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Abstract
We analyze the effect of the antineutrino mass over the β−-decay rates calculated within the scheme of the Gross
Theory of Beta Decay (GTBD). We give a non-null value to the mass of the antineutrino participating in β−-decay,
(A, Z) → (A, Z + 1) + e− + ν̄e, which is usually neglected because we know it is small compared with electron mass.
We have slightly modified the GTDB by inserting the antineutrino mass in the formalism. We have adopted a Gaussian
energy distribution function with the axial-vector weak coupling constant gA = 1, as well as a new set of the adjustable
parameter σN related to the standard deviation for the Gamow-Teller resonance, updated experimental mass defects, and also
an improved approximation for the Fermi function. Our sample consists of a set of 94 nuclei of interest in the pre-supernova
phase, which have experimental data in terrestrial conditions available in the Letter of Nuclide. We have compared the
calculation without the inclusion of the antineutrino mass with that adopting a really overestimated value of 50 keV for it to
illustrate the effect on the decay rates. We have shown that they are improved only by approximately one per thousand in
this case. We conclude that the effect of the antineutrino mass on decay rates is not relevant.
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1 Introduction

Since the emergence of nuclear physics, one of the major
challenges in this area has been to develop theoretical
models that can reproduce as accurately as possible the
experimental results of the various naturally occurring
reactions, particularly those of the β-decay. Between the
most diverse nuclear models, we chose the Gross Theory
of Beta Decay (GTDB) in this research, which presents a
great advantage over the others specially in astrophysical
applications: its simplicity for the computational work since

� C. A. Barbero
cab@fisica.unlp.edu.ar

1 Departamento de Ciências Exatas e Naturais,
Universidade Estadual do Sudoeste da Bahia,
BR 415 Km 03 Itapetinga BA, Brazil

2 Departamento de Ciencias Exatas e Tecnologicas,
Universidade Estadual de Santa Cruz, Ilhéus BA, Brazil
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it facilitates the calculation of the rates in a systematic
way for a large number of nuclei involved in a given
phenomenon. The GTBD is a nuclear model that takes into
account rough approximations of the final energy states
of the decaying nucleon, and it is essentially a parametric
model for nuclear disintegration rates, which combines
arguments of independent particle associated to the Fermi
gas model. Thus, the GTBD is a microscopic model which
associates two other major nuclear models with statistical
arguments in a phenomenological way. This is done when
the β amplitude function of the independent particle model
is convulsed with the density levels of the Fermi gas model
corrected to take into account the pairing and shell effects.
The contributions in the final part of the resonance (Gamow-
Teller) are included in a parametric way.

The original version was proposed by Takahashi and
Yamada in the end of the sixties and includes only the
contribution of allowed transitions [1]. Successive versions
of the GTBD were emerging over the years with the aim
of improving the agreement with the experimental data.
Between that improvements we remark the following: (i)
the addition of forbidden transitions [2]; (ii) the inclusion
of the pairing effect and the observation of the non-
energy weighted sum rule in the Fermi transition [3]; (iii)

Brazilian Journal of Physics (2020) 50:57–63

/ Published online: 1 December 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s13538-019-00723-z&domain=pdf
mailto: cab@fisica.unlp.edu.ar


the modification of the single-particle energy function in
the Gamow-Teller transition, which has a peak with a
long tail on each side [4]; (iv) application to neutrino-
nucleus reactions, employing a more realistic description
of the energetics of the Gamow-Teller resonances for
nuclei with A < 70, of astrophysical interest [5]; (v)
analysis about which of the Fermi functions available in
the literature represents better the Coulombian interaction
between nucleus and electron both in β−-decay and electron
capture, also for nuclei in the mass region A < 70 [6];
(vi) analysis of the influence of the axial-vector coupling
constant and the energy distribution function on β−-decay
rates [7].

With the aim of obtaining even more precise results
when compared with the experimental data, we search
other ways to improve the agreement between theory and
experiments. The antineutrino mass was discarded from
previous calculations due to the fact that its value is much
smaller than the electron mass (see, for example, Refs. [1–
14] and references therein). The general assumption is that
neutrino masses are not relevant in the calculation of decay
rates. Do we really need to perform the full calculation to
make sure that this is so? In order to answer this question,
and being that there not exist in the literature any calculation
including the antineutrino mass and analyzing quantitatively
its effect over the decay rates, we will include here the
antineutrino mass and analyze its contribution to the β−-
decay rates for a group of 94 elements in the mass range
46 < A < 70, which are of astrophysical interest in the
stellar pre-supernova evolution phase.1 All the experiments
are in agreement with few eVs for the upper limit on the
neutrino mass. In fact, the most accepted and strong limit
in RPP-2016 from PDG based on β-decay of 3H is ∼ 2 eV
and the new results from KATRIN experiment report 1.1 eV
at 90% of confidence level, reflecting the actual sensitivity
[16]. On the other hand, slightly older works suggested less
restrictive limits (due to the experimental capabilities of that
age) for the neutrino mass, such as the work of Ref. [17]
in which it could reach a maximum value 50 keV. With
the aim to verify if the quantitative analysis confirms the
common sense about the irrelevance of the neutrino mass
on the decay rates, and to illustrate the maximum effect of
a nonzero neutrino mass in its calculation, we will assume
here this overestimated value of 50 keV.

