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Abstract. Epilepsy is the second most common chronic brain disorder, affecting
65 million people worldwide. According to the NIH’s Epilepsy Therapy
Screening Program, evaluation of potential new antiepileptic drug candidates
begins with assessment of their protective effects in two acute seizure models in
mice, the Maximal Electroshock Seizure test and the 6 Hz test. The latter elicits
partial seizures through an electrical stimulus of 44 mA, at which many clinically
established anti-seizure drugs do not suppress seizures. The inclusion of this
“high-hurdle” acute seizure assay at the initial stage of the drug identification
phase is intended to increase the probability that agents with improved efficacy
will be detected. In this work, we have used machine learning approximations to
develop in silico models capable of identifying novel anticonvulsant drugs with
protective effects in the 6 Hz seizure model. Linear classifiers based on Dragon
conformation-independent descriptors were generated through an in-house rou-
tine in R environment and validated through standard validation procedures. They
were later combined through different ensemble learning schemes. The best
ensemble comprised the 29 best-performing models combined using the MIN
operator. With the objective of finding new drug repurposing opportunities (i.e.
identifying second or further therapeutic indications, in our case anticonvulsant
activity, in existing drugs), suchmodel ensemblewas applied in a virtual screening
campaign of DrugBank and Sweetlead databases. 28 approved drugs were iden-
tified as potential protective agents in the 6 Hz model. The present study consti-
tutes an example of the use of machine learning approximations to systematically
guide drug repurposing projects.
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1 Introduction

Epilepsy is the second most common chronic brain disorder characterized by recurrent
and spontaneous seizures, that affect 65 million all ages people in the world [1].
Around thirty percent of epileptic patients do not respond to clinically established
anticonvulsants, a condition known as refractory or intractable epilepsy [2].

Drug repositioning represents an interesting strategy to expedite the development of
new medications [3]. This approach consists in searching second or further medical
uses for experimental, approved, discontinued and shelved drugs. Computer-aided drug
repurposing provides a rational framework to identify repurposing opportunities with
minimal investment of time and resources [4].

The 6 Hz psychomotor seizure model of partial seizures in mice uses electrical
stimulation by low-frequency (6 Hz) rectangular pulses of 0.2-ms duration delivered
through corneal electrodes for 3 s [5], to induce seizures that are reminiscent of the
psychomotor ones occurring in human limbic epilepsy. It is currently included in the
initial phase of drug screening of the NIH’s Epilepsy Therapy Screening Program
(ETPS) [6].

This model has been able to identify drugs that are not active in conventional
animal models, such as levetiracetam (which has a novel mechanism of action and is
effective in treating a wide range of seizures including partial onset refractory epilepsy,
a type of epilepsy usually difficult to control by drug therapy). It has been thus sug-
gested as a screening tool to evaluate new antiepileptic drugs (AEDs) with potential
activity against refractory seizures [7].

In this work, we have developed in silico models capable of discriminating active
from inactive compounds in the 6 Hz model. Such models have been then applied in a
virtual screening campaign oriented to find drug repurposing opportunities.

