
From Specifications to Programs:
A Fork-Algebraic Approach to Bridge the Gap

*Gabriel A. Baum, tMarcelo F. Frias, tArmando M. Haeberer,
*Pablo E. Martfnez L6pez

*Universidad Nacional de La Plata,
LIFIA~ Departamento de Informs

C.C.11, Correo Central, 1900, La Plata,
Provincia de Buenos Aires, Repdblica Argentina.

e-maih {gbaum, fidel}@in_fo.unlp.edu.ar.
tLaborat6rio de M4todos Formals,

Departamento de InformAtica,
Pontificia Universidade Cat61ica do Rio de Janeiro,

Rua Marquis de S&o Vicente 225, 22453-900,
Rio de Janeiro, R J, Brazil.

e-maih {mfrias, armando}@inf.puc-rio.br.

Abstrac t . The development of programs from first-order specifications
has as its main difficulty that of dealing with universal quantifiers. This
work is focused in that point, i.e., in the construction of programs whose
specifications involve universal quantifiers. This task is performed within
a relational calculus based on fork algebras. The fact that first-order the-
ories can be translated into equational theories in abstract fork algebras
suggests that such work can be accomplished in a satisfactory way. Fur-
thermore, the fact that these abstract algebras are representable guar-
antees that all properties valid in the standard models are captured by
the axiomatization given for them, allowing the reasoning formalism to
be shifted back and forth between any model and the abstract algebra.
In order to cope with universal quantifiers, a new algebraic operation
- - relational implication - - is introduced. This operation is shown to
have deep significance in the relational statement of first-order expres-
sions involving universal quantifiers. Several algebraic properties of the
relational implication are stated showing its usefulness in program calcu-
lation. Finally, a non-trivial example of derivation is given to asses the
merits of the relational implication as an specification tool, and also in
calculation steps, where its algebraic properties are clearly appropriate
as transformation rules.

1 Introduction

The last few years have witnessed a renewed interest of the comput ing science
communi ty in relational p rogramming calculi. This interest is mainly due to the
advantage of relational calculi for dealing with non-determinism. At the same
time, the postulated advantage of relational calculi for describing, in early steps
of specification construction, what - to -do instead of how- to -do , gives relevance

181

to such calculi. Even while the first advantage cannot be denied (for example
when comparing relational calculi against functional calculi), the second claimed
advantage must be thoroughly discussed, since in relational frameworks, every-
thing that can be said can be said easily, but not everything can be said. Thus
relational calculi may fall for short when dealing with the problem of software
specification.

This paper is divided in three main parts. The first part introduces fork
algebras and some well known results about their expressiveness. The second
one deals with the fork algebras representation problem, and its relevance in
the process of program construction from specifications. Finally, in the third
part - - containing the main results regarding formal program construction - - ,
the relational implication is introduced and some algebraic rules are provided.
Also, a case study is presented to show the suitability of relational implication in
dealing with problems whose natural specifications involve universal quantifiers.
While relational implication was already introduced in [7], where a simple case
study is also given, it is here where for the first time a thorough study about
it is carried on. We will present properties of the relational implication which
result essential when deriving algorithms from specifications containing universal
quantifiers.

2 Fork Algebras: Models, Axiomatization and
Expressiveness

Fork Algebras arose in computer science as an equational calculus for formal
program specification and development within a relational framework [1, 3, 7, 8];
they showed however to have inherence also in the fields of algebra and logic,
as shown in [5, 6, 11, 12, 13]. In this section we will present the models that
motivated the usage of fork algebras as a calculus for program specification
and development. Also given is an abstract axiomatization, which constitutes a
finite base for those models as proved in Theo. 6. Finally, some known results
on the expressiveness of fork algebras are mentioned, and a discussion on the
implications of these results in the field of program specification is carried on.

Proper fork algebras (PiCAs for short) are algebras of relations [2, 15] extended
with a new operator - - called f o r k - - devised to deal with complex objects with
a tree-like structure. These "trees" may have branches of infinite height. Even
though this may seem a drawback, it can be useful for modeling infinite processes
or infinite computations as it is done in [3]. Furthermore, this tree-like structure
allows handling of as many variables as necessary when representing first-order
formulas as fork algebra terms.