The paper is organized as follows. The formalism is
summarized in Section 2, where we describe the model
for the evaluation of the decay rates, with some details
of the GTBD including the antineutrino mass for β−-
decay together with a description of the fitting method. In

1The GTBD has been suitable for the description of neutrino-nucleus
cross sections in the low energy range (Eν < 250 MeV) with Eν being
the energy of the incident neutrino [15].

Section 3, we present and discuss our results. Final remarks
are drawn in Section 4.

2 Formalism

2.1 Beta Decay Rate

The transition probability will be evaluated from the Fermi’s
golden rule (in natural units me = c = � = 1)

λβ = 2π |Uf i |2ρ(Ef ), (1)

where Uf i is the matrix element for the transition and
ρ(Ef ) is the energy density of final states. For β−-decay,
(A, Z) = (A, Z+1)+e−+ν̄e, between the initial state (i) of
the parent nucleus (A, Z) and final one (f ) of the daughter
nucleus (A, Z + 1), we have

Uf i =
�

φ∗
e φ∗̄

νe
ψ∗

f OβΩβψid
3rd3red

3rν̄e . (2)

Here φe(re) = 1√
V

eipe·re and φν̄e (rν̄e ) = 1√
V

eipν̄e ·rν̄e are

the electron and antineutrino plane wave functions in a
volume V , with momentum pe and pν̄e , respectively. The
operator responsible of the electroweak interaction can be
written within a local approximation as [17] Oβ = GF δ(r−
re)δ(r − rν̄e ), with GF = (3.034545 ± 0.00006) × 10−12

being the Fermi weak coupling constant [18]. Additionally,
ψi (ψf ) is the parent (daughter) nucleus wave function and
Ωβ is the operator for the nuclear transition. Next, using the
fact that the length of the leptonic functions is of the order
10−11 cm [19], one order of magnitude greater than the
nuclear size, we can affirm that the functions of the electron
and antineutrino present little variation inside the nucleus
and therefore we can approximate them by their value at
r = 0. Thus, we can write

λβ = 2πG2
F

V 2
|M|2ρ(Ee, Eν̄e ), (3)

where we have defined the nuclear matrix element (NME)

M =
�

ψ∗
f (r)Ωβψi(r)d

3r . (4)

The density of final energy levels of the electron and
antineutrino will be calculated using the Fermi gas model
[17]:

ρ(Ee, Eν̄e ) = V 2p2
edpep

2
ν̄e

dpν̄e

4π4
. (5)

The energy conservation in β−-decay gives:

E(A, Z) = E(A, Z + 1) + Ee + Eν̄e , (6)

where E(A, Z) and E(A, Z + 1) are the energies of
the initial and final nucleus, respectively (A and Z

are the mass and atomic numbers, respectively), Ee is
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the electron energy, and Eν̄e the antineutrino one. The
maximum available energy for the decay is

Emax
β ≡ E(A, Z) − E(A, Z + 1) = Ee + Eν̄e . (7)

Otherwise, the Q-value of the reaction is defined as
the maximum kinetic energy available for the decay,
Q = Taf ter − Tbef ore, with Taf ter and Tbef ore being
the total kinetic energies “after” and “before” the reaction,
respectively. They can be written as

Tbef ore = E(A, Z) − mP ;
Taf ter = E(A, Z + 1) − mD + Ee − 1 + Eν̄e − mν̄e , (8)

where mP and mD are the parent and daughter nucleus
masses, respectively, and mν̄e = 50 keV = 0.098 is the
antineutrino mass (in natural units). After using energy
conservation, we obtain

Q = mP − mD − 1 − mν̄e . (9)

We will calculate the Q-values using the experimental data
of the mass defects found in the Letter of Nuclide [20],
including in this way shell effects. The maximum kinetic
energy and the maximum total energy available for the
reaction can be related as follows:

