Figure 1 - Traces for a Type Insertion: Immediate and Lazy Policies

equivalence that is perhaps the simplest of all we can deal with: it equates two
agents if and only if they can perform exactly the same sequences of observable
actions. It can also be called trace equivalence (written ~) [Mi189].

Let a schema designer write the sequence ...; set sl; insert t; ... in a transaction
body, in which first schema st is activated, and then a type t is placed in Sl. Next,
suppose sl-governed bases, say bl ... b~, are activated. Both agents I and L in figure
1 outline what it may occur during the transition from one consistent base
configuration to another in identical copies of a single objectbase system, using
immediate and lazy map policies respectively. As conversion functions are
unobservable to end users, we conclude I ~ L.

The main disadvantage of trace equivalence is that it may equate a deadlocking
agent to one which does not deadlock. This certainty indicates that trace equivalence
concept, applied to our agents, is too weak. An interesting and stronger equivalence
is Hoare's failure equivalence (~f) [Mi189], that equates two agents if both have the
same set of failures. A failure is a pair (t, {l}) where t is a trace and {l} is a set of
action labels, meaning t can be performed and thereby reach a state in which no
further activity is possible if the environment will only permit actions in {l}. It turns
out that I and L do not possess the same failures. Trace I has, among others, the
failure (set ins, {l}) V {l} such that c f , , ~ {l}. This one does not belong to L's failure
set, thus I ~f L is false. Therefore, this couterexample shows how the lazy execution
of a conversion function cannot be considered failure equivalent to the execution of
the same conversion function treated immediately.

3 Lazy Maps Need Conversion Queues

In the worst case, evolutions may be deferred for lazy applications. Besides, a
schema may undergo several changes before its bases are touched. We will associate
to each base a conversion queue to maintain pending updates. Such a queue is
merely an entry that contains FIFO-arranged references to conversion functions.

458

ass_schemas(~) ~ 1~
get(le, sch_named(s)) ~ g

ass bases(fS,~) ~ l~t
include((new base b g) l~t) --~ l~t'

(replace <g,lp.> in ~ with <~, bx'>) -~ [~'

(NEW_BASE b FOR SCHEMA s [~) --> ~'
i i i

Figure 2 - Operational Semantics ibr the Base Creation Operation

We embody a CQUEUE primitive domain for queues with the BASE domain to
configure (BASE x CQUEUE), a domain for bases and conversion queues. Under
this representation, when generating a new base we just point out its name and the
handpicked governor schema's identifier. Its new empty conversion queue will be
attached automatically, it is imperceptible and intangible to end base-users. Figure 2
depicts an operational semantics [Plo81] for such SIGMA's OML command. The
symbol -~ in the equation means reduces to, or should be more specifically
understood as an evaluation relation [Hen90]. The formula has the following
interpretation: ass_schemas picks up the various current valid schemas (la) for the
objectbase (13). Next, once verified the schema name, ass bases takes all s-governed
bases (Iv). Include does the item piercing job. A definition for ne wbase follows:
new_base:: ID --~ SCH --~ (BASE x CQUEUE)
n e w b a s e b g = (<b, n 0, o 0, ~0>g, [] b); where:
it 0 =)~(x,y).unbound (empty g-composition environment), cr 0 = %x.unused (vacant
g-store), ~0 =)rid.if type({,id) then <type_oJ(x)=id,{}> else unbound, (unoccupied
{-class system); and []b is b allied empty conversion queue. Moreover, type({,id)
returns the semantic object true (tt) if id is the name for a type in g. Type oflx)
retrieves the type name of an object x. We use the replace in with constructor to
partially replace some sorts in a specification and generate a new one.

Definition 3.1: Let mix_map be a lazy replication policy defined over SIGMA bases
and conversion queues. Its formal functionality is specified as:
m i x m a p :: FUNCTION ~ (BASE x CQUEUE)* --+ (BASE k CQUEUE)*
mix m a p c f [] = []
m i x m a p cf (b,cq):tail = (b, push cf cq):mix_map(cf tail)

4 Immediate vs. Mix_Map: Failure Equivalence

We consider a complex,.agent as a set of actions organized in a unit of atomicity.
This notion is related to the ohe of transaction [Cat94]; both can be simply blended,

Definition 4.1: Complex agents are deduced from user-transaction traces, and
inserted in system traces as follows:
�9 For the immediate map policy, given an update uc for a schema s in a transaction
body, a complex agent is built as <uc s; map cf.c ass_bases(s)>, where the second

459

component stands for the effective instantaneous map (section 2) of the suitable
conversion function.onto the s-governed bases. The system trace is expanded with
this complex agent. For base activation commands, no complex agents need to be
built, as any immediate base activation ignores the remaining bases..
�9 For the mix_map regime, i) due to an update uc applied over a schema s, the
system derives a complex agent of the form <uc s ; mix_map cf,~ assoc_.bases(s)>.
Assoc bases is a redefinition of ass bases, its outcome fits the domain defined for

�9 , , - O '.

pairs base-queue in section 3. i i)From an actwatlon' coanmand ac, the system
obtains a complex agent configured as <ac b ; dequeue b cqb>. Function dequeue
clears cqb via the performance of its queued renewals over b.

Proposition 4.2: A system trace built up from a user-transaction trace using the
immediate policy is failure equivalent to a system trace under the mix_map regime,
built up from the same user-transaction using complex agents.