In order to define PiCA's 1, we will first define the class of powerset ,PiCAs by

1 It is important to remark that PFA's are quasi-concrete structures since, as was
pointed out by Andr~ka and N~meti in a private communication, concrete structures
must be fully characterized by their underlying domain, something that does not
happen with proper fork algebras because of the (hidden) operation *.

182

D e f i n i t i o n l . A powerset *PFA is a two sorted structure with domains 7)(V)
and U

<'P(V),U,U,N,',O, V,I, Id,~,V__,* >

such that

1. V is an equivalence relation with domain U,
2. h Id and ~ stand respectively for composition between binary relations, the

diagonal relation on U and the converse of binary relations, thus making the
reduct < ~o(V), U, N, ', {3, V, [, Id, ~ > an algebra of binary relations,

3. * : U x U -+ U is an injective function when its domain is restricted to V,
4. whenever xVy and xVz, also ~ V * (y, z),
5. RVS = {< x,*(y,z) >: xRy and xSz}.

D e f i n i t i o n 2 . The class of PFA's is defined as S Rd[,PFA], where R d takes
reducts to the similarity type < U, n, ', 0, V, I, Id, ~, Z > and S takes subalgebras.

It is important to notice that, in the characterization of proper fork algebras,
we use variables ranging over two different classes of entities. Some variables
range over relations (like R and S in Def. 1) and others range over individuals
(like x, y, z also in Def. 1), thus leading to a two sorted theory. In the same
way that dummy variables ranging over individuals are avoided in functional
languages, we are going to present an abstract characterization of proper fork
algebras as a first-order class whose variables range only over relations. This
relationship between proper fork algebras and the class of abstract fork algebras
- - defined below - - , is made precise in Sect. 3.

D e f i n i t i o n 3. An abstract fork algebra (AFA for short) is an algebraic structure

< R, + , . , - , 0, oo, ;, 1 ,~ ,~7 >

satisfying the following set of axioms

1. Axioms stating that < R, +, . , - , 0, oc, ;, 1, ~ > is a relation algebra 2 where
< R, +, . , - , 0, oo > is the Boolean reduct, < R, ;, 1 > is the monoid reduct,
and ~ stands for relational converse,

2. r v s = (r; (I V o o)) �9
3. (r V s) ; (f V q) v = (r ; t ~) * (s;q~),
4. (1Voo)~V(ooVl)V-'<I, where --_<_ is the partial ordering induced by the

Boolean structure.

Next we will introduce some non-fundamental fork algebra operation that
will be used in the specification and derivation process.

D e f i n i t i o n 4 . Let the operations ~r, p and | be defined by

1. ~ = (I V o ~) - (tim projection)

2 Equational axiomatic systems for relation algebras are given in [2, 15].

183

2. p = (ooV l)~ (second projection)
3. R | = (r;R)V(p;S) (cross product)
4. 2 = 1V1 (equality filter)

Operations or and p stand for projecting relations (see Fig.l) regarding the
underlying pair formation operation , . Since 1 stands for the diagonal relation,
the relation 2~ acts like a filter, filtering those pairs < x * y > such that x ~ y.

/
(x)

x\
OO

. V x"Xy

Fig. 1. The projections lr and p.

2.1 The Expressiveness of Abstract Fork Algebras

In order to describe shortly the relationship existing between first order logic
with equality and fork algebras, we can say that first order theories can be
interpreted as equational theories in fork algebras. More formally, let L be a first
order language. Let us denote by < A, L' > the extension of the similarity type
of abstract fork algebras with a sequence of constant symbols whose names are
sequentially assigned from the symbols in L. Then the following theorem holds.

T h e o r e m 5. There exists a recursively defined mapping T, translating formulas
in L into equations in < A, L' >, satisfying

F 1- a .'. } {T(7) : c~: 3' 6 F} [-v T(a) : oo.

The symbol t-v in Th.5 stands for provability in fork algebras, i.e., proofs are
made in equational logic and the extralogical axioms defining the fork algebra
operators are assumed to hold.