2 Methods

2.1 Data Set Compilation and Splitting

90 compounds evaluated in the 6 Hz seizure model were compiled from literature [8–
42] and conformed a balanced dataset which includes 44 active compounds (>75%
protection at doses � 30 mg/kg) and 46 inactive compounds (no protection up to doses
of 100 mg/kg). This dataset was later used to obtain training and test sets to calibrate
and validate the models, respectively. It was curated using Standardizer Instant JCHEM
v. 16.9.12.0. The molecular diversity of the dataset (both within and between the
Active and Inactive classes) can be appreciated in the heatmaps of Fig. 1, which shows,
for each pair of compounds in the dataset, the Tanimoto distances calculated using
extended connectivity fingerprints with a maximum diameter of 4 (ECFP_4). Such
heatmaps were built using Gitools v. 2.3.1 [43] and Tanimoto distances were calculated
employing ScreenMD - Molecular Descriptor Screening v. 5.5.0.1. (ChemAxon 2011).
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Following previous studies suggesting that rational sampling of the training and test
sets lead to models of enhanced predictivity [44, 45] we chose to resort to a clustering
approach to partition the dataset representatively. We used a combined hierarchical and
non-hierarchical procedure [46]: the LibraryMCS v16.10.10.0 (ChemAxon 2016)
hierarchical clustering approach based in the Maximum Common Substructure
(MCS) was first applied, and the resulting clusters were then optimized using the k-
means algorithm (Statistica 10 Cluster Analysis Module, Statsoft Inc. 2011). Such
combined clustering procedure was performed in an independent manner for the Active
and Inactive classes to obtain a balanced training set (30 active compounds and 30
inactive compounds). The remaining compounds were assigned to the test set (14
active and 16 inactive compounds). The molecular structures of the training and test set
compounds are presented as Supplementary Material.

2.2 Descriptor Calculation and Modelling

Molecular descriptors are numerical variables that reflect different aspects of the
molecular structure. The values of 3668 conformation-independent (0D–2D) descrip-
tors were computed with Dragon 6.0 software. A random subspace approach [47, 48]
was then used to explore the descriptor space: 1000 random subsets of 200 descriptors
each were generated, and one model was trained from each subset. The random sub-
space approximation causes the models not to over-focus on features that display high
explanatory power in the training set. It can also be useful when handling datasets that
suffer from small sample size and large dimensionality (i.e. large feature space) (a quite
frequent scenario in the drug discovery field) and when the feature space includes
redundant features.

A binary variable associated to each dataset class (active and inactive compounds)
was used as dependent variable. Such variable was assigned observed values of 1 for
compounds within the Active class and observed values of 0 for compounds in the
Inactive class. A semi-correlation approach using a Forward Stepwise feature selection

Fig. 1. Heatmaps of dissimilarity for the whole database and within each database category.
(A) Active compounds vs. inactive compounds; (B) active compounds vs. active compounds;
(C) inactive compounds vs. inactive compounds.
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procedure was used to obtain one model from each of the random feature subsets [49].
A tolerance value of 0.5 was selected to exclude highly correlated descriptors from the
models. A minimum ratio of 10 between the number of training set examples and the
number of descriptors was used in order to reduce the chances of overfitting.

An in-house script in R environment was used for all data analysis. The R package
data table (https://cran.r-project.org/package=data.table) was used to handle datasets.

Standard validation approaches, including stratified Leave-Group-Out cross vali-
dation, randomization test and external validation, were applied to assess the models’
robustness and predictive ability.

Regarding the Leave-Group-Out cross-validation, in each cross-validation round,
random subsets comprising 5 active and 5 inactive compounds were removed from the
training set, and the model was regenerated using the remaining compounds as training
examples. The resulting model was used to predict the class label for the 10 removed
compounds. The procedure was repeated 10 times, removing each of the training set
compounds at least once. The results were informed as the average percentage of good
classifications (accuracy) across the folds, and this was compared with the accuracy of
the model for the original training set and also, as advised by Gramatica [50], with the
No-Model error rate or risk (NOMER%), i.e. the error provided in absence of model.

In the case of randomization, the class label was randomized across the compounds
in the training set. The training set with the randomized dependent variable was then
used to train new models from the descriptor selection step. Such procedure was
repeated 10 times within each descriptor subset and the average accuracy and the 95%
confidence interval for the accuracy of the randomized models were calculated. It is
expected that the randomized models will perform poorly compared to the real ones.

At last, the predictivity of each individual model was assessed through external
validation, using the 30-compound test set. A diversity of statistical parameters com-
monly used to assess the performance of classificatory models [50, 51] were estimated
for both the training and test sets: sensitivity (Se, i.e. true positive rate), specificity (Sp,
i.e. true negative rate), accuracy (Acc. overall percentage of good classifications),
positive and negative predictivity and the F-measure.