Eβmax = Q + 1 + mν̄e . (10)

Next, using pe = �
E2

e − 1 and pν̄e =
�

E2
ν̄e

− m2
ν̄e

, from

(3), (5), (7), and (10), we get

λβ = G2
F

2π3

� Emax
e

Emin
e

|M(E)|2Ee

�
E2

e − 1F(Z, Ee)dEe

×
� Emax

ν̄e

Emin
ν̄e

dEν̄e

�
(E + 1 − Ee + mν̄e)

2 − m2
ν̄e

×(E + 1 − Ee + mν̄e), (11)

where we have replaced Q by E and we have introduced by
hand the well-known Fermi function F(Z, Ee) to take into
account the Coulombian interaction between the daughter
nucleus and the electron.2 Using Eν̄e = E + 1 + mν̄e − Ee,
we have

λβ = G2
F

2π3

� Q

0
|M(E)|2f (E)dE, (12)

2Here we adopt the proposal of Aufderheide et al. [9], which has been
proven to best represent the experimental results for the elements of
our interest.

where we have defined

f (E) =
� E+1

1

�
(E + 1 − Ee + mν̄e)

2 − m2
ν̄e

(13)

×(E + 1 − Ee + mν̄e)Ee

�
E2

e − 1F(Z, Ee)dEe.

It is important to remark that this equation reduces to (2)
from [7] when the antineutrino mass is neglected, as it
should be.

2.2 Gross Theory of Beta Decay

The NME, represented by M(E) in (12), is the term that
differentiates the Gross Theory of Beta Decay (GTBD) from
other models. The β−-decay rates receive contribution from
different types of transitions like the allowed Fermi (F) and
Gamow-Teller (GT) ones, the first forbidden transitions, and
the second forbidden ones [21]. Neglecting the contribution
of forbidden transitions, the total decay rate within the
GTBD can be written as

λβ = G2
F

2π3

� 0

−Q

�
g2

V |MF (E)|2 + 3g2
A|MGT (E)|2

�

×f (−E)dE. (14)

Here gV = 1 and gA = 1 are, respectively, the vector and
axial-vector effective coupling constants [7], and −E > 0
appears because we integrate over the final energy states.

The NME can be evaluated by using the sum rule as
described in Ref. [22]. From (4), it reads |MΩ(E)|2 =
|�ψf |Ω|ψi�|2ρ(E), where Ω ≡ 1 and Ω ≡ σ are the
F and GT nuclear operators, respectively, and ρ(E) is the
final level energy density. Within the sum rule, the β−-
decay operator is a sum of independent particle operators
[1]. Assuming the nucleons as independent particles, the
energy E can be considered as the difference between the
energies of the independent nucleon decay in daughter and
parent nucleus. Therefore, the NME can be expressed as

|MΩ(E)|2 =
� �1

�0(E)

DΩ(E, �)
dN1

d�
W(E, �)d�. (15)

where �1 is the energy of the highest occupied state and
�0(E) = max(�min, �1 − Q − E) with �min being the
lowest single-particle energy of the parent nucleus. Pauli’s
principle is considered in the lower limit of the integral,
and in the term W(E, �), which measures the probability
of occupation of the final states (vacancy level). Equation
(15) is valid for the special case of a step surface, where
W(E, �) = 1, because � + E > 1 − Q. In other cases, the
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term W(E, �) vanishes because � + E ≤ 1 − Q. 3 Within
this approximation, the NME reads

|MΩ(E)|2 =
� �1

�0(E)

DΩ(E, �)
dN1

d�
d�. (16)

Following the original version of the GTBD [1], the Fermi
gas model was used to estimate the density of independent
nucleon levels, dN1

d�
, as

dN1

d�
= N1

�
1 −

�
1 − Q + E

�F

	 3
2



, (17)

where N1 is the number of neutrons of the parent nuclei and
�F is the nucleon Fermi energy given by

�F = 76.52
M∗

n

Mn

1

r2
0

�
N1

A

	 2
3

MeV, (18)

being M∗
n and Mn the effective and bare nucleon masses,

respectively, and r0 the nuclear radius. We used the relations

r0 = 1.25(1+0.65A−2/3), and for M∗
n

Mn
= 0.6+0.4A−1/3 [4].