The result shown in Th.5 was already known for other algebraic systems
closely related with fork algebras, as quasi-projective relation algebras and pair-
ing relation algebras. The work on the interpretability of first-order theories
into quasi-projective relation algebras was extensively developed by Tarski and
Givant in [15], while the version for pairing relation algebras was developed by
Maddux in [10].

Theorem 5 has an strong application in program specification within the
framework of abstract fork algebras. If we use as our primitive specification

184

language some first-order theories - - assumption more than reasonable since
first-order languages are simple and expressive formal languages - - Th.5 guar-
antees that by applying the mapping T to a first-order specification of a given
problem, we obtain a faithful abstract relational specification of it.

Regarding the issue presented in Sect. 1 on the suitability of relation algebras
for expressing what-to-do instead of how-to-do, it must be noted that the answer
is not so straight. Although relations have some natural operations as converse or
complement which are powerful in the specification construction process (both
allow to specify non-functional problems), the expressiveness of the involved
relational language cannot be ignored. It is, for example, a well known fact that
the language of relation algebras - - as presented in [15] - - has a very limited
expressive power [9], and thus is not adequate for complex program specification.
On the other hand, the language of abstract fork algebras has been shown to be
expressive enough as to cope with the specification and derivation process, as
shown in [7].

3 T h e R e p r e s e n t a t i o n P r o b l e m f o r F o r k A l g e b r a s

Fork algebras' expressiveness theorem establish that the specifications and the
properties of the application domain, which may be expressed in first-order logic,
can also be expressed in the equational theory of abstract fork algebras. However,
this expressibility is insufficient for one to formulate, within the theory, many
of the fundamental aspects of the program construction process. The process
of program construction by calculations within relational calculi requires more
than the possibility to express the specification of requirements. It also requires
the calculus to provide heuristics that guide the syntactic manipulations in the
development process. If every AFA would be representable as a PFA, then we
could look at elements from AFAs as binary relations, thus inheriting all the
heuristic power of binary relations into the abstract calculus. Fortunately, as
will be shown in the next theorem, AFAs are representable.

T h e o r e m 6. Every abstract fork algebra is isomorphic to some proper fork al-
gebra.

A first proof of this theorem for complete and atomistic AFAs is given in [4].
Later on Gyuris [6] and Frias et al. [5] proved a representation theorem for the
whole class. Strictly speaking, since PFAs are not a concrete class because of the
hidden operation ~, this can be considered as a weak-representation theorem 3.
Anyway, the theorem provides all the machinery we need for the process of
program construction. A strong representation theorem for fork algebras was
proved by N@meti in [12], although in non-well founded set theories.

The representation theorem may seem of interest only for theoreticians, but
it has a great impact in program specification and development within the
framework of fork algebras. An immediate corollary of the theorem is that

3 This was pointed out by Andr~ka and N~meti in a private communication.

185

Cn(PFA) C_ Cn(AFA) 4, and thus any first-order property valid in the stan-
dard models is reflected in the abstract ones. This simple fact, along with the
suitability of proper fork algebras for reasoning about programs, makes the pair
<abstract, proper> fork algebras a framework with particular heuristic power
not shared by some other calculi, either relational or functional.

4 Calculating Algorithms from First-Order Specifications
Involving Universal Quantifiers

In the course of this section, we will introduce the relational implication, a slight
modification of the right residual, which is shown to be very adequate for rep-
resenting first-order formulas involving universal quantifiers. Furthermore, re-
lational implication has a nice representation in the standard model which, to-
gether with the discussion carried on in the last paragraph of Sect. 3, leads to an
abstract operation with deep significance for the process of program specification
and development.

Finally, we will present a problem whose first-order specification involves
universal quantification. We will obtain from it a relational specification in terms
of the relational implication. The main steps of a smooth derivation of a recursive
specification will be given, showing the adequacy of the relational implication in
the task of software specification and construction.

After some experiences with problems whose first-order specification involves
universal quantification, the formula

r y) := (Vz)(. R z y s z)

(or some minor variants of it) recurrently appears. It is used, for example, for
specifying minimization and sorting problems [7] - - two classical case studies
- - and in this paper it will be used in the specification of a non trivial problem
about binary trees.