2.3 Ensemble Learning

An ensemble of classifiers is a set of classifiers whose individual decisions are com-
bined in some way (e.g. through voting, or averaging their scores) to classify new
examples; interestingly, ensembles are often much more accurate and provide better
generalization than the individual classifiers [47, 52]. There are different reasons that
explain the enhanced performance and predictivity of model ensembles [52]. The first
is statistical: a learning algorithm can be viewed as a search in a hypothesis space to
identify the best hypothesis in it. The learning algorithm can find several different
hypotheses that all give the same or similar accuracy on the training data; by con-
structing an ensemble out of all (or some) of these accurate classifiers, the algorithm
can average their votes or score and reduce the risk of choosing the wrong one.
A second reason is computational: many learning algorithms work by performing some
form of local search that might get stuck in local optima. An ensemble built by running
the local search from several different starting points provides a better approximation to
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the true (unknown) function than any of the individual classifiers. There are many
methods for constructing ensembles, but essentially they comprise enumerating and
weighting all possible hypotheses, manipulating the training examples (as in bagging),
manipulating the input features (as in the already described random subspace
approach), manipulating the output targets (as in boosting) and injecting randomness.

As described below, two retrospective virtual screening campaigns were used to
evaluate the performance of individual models and model ensembles. The first retro-
spective experiment enabled evaluating the performance of individual models and
bestow the basis to decide which individual classifiers would be selectively combined
in the model ensemble and what operator would be used to combine them. The second
retrospective virtual screening was used to validate the performance of the chosen
model ensemble.

The best individual classifiers were selected and combined using the area under the
ROC curve metric (AUCROC) in the first retrospective virtual screening experiment as
criterion of performance. Systematic combinations of the 2–100 best performing
classifiers were analyzed. Four combination schemes were applied to obtain a com-
bined score (Fig. 3): MIN operator; Average Score; Average Ranking and Average
Voting. AUCROCs were obtained with the pROC package [53]; the DeLong method
was used to obtain 95% confidence intervals. BEDROC and RIE (1%) were also
computed [54]. For that purpose, we have resorted to the R package enrichvs (en-
richment assessment of virtual screening approaches) [55] and the online tool
ROCKER [56].

2.4 Retrospective Virtual Screening

Truchon and Bayly [54] demonstrated that the AUCROC metric is dependent on the
ratio of actives/inactives, and its standard deviation converges to a constant value when
small yield of actives (Ya) of the screened library are used (Ya below 0.05 seems to
provide more robust results). A reasonably small Ya also ensures that the saturation
effect is constant or absent. A high number of decoys (1000 or higher) and a small Ya
contribute to a controlled statistical behaviour. Consequently, we performed retro-
spective virtual screening campaigns to better estimate the enrichment provided by the
individual models and the model ensembles. For this, we have dispersed 14 active
compounds from the test set among a large number of paired decoys (putative inactive
compounds) provided by the enhanced Directory Useful Decoys (DUD-E) [57]. The
first library subjected to retrospective virtual screening consisted in the 14 active
compounds with 700 presumed inactive ones (decoys). This library has been denom-
inated DUD-E A library. The second library subjected to retrospective virtual screening
is comprised by the 14 active compounds plus 3500 decoys and was named DUD-E B
library. DUD-E A was used to estimate the performance of the individual models in a
true virtual screening experiment and to train the ensemble (i.e. to decide which
individual models would be included and how they would be combined). DUD-E B
was only used to validate the performance of the best model ensemble.
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2.5 Building Positive Predictive Value Surfaces and Choosing
an Adequate Score Threshold Value

A practical concern when implementing in silico screening campaigns is to predict the
actual probability that a hit will confirm its predicted activity when submitted to
experimental testing (Positive Predictive Value, PPV). Estimation of such probability is
however precluded due to its dependency on the Ya of the screened library, which is
not known a priori (Eq. 1):