Finally, within the GTBD, the β−-decay rate reads

λβ = G2
F

2π3

� 0

−Q

�
g2

V DF (E, �) + 3g2
ADGT (E, �)

�

×N1

�
1 −

�
1 − Q + E

�F

	 3
2



f (−E)dE. (19)

The energy distribution function DΩ(E, �) measures the
probability that a nucleon with single-particle energy �

undergoes a β-transition. As in Takanahashi et al. [1],
we neglect the �-dependence, i.e., it is assumed that all
nucleons have the same decay probability, independent of
their energies, DΩ(E, �) ≡ DΩ(E). We assume here a
Gaussian form [1, 7]

DΩ(E) = 1√
2πσΩ

e

−(E−EΩ)2

2σ2
Ω , (20)

where EΩ is the resonance energy and σΩ the standard
deviation. Following the original work from Ref. [1], we

3We follow here this approach of stepped function described in (15)–
(23) from [1]. On the other hand, an improved version of the W(E, �)

function is given in Eqs. (51)–(77) from [1]. In Ref. [23], the authors
show that the results for the β-decay are only slightly modified when
using this non-staggered function.

assume the nuclei as a uniform charged sphere with radius

1.2 × A
1
3 fm, which allows to consider the Coulombian (c)

displacement of independent particle such as

EF = Ec = ±(1.44Z1A
− 1

3 − 0.7825)MeV, (21)

σF = σc = 0.157Z1A
− 1

3 , (22)

where Z1 is the proton number of the parent nuclei for β−-
decay. For the GT resonance, we use the approximation [5,
24]

EGT = EF + δ, (23)

with

δ = 26A− 1
3 − 18.5(N − Z)

A
MeV, (24)

and

σGT =
�

σ 2
F + σ 2

N, (25)

with σN being a setting parameter which comes from the
energy propagation produced by the forces dependent of the
nuclear spin. Calling τ cal

1/2 to the theoretical value for the
half-life calculated with our GTBD, and bearing in mind
that intend to reproduce its experimental value, τ cal

1/2, as
correctly as possible, we are going to follow the procedure
of Ref. [15] to determine σN through the minimization of
the function

χ2 =
N0�
n=1

⎡
⎣ log

�
τ cal

1/2(n)/τ
exp
1/2 (n)

�

Δ log
�
τ

exp
1/2 (n)

�
⎤
⎦

2

, (26)

where N0 is the number of experimental β−-decaying
nuclei, fulfilling the following conditions: (i) the branching
ratio of the allowed transitions exceeds ∼ 50% of the total
β−-decay branching ratio and (ii) the ground-state Q-value
is ≥ 10A−1/3 MeV,

Δlog
�
τ

exp
1/2 (n)

�
= log

�
τ

exp
1/2 (n) + δτ

exp
1/2 (n)

�

−log
�
τ

exp
1/2 (n)

�
, (27)

and δτ
exp
1/2 (n) is the experimental error. This χ2-function

reinforces the contributions of data with small experimental
errors. Moreover, we perform different fittings for even N-
even Z (N0 = 17), odd N- odd Z (N0 = 28), odd N-even
Z (N0 = 29), and even N-odd Z (N0 = 20) nuclei.
Needless to say that for τ

exp
1/2 , we use recent data from [20],
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instead of those that were available when the GTBD was
formulated [1].

3 Results and Discussions

We have adopted the GTBD version from Ref. [7]. We
have calculated the β−-decay rates using the (13) and (19)
which allow to include the antineutrino mass effects as
described in the previous section. We have made use of
the new relevant modifications regarding the calculation of
these rates, namely for the Q-values defined in (9), we
used the updated experimental data present in the Letter
of Nuclide [20], the Fermi function has been calculated
following Aufderheide et al. [9], we have used the Gaussian
distribution function, and for the weak coupling constant,
we have used gA = 1 [7]. We have considered a set of 94
isotopes of the families of iron, cobalt, nickel, manganese,
chromium, copper, titanium, and scandium, including all
isotopes of these families that decay spontaneously via β−-
decay. These nuclei were selected taking into account the
mass, which ranges from 46 < A < 70, and the abundance
of these isotopes in the pre-supernova phase, which is of
interest in future research.

As a first step, we start exhibiting the results for the
adjusted parameter σN . We have performed two simula-
tions: the first one (GTBD1) adopting a null mass for the
antineutrino, which leads to the results previously published
in Ref. [7], and the second one (GTBD2) includes the
antineutrino mass effects. The results for σN obtained in this
way are shown in Table 1.