Proof sketch: the proof uses the induction principle over the trace structure and
the number of schema updates and base openings ocurring in the trace.
One schema update. Let T be a user transaction and let uc be the unique update
command (for a given schema s) in T. Two system traces, say I and M, are built
identically for the immediate and mixmap policies respectively, except for the
agent involving uc. Trace I holds a duple of the form <uc s; map cf, o ass bases(s)>
as a complex agent, expanding uc's original place. M contains the complex agent
<uc s; m i x m a p cf~assoc_bases(s)>, replacing uc's earliest location. Thus, traces I
and M are identical in structure for those commands which are not updates. For the
only update in T they both have a complex agent in the same place, and complex
agents are atomic. Thus, I and M have the same set of failures. Therefore I .~f M.
One base opening. Let T be a user transaction, let ac be the unique base
activation command in T. System traces I and M are built exactly alike for the
immediate and mixmap regimes, except for the agent involving ac. For trace I, the
agent is atomic and it is namely ac, as the base opening is executed directly over the
desired base, without any mapping over other bases. Trace M holds, covering ac's
position, the complex agent <ac b, dequeue b Cqb)>. ThUS, I and M are identical in
structure for those commands that are not base openings. For the only ac in T, I
holds the atomic agent ac and M maintains the complex agent built above, and
complex agents are atomic. We conclude I gf M.
Multiple schema updates and multiple openings. Let ucl uc, be a sequence
of updates for a given schema s arbitrarily found in T, and let acl acre be base
activation commands arbitrarily spread over T. If the failure equivalence between
both regimes is proven for n updates and also holds for m openings, then:
i) The equivalence is proven also in case of an additional update uc,+ 1 included in T
following the first n updates. Traces I and M upto the agent immediately before
uc,+l are by hypothesis failure equivalent. For every uci in T, trace I holds the
complex agents <uci s; map cf,r ass bases(s)>, and M contains the complex agents
<uc i s; mix map cfuoi assoc bases(s)> in places where T originally has a uc~.
ii) In addition, the trace equivalence between I and M is also proven in case of an
additional opening aCm+~, as by hypothesis I and M are failure equivalent upto the

460

agent placed just before acm+i. Trace I holds the original aci agents, and M
possesses <ac b~; dequeue bi eqbi > as complex agents for each ac t .

Therefore, traces I and M for a transaction T involving certain ucl, ue,+z
update commands and ac~ ac,,,+~ base openings are failure equivalent. [3

5 Conclusions

Immediate and lazy (mix) maps can be used as alternate policies for the concretion
of objectbase evolutions. For a particular situation, the most convenient regime may
be applied, and the other left for a better occasion. Conversion queues act as an
appropriate bank for change sequences, as they do not interfere with the original
objectbase model 's base format. This observation suggest a notable facility for
adapting the use of conversion queues in current objectbase systems. We think the
endeavor to give rigorous definitions and earnestly remark the formalities related to
the trace equivalence concept in the framework of objectbase updates is valuable:
we believe the relevance of this type of equivalence is significant because it strongly
cares in the efficacy of the system.

References

[Cat94] - The Object Database Standard." ODMG-93 Release 1.1. R. Cattell, ed. Morgan
Kaufmarm Series in Database Management, San Francisco, CA, 1994.

[Fer94] - Implementing Lazy Database Updates for an Object Database System. F.
Ferrandina, T. Meyer, R. Zicari. Proceedings of the 20 ~l VLDB Conference, 261-272.
Chile, 1994.

[Hen90] - The Semantics of Programming Languages. M. Hennessy. J. Wiley & Sns., 1990.
[Kim89] - Features of the ORION OODBA/~. W. Kim, N Ballou et al. In Object-Oriented

Concepts, Databases and Applications, W. Kim, F. Lochovsky, eds: ACM Press, 1989.
[Mil89] - Communication and Concurrency. R. Milner. M. Hoare series, Prentice Hall, 1989.
[Mon92] - Lazy Evaluation of Intensional Updates in Constraint Logic Programming. D.

Montesi, R. Torlone. Proceedings of the 2 nd International Computer Science Conference,
502-508. Hong Kong, 1992.

[Plo81] - A Structural Approach to Operational Semantics. G. PloLkin. Lecture Notes,
Aarhus University, 1981.

[ST93] - A Unified Model for Object-Oriented Databases. C. Smith, C. Tau. Grade Thesis.
Informatics Department, Universidad Nacional de La Plata, Argentina. February 1993.

[Tan94] - Formalization of Object Manipulation Concepts in the Denotational Semantics
Framework. C. Tan, C. Smith, C. Pons, A. Monteiro, G Baum. 20 ~l VLDB Conference
Poster Paper Collection, 47-56. Santiago, Chile, September 1994.

[Tan95] - Formally Speaking About Schemata, Bases, Classes and Objects. C. Tan, C. Smith,
C . Pons, A. Monteiro. 4 ~ International Symposium on Database Systems for Advanced
Applications, Singapore. World Scientific Publishing Co., 308-317. April 1995.

[Tre93] - Schema Transformation Without Database Reorganization. M Tresch, M. Scholl.
ACM SIGMOD RECORD 22 (1), 1993.

[Wir86] - Structured Algebraic Specifications: A Kernel Language. M. Wirsing. Theoretical
Computer Science, 123-249, 1986.