It is not difficult to see that the formula above is equivalent to the formula

~'(x,y) := x R ; S ~ y,

thus, in our abstract framework we can define the relational implication of rela-
tions R and S by

R ~ S := R ; S ~ .

In the standard models, the relational implication can be understood as x is
related with y via R-+S if and only if the image of x by R is contained in the
image of y by S - - see Fig. 2.

Since the relation algebraic characterization of "---~" is hard to manipulate
- - complement doesn't behave nicely over composition - - , we will present some
properties of "--4" that allow us to avoid using its definition in derivations.

4 Cn denotes the set of first-order valid formulas in the class.

186

B (
r S

R - . S R C

(
Fig. 2. The relational implication.

Besides of some easy properties, such as ((P+Q)-+R) = (P-+R) * (Q-+R)
and (P-+(Q*R)) = (P-+Q) + (P-+R), - - which follow directly from the defi-
nition - - we will present some more elaborated properties, leading to recursive
relational expressions for computing the relational implication.

P r o p o s i t i o n 7. For any relations P, Q and R, we have
Dom (P +Q); ((P+Q) -+ R) =

D o m (P) ; ((P - - + R) * (D o m (O) ; (O - + R) + (D o m (O) * l) ; o o))
+

Dorn(Q); ((O--+ R)* (D o m (P) ; (P - + R) + (D ~ m (P) . I) ;oo)) .

P r o p o s i t i o n 8 . I r A is a functional relation, then Dom (A); (A-+P) = A ; P - .

P r o p o s i t i o n 9 . I f B is a functional relation, then Dora(B); ((B;P)-+Q) =
B; (P-+Q) .

P r o p o s i t i o n l O . Let A and B be functional relations, and let P = A + B ; P and
T = P-+Q. Moreover, let also Dora (P) = Dora (A)+Dom (B) and Dom (A)*Dom (B) =
0. Then

Dora (P) ;T = A;Q~ + B;T.

P r o p o s i t i o n 11. Let A, B and C be functional relations, and let P = A+ B;P +C;P
and T = P--+Q. Moreover, let us suppose that Dora (P) = Dom (A)+Dom (B)+ Dorn (C)
and Dora (A) .Dom (B) = O, Dora (A)*Dom (C) = O, and Dora (B) .Dom (C) =
O. Then

Dora (P) ;T = A ; Q - + B;T+C;T .

187

/,From Props. l0 and l l we can see that the recursiveness of the relation P
allows to obtain a recursive specification for the relation T.

Some other nice properties of the relational implication are 5

P r o p o s i t i o n 12. Let T = P-+Q. I f P = inf{X : X = A + B ; X } , A and B are
functional relations, and Dom (A)* Dom (B) = O, then

T = A ~ ;Q+ B;T.

P r o p o s i t l o n l 3 . Let T = P-+Q. I f P = inf{X : X = A + B ; X + C ; X } , A, B
and C are functional relations, and Dom (A) . Dom (B) = Dora (A)e Dom (C) =
Dora (B) . D o m (C) = O, then

T = A ~ ; Q + B ; T + C ; T .

In this section we present a problem that is easily specified using first-order
logic, and whose relational specification relies on the relational implication. We
then proceed with the main steps of a smooth derivation that leads us to a
recursive expression for our problem.

The problem we present as example is stated as

"Given a Binary Tree T without repeated nodes, and two elements x
and y belonging to T, find the Minimum Common Ancestor of x and y,
i.e., that node in T which is the closest ancestor to both z and y ' .

Let us take a relation HA (abbreviating has_ancestor), which is meant to
give - - given a tree T and an element z in T - - the ancestors of z in T. A
formal specification of a relation MCA capturing the problem in the language of
first-order logic is given by

[T,x,y]MCA a ~ [T,x]HA a A [T,y]HA a A
(Vz)(([T, z]HA z A [T, y]HA z) ==r [T, a]HA z).

