
L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 457–472, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Model-Driven Development of Web Applications with
UWA, MVC and JavaServer Faces

Damiano Distante1, Paola Pedone2, Gustavo Rossi3, and Gerardo Canfora4

1,4 Research Centre on Software Technology (RCOST), University of Sannio, Italy
{canfora,distante}@unisannio.it

2 Faculty of Engineering, University of Salento, Italy
paola.pedone@unile.it

3 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
gustavo@lifia.info.unlp.edu