We show in Fig. 1 our results for the logarithm of
the ratio between the calculated and the experimental β−-
decay half lives. We have added two horizontal lines to
more easily visualize the nuclei whose half lives differ
by less than an order of magnitude from the experimental
results, it means, those closer to the data. In the figure, we
show the results obtained within the GTBD2, which should

Table 1 Adjusted parameter σN (in units of MeV) using the GTBD
from [7] with mν̄e = 0 (GTBD1) and mν̄e = 0.098 (GTBD2)

Model Z − N (parity) σN

GTBD1 (mν̄e = 0) Even - even 7.70

Even - odd 6.60

Odd - even 7.48

Odd - odd 8.14

GTBD2 (mν̄e = 0.098) Even - even 3.95

Even - odd 3.85

Odd - even 4.08

Odd - odd 4.20

Fig. 1 β−-decay rates calculated using the GTBD2 model with mν̄e =
50 keV = 0.098. Experimental data from Letter of Nuclide [20]

be compared with the corresponding ones calculated with
GTBD1 presented in Fig. 2 from [7] (remember that we use
gA = 1).4 These results show that the 75.5% (88.3%) of our
calculated half lives within GTBD2 are in good agreement
with the experimental data, because they differ by less
than one (two) order of magnitude with the data. These
percentages are very similar to those obtained in Ref. [7]
within GTBD1.

In Fig. 2, we compare the results obtained by using
GTBD1 and GTBD2 for the cobalt family. We use the cobalt
isotopes as an example, but all the nuclei of the sample
show the same behavior. We observed that the inclusion
of an antineutrino mass of 50 keV improved only slightly
the results of some isotopes, such as 60Co, 62Co, 63Co,
65Co, 67Co, 68Co, 69Co, and 70Co, at about one-thousandth
with respect to the value calculated within GTBD1, which
becomes almost imperceptible in Fig. 2. The other isotopes
such as 61Co, 64Co, and 66Co had departures from the
experimental data in relation to the GTBD1, which is due
to the value of the fitting parameter σN used. In fact, it has
been determined minimizing the χ2 function from (26), and
leads to a Gaussian width (for the EGT function) which
is far from the experimental value for some nuclei of our
sample. This problem could be solved by obtaining a σN for
each nucleus through the experimental data.

4A comparison of the results obtained using GTBD1 with the
corresponding ones calculated in other previous evaluations was
presented, for example, in Refs. [6, 7, 15, 22].
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Fig. 2 Comparison of β−-decay half lives for the cobalt family. Left
panel shows the results for the logarithm of the ratio between the cal-
culated half-life (τ cal

1/2) using both the GTBD1 with mν̄e = 0 and the

GTBD2 with mν̄e = 50 keV = 0.098, and the experimental data (τ exp
1/2 )

taken from Letter of Nuclide [20]. Right panel exhibits the same the-
oretical and experimental values for the logarithm of the half-life (in
units of sec)

4 Concluding Remarks

We have adopted the Gross Theory as a nuclear model
for calculating the β−-decay rates and we have tried to
introduce improvements in the model with the aim of
obtaining a better agreement with the experimental data
presented in the Letter of Nuclide. In this work, we have
included the effect of the antineutrino mass in the rates of
β−-decay, which has been neglected in other calculations
due to the fact that the value of its mass is much smaller
than the mass of the electron. We recalculated the fitting
parameters σN and compared the results for the half lives
in the models without and with the inclusion of antineutrino
mass, GTBD1 and GTBD2, respectively. The GTBD2
presented results with slight improvements, with some
nuclei tending to deviate from the experimental results.
We observed that this fact is due to the adopted fitting
parameters. Assuming an overestimated value of mν = 50
keV within the GTBD model, we have obtained an average
variation of thousandths of difference with the calculation
made using zero neutrino mass. That difference will be
even smaller if we use real values for the antineutrino mass,
of the order of eVs. We conclude that the inclusion of
antineutrino mass for β−-decay rates through the Gross
Theory did not bring significant contributions that justify
its inclusion. Our conclusion remains valid even within
the framework of other models different from the GTBD,
since what differentiates one nuclear model from another is
the evaluation of the nuclear matrix element which is not

affected by inclusion of the antineutrino mass in the model
(see (11)).
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Instituto de fı́sica da Universidade de Sao Paulo (1998)

20. Letter of Nuclide. Available at: www-nds.iaea.org/relnsd/vchart/
index.html (2016)

21. K. Takahashi, Prog. Theor. Phys. 45, 1446 (1971)
22. R.C. Ferreira, A.J. Dimarco, A.R. Samana, Exatas Online, ISSN

2178-0471 vol. 3, N◦ 2, 1–24; http://www2.uesb.br/exatasonline/
images/V3N2$%$20pp1-24.pdf (2012)

23. R.C. Ferreira, D.N. Possidonio, M.R. Azevedo, A.J. Dimarco,
A.R. Samana, Revista Da XII Semana de Fı́sica de UESC, p.
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