A first-order specification of HA is given by the following formula:

[T,x] HA a i f f (3 T ') (T ' _ E T A T ' r o o t a A x in T') ,

where the relations HA, in, root and _ are the basic relations on the underlying
data type Binary-trees. The relation E is meant to give all the trees that contain
a given tree T ' as subtree; we will also use the converse of E, noted by 3 . The
relation in relates a given tree with its elements and the relation root gives the
root of the tree.

The specification in first-order logic is translated into an equation in AFA
almost directly using the relational implication. If we define the relation CA
(abbreviating comrnon_anc) by

CA = ;HA �9 ;HA , (I)

5 Props. 12 and 13 were proved by G. Schmidt and M. Frias at the Workshop of the
Relational Methods in Computer Science Group, held in Rio de Janeiro, August 1994

1 8 8

then the following equation provides a relational specification for our problem:
MCA = MCA*;p, where

MCA<' -- (~) "(CA~HA)'CA (2)

We also have an equation specifying the relation HA, which is obtained by
pattern matching between its first-order specification and the definition of the
relational operators in the elementary theory of binary relations [14]:

HA -- ,; i n ~ ;It. (3)
;P

LFrom this relational specification, unfolding a recursive definition for ~,
making simple manipulations in fork algebras, and folding HA, we obtain the
following recursive equation 6.

(iri ot
HA= ; ;,~ + | ~ I; in

;2

;r q-) /' right-I-left ~ IT>Z ;~ ~) ; H A |

(4)

LFrom the recursive specification for HA, we can proceed with the derivation
of CA. By unfolding Eq. 4 in Eq. 1, making some fork algebra manipulation, and
then folding CA, we finally obtain:

/1Tz ;r~176)

in (?);(Oom((!),;) , root

6 1Tt stands for the relation {< x, x >: heigth(x) = 1}, and 1T>1 stands for the relation
{< x, x >: heigth(x) > 1}. Given a binary tree, right and left give respectivelly its
right and left subtree.

189

Calling A the first term, B the second term, C = (C1+C2) the non-recursive
part of the third term and P to CA, Eq. 5 has the shape:

P = A + B + (C~+C2);P (6)

Now, unfolding Eq. 6 on Eq. 2, and distributing fork over join, we have

(;.)(;)) MCA <' ---- + + �9 ((A + B + (C,-I-C2);P)->HA). (7)
(C,+C2);P

Applying Props.7, 8, 9, and making elementary manipulations in fork alge-
bras, the term on the right hand side of Eq.7 equals

�9 (A;HA~) (1)

�9 (B;HA~) �9 (Dora (C~;P);C~;(P-+HA))

�9 (B;HA~) �9 (Dora (C2;P);C2;(P-+HA))

+ * (B;HA~) , (Dom(B);((Dom((CI+C2);P)*I) ;c~))

�9 (B;HA~) �9 (Dom(C1;P);C1;(P-+HA)) + ((c,+c,>,P)
+ ((c,+c,>,P)
+ ((Q+C2) ;P)

, (B;HA~) �9 (Dora (C2;P);C2;(P--->HA))

(II)

(III)

(IV)

(v)

(VI)

�9 (B;HA~)* (Dom(B);((Dom((C,+C2);P)*I) ;00)). (VII)

Since 7 7rVA__KA;HA~, 7rXTB_-KB;HA~, ~rV(CI+C~);P < B;HA~, and II, III
and VII equal 0, we obtain:

MCA= ;p + * (Dom(B);((Dom((Cl+C2);P),l) ;oo ;p (a)

r These properties were proved algebraically. The reader may convince himself of their
validity by thinking about the standard models. This is totally valid because of the
representation theorem.