PPV ¼ SeYa
SeYaþ 1� Spð Þ 1� Yað Þ ð1Þ

Equation (1) was applied to build PPV surfaces. In order to choose an optimal score
cutoff value to select predicted hits in prospective virtual screening experiments, 3D
plots illustrating the interplay between PPV, the Se/Sp ratio and Ya were built for each
individual model and for each model ensemble [58]. Using the DUD-E A and DUD-E
B databases, Se and Sp were computed in all the range of possible cutoff score values.
Since controlled statistical behavior is observed for database sizes of about 1000
compounds or more and Ya below 0.05, we can reasonably assume that the ROC curve
and derived metrics will be similar when applying the models to classify other large
chemical databases with low Ya. Taking into consideration that in real virtual screening
applications Ya is ignored a priori but invariably low, Ya was varied between 0.001
and 0.010. The R package plotly (https://cran.r-project.org/package=plotly) was used to
obtain all the PPV graphs. Visual analysis of the resulting PPV surfaces allowed us to
select a score threshold value with a desired range of PPV.

2.6 Virtual Screening

Based on visual inspections of the resulting of PPV surface graphs, the best model
ensemble was used in a prospective virtual screening application. We used a 29-model
ensemble using the MIN operator to combine the scores of the individual models,
choosing 0.3505 as score threshold. Such threshold corresponds to a Se/Sp ratio of
0.793. It was checked that every hit belonged to the applicability domain of the
ensemble model which assigned the minimum score. The leverage approach was used
to assess if a hit belongs to the applicability domain, using 3d/n as cutoff value, where d
is the number of descriptors in the correspondent model and n is the number of
compounds in the training set.

We used the 29-model ensemble to screen two databases: (a) DrugBank 5.0.0, an
online database containing extensive information about the US Food and Drug
Administration (FDA) approved, experimental, nutraceutical, illicit and investigational
drugs [59]; (b) Sweetlead, a curated database of drugs approved by other international
regulatory agencies, compounds isolated from traditional medicinal herbs, and regu-
lated chemicals [60]. Both databases were curated using Standardizer version 16.9.12.0
(ChemAxon 2016). We applied the following actions to generate homogeneous rep-
resentations of the molecular structure for the virtual screen: (1) Strip salts; (2) Remove
Solvents; (3) Clear Stereo; (4) Remove Absolute Stereo; (5) Aromatize; (6) Neutralize;
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(7) Add Explicit Hydrogens; and (8) Clean 2D. Additionally, duplicated structures
were removed using Instant JCHEM v.17.2.6.0.

The general protocol used for building and validating our individual models and
model ensembles has been included in Fig. 2.

3 Results

Ligand-Based Model Development, Validation and Virtual Screening

We resorted to a computationally inexpensive (conformation-independent) ligand-
based approach to obtain 1000 individual linear classifiers by applying a random
subspace approximation. The individual models were externally validated by using an
independent test set and, for a more realistic performance assessment, by retrospective
screening of pilot databases, where a small proportion of known active compounds was
dispersed among a high number of decoys (putative inactive compounds). Table 1
shows the enrichment metrics of the five individual classifiers that displayed the best
performance on the training set, test set and DUD-E A library.

The best individual model included the following features:
Model 191: Class = 0.46645 - 0.71571 * B02[O-O] - 0.24724 * CATS2D_00_PP

+ 0.02305 * SM13_EA (dm)
F(3,56) = 7.821188 p < 0.0002

Fig. 2. Computational flowchart for cheminformatics analysis using ensemble learning

Table 1. Values of the AUCROC metric for the best five individual models.

Model Training set Test set DUDE-A DUDE-B

191 0.790 (– 0.0570) 0.690 (– 0.100) 0.855 (– 0.0426) 0.829 (– 0.0460)
208 0.886 (± 0.0405) 0.884 (± 0.0598) 0.844 (± 0.0397) 0.823 (± 0.0434)
586 0.787 (± 0.0580) 0.862 (± 0.0694) 0.837 (± 0.0521) 0.830 (± 0.0518)
051 0.851 (± 0.0493) 0.871 (± 0.0694) 0.836 (± 0.0507) 0.818 (± 0.0538)
902 0.770 (± 0.0405) 0.786 (± 0.0841) 0.835 (± 0.0372) 0.801 (± 0.0411)
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Dragon’s nomenclature for the molecular descriptors has been kept in the previous
expression. B02[O-O] represents the presence/absence of an O-O pair at topological
distance 2; CATS2D_00_PP refers to the CATS (Chemically Advanced Template
Search) 2D Positive-Positive at lag 00; and SM13_EA (dm) corresponds to the spectral
moment of order 13 from edge adjacency matrix, weighted by dipole moment.

Whereas the performance of the best individual classifiers was acceptable, we
resorted to ensemble learning to obtain meta-classifiers with improved accuracy,
enhanced enrichment parameters and a more robust behavior. The expectations on the
model combination approach were confirmed statistically, showing clear statistical
differences in comparison to the best individual model. Figure 3 shows the influence of
the number of models included in the ensemble on the AUCROC metric.

The MIN, RANKING and AVERAGE combination schemes exhibited similar
classificatory ability and enrichment behavior on the test set, DUDE-A and DUDE-B
libraries.

We chose to move to the prospective virtual screening experiment using the
ensemble obtained by combining the 29 best-performing individual models using the
MIN operator, which was statistically superior to the best individual model on DUDE-
A (p < 0.01) and DUDE-B (p < 0.05) and provided better results than other combi-
nation schemes in terms of the deviation associated to the estimated enrichment
parameters. Table 2 shows the enrichment metrics for the 29-model ensembles
obtained by different combination schemes.

Fig. 3. AUCROC metric vs. the number of combined models in the DUDE-A database (a) MIN
operator; (B) Average score; (C) Average ranking; (D) Average voting.
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We decided to optimize the score cutoff value by resorting to analysis of PPV
surfaces [57]. With the help of these surfaces, the evolution of the most relevant metric
for our purposes, the PPV value, can be visually (or, eventually, mathematically)
optimized as a function of the Se/Sp ratio across a range of Ya values. We built such
surfaces using the data from the retrospective screening of DUDE-A. The strongest
assumption of our approach is that the Se/Sp value observed for a given score during
this retrospective screening experiment will hold when screening other databases (e.g.,
the ones screened in prospective virtual screening applications). This is of course not
necessarily true. However, since the AUCROC values obtained for the DUD-E libraries
are unequivocally high (always above 0.9 for the individual models and very close to
the perfect value of 1 for the ensembles) while on the other hand the DUD-E database
Ya ratio (quite below 0.05) and size (>1000 compounds) speak of a controlled sta-
tistical behavior, we believe it is a reasonable assumption in the present setting.

Using the PPV surface, we chose 0.35 as score threshold to be used in our virtual
screening of DrugBank and Sweetlead; such score is associated to a Se/Sp ratio of
0.793 for the 29-model ensemble based on the MIN operator and to PPV value � 20%
for a Ya of 0.01 (Fig. 4). This means that if Ya in the real virtual screen was 0.01, we
would have to submit about five predicted hits to experimental testing in order to find
one confirmed hit. The virtual screen using the previous score cutoff value resulted in
57 hits, with 28 of them corresponding to approved drugs (Table 3 shows the top-
scoring hits, their original indication, their score and predicted PPV value).