190

(C1 ;P);C1 ;(P-->HA)))

/.From (a) we obtain the base case of the recursive specification for MCA,
while (b) and (c) lead to the recursive parts of the algorithm. We finally obtain
(replacing A, B and C by their definitions),

MCA =

+ Dora

+ Dora

+ Dora

1TI! ~176)~ 12

(f right "~ "~
 ~ t)'CA

~7

o_((=, ,

(('y') ,t ,/"+t, '

((('~ (('!)-)) ; Dora | ; ; �9 Dora ; 2 ;it;root

(8)

It is important to notice that the terms involving domains are tests for
i f - then-e l se- l ike statements. Hence, Eq. 8 leads to the following function:

M CA(t, x, y)
=root (t) , i f height(t) = 1 A x = y = r o o t (t)
= root(t) , i f { " x and y are not in the same subtree")
= MCA(right(t), x, y) , i f {"x and y are in the right subtree")
= MCA(left(t), x, y) , i f {"x and y are in the left subtree")

5 Conclus ions

We have discussed three relevant concepts about fork algebras, namely, the ap-
plications of the expressiveness and representability theorems to program devel-
opment, and also the heuristic power of the relational implication in "breaking"
recursively, universally quantified expressions.

With respect to the derivation itself, it is important to note that it was devel-
oped by strict calculation from the axioms both of fork algebra and the particular
abstract data type Binary-trees. In other words, the only means we have used to

191

introduce semantics along the calculation were Binary-trees formally expressed
properties. At no point we have used non formal knowledge about the discourse
domain.

References

1. Berghammer, R., Haeberer, A.M., Schmidt, G., and Veloso, P.A.S,. Comparing Two
Different Approaches to Products in Abstract Relation Algebras, in Proceedings
of the Third International Conference on Algebraic Methodology and Software
Technology, AMAST '93, Springer Verlag, 1993, 167-176.

2. Chin, L.H. and Tarski, A., Distributive and Modular Laws in the Arithmetic of Re-
lation Algebras, in University of California Publications in Mathematics. University
of California, 1951, 341-384.

3. Frias, M.F., Aguayo N.G. and Novak B., Development of Graph Algorithms with
Fork Algebras, in Proceedings of the XIX Latinamerican Conference on Informatics,
1993, 529-554.

4. Frias, M.F., Baum, G.A., Haeberer, A.M. and Veloso, P.A.S., Fork Algebras are
Representable, in Bulletin of the Section of Logic, University of Lrdi, (24)2, 1995,
pp.64-75.

5. Frias, M.F., Haeberer, A.M. and Veloso, P.A.S., A Finite Axiomatization for Fork
Algebras, to appear in Journal of the IGPL, 1996.

6. Gyuris, V., A Short Proof for Representability of Fork Algebras, Journal of the
IGPL, vol 3, N.5, 1995, pp.791-796.

7. Haeberer, A.M., Baum, G.A. and Schmidt G., On the Smooth Calculation of Re-
lational Recursive Expressions out of First-Order Non-Constructive Specifications
Involving Quantifiers, in Proceedings of the Intl. Conference on Formal Methods in
Programming and Their Applications, LNCS 735, Springer Verlag, 1993, 281-298.

8. Haeberer, A.M. and Veloso, P.A.S., Partial Relations for Program Derivation: Ad-
equacy, Inevitability and Expressiveness, in Constructing Programs from Speci-
fications - Proceedings of the IFIP TC2 Working Conference on Constructing
Programs from Specifications. North Holland., 1991, 319-371.

9. Lrwenheim, L., Uber M@lichkeiten im Relativkalkiil, Math. Ann. vol. 76, 1915,
447-470.

10. Maddux, R., Finitary Algebraic Logic, Zeitschr. f. math. Logik und Grnndlagen d.
Math., vol. 35, 1989, 321-332.

11. Mikulds, S., Sain, I., Simon, A., Complexity of Equational Theory of Relational
Algebras with Projection Elements. Bulletin of the Section of Logic, Vol.21, N.3,
103-111, University of L6dl, October.1992.

12. N~meti I., Strong Representability of Fork Algebras, a Set Theoretic Foundation,
to appear in Journal of the IGPL, 1996.

13. Sain, I. and Nrmeti, I., Fork Algebras in Usual as well as in Non-well-founded
Set Theories, preprint of the Mathematical Institute of the Hungarian Academy of
Sciences, 1994.

14. Tarski, A., On the Calculus of Relations, Journal of Symbolic Logic, vol. 6, 1941,
73-89.

15. Tarski, A. and Givant, S.,A Formalization of Set Theory without Variables, A.M.S.
Coll. Pub., vol. 41, 1987.