It should be noted that, whereas almost all the hits (with the exception of lacosa-
mide, which is an already known anticonvulsant, and the benzodiazepine flurazepam)
constitute valid options as starting points (novel scaffolds) to develop new AEDs
though hit-to-lead and lead optimization strategies, not all of them are identically
attractive as repurposing prospects, especially considering that epilepsy is a chronic
condition that requires chronic medication. When considering a repurposing candidate,
one should take into account its original indication (is it compatible with the intended
new one?) and also the dose compatibility between the previous and the new indication
(which depends on the effective concentrations required in each case, but also possibly
on pharmacokinetic considerations: i.e. the drug levels reached in different organs may
vary) [61, 62]. Systemic medications are more favorable as repurposing candidates for

Table 2. Values of metrics for the 29-model ensemble

Training set DUDE-A DUDE-B

29-model
ensemble

AUCROC BEDROC AUCROC BEDROC RIE1% AUCROC BEDROC RIE1%

MIN-
operator

0.951 0.999 0.983 0.841 36.22 0.975 0.752 64.43

Average
score

0.942 0.998 0.951 0.627 14.49 0.946 0.646 35.80

Average
ranking

0.940 0.998 0.959 0.721 28.98 0.938 0.664 50.11

Average
voting

0.941 0.998 0.916 0.572 14.49 0.887 0.525 28.64
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systemic ailments. New therapeutic indications requiring equal or lower doses than the
ones used for the original indication represent a more straightforward repurposing
opportunity.

For instance, anticancer agents in Table 3 (sonidegib, doxifluridine) can be
regarded as poor repurposing candidates due to their unfavorable safety profile (for
instance, common side effects include muscle spasms, hair loss, fatigue, abdominal
pain, nausea, headache, and weight loss).

Fig. 4. PPV surface for the best 29-ensemble model.

Table 3. Top-scoring hits, their original indication, their score and predicted PPV value

N

Fliba

Sonid

Name

anserin 

degib

MIN 
Score (Y
0.6185 

0.5601 

PPV%
Ya=0.01)

33.43 

50.10 

Structuure Original 

Hypoactive 
Disorder 

Antineopl

indication 

Sexual Desire 
in Women 

lastic Agent 

(continued)

12 S. Goicoechea et al.



Table 3. (continued)

Flura

Laco

Etido

Leflu

Bupiv

Doxif

azepam 

samide 

ocaine 

unomide 

vacaine

fluridine 

0.4952 

0.4683 

0.4537 

0.4142 

0.3907 

0.3857 

55.66 

45.56 

50.10 

47.48 

42.96 

39.23 

Hyp

Antico

Local a

Disease-
antirheum

Local anesthe
for s

Treatment of 

pnotic 

onvulsant 

anesthetic 

-modifying 
matic drug 

etic or analgesia 
urgery 

stomach cancer

(continued)
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4 Conclusions

We have implemented a machine learning study to build ligand-based linear models
capable of discriminating between active and inactive anticonvulsant drugs in the 6 Hz
seizure test, one of the primary in vivo screens of ETSP. Using a random subspace
strategy and Dragon conformation-independent models, we have obtained satisfactory
individual classifiers, whose statistical behavior has though been improved by
ensemble learning. The best performing ensemble was used in a prospective virtual
screening experiment on DrugBank and Sweetlead databases, leading to 29 approved
hits which are straightforward drug repurposing candidates. We will experimentally
examine their activity in the 6 Hz model in the near future.

It should be highlighted that, whereas very valuable as a primary screen for AEDs
with distinctive pharmacological profile, such as levetiracetam or brivaracetam, the
6 Hz models is still an acute seizure model with adequate throughput, but it is not a
model of epilepsy, and it provides limited, insufficient evidence for a translational
analysis. Animal models of seizure should be complemented with (more complex and
low-throughput) animal models of epilepsy to grasp a better understanding of the
perspective of a drug candidate as a treatment for human epilepsy, as suggested by the
EPTS itself [6].

Virtual screening and computer-guided drug repurposing are excellent strategies to
expedite the development of innovative medications, by exploiting previous knowledge
on the pharmacological, toxicological and pharmacokinetic data of known drugs, and
also by rescuing abandoned/shelved and discontinued drugs and drug candidates.

Table 3. (continued)

Floxu

Triflu

uridine 

upromazine 

0.3788 

0.3783 

39.24 

39.23 

Antineoplastic

Management
Also to contr

vom

c antimetabolite

t of psychoses. 
rol nausea and 

miting 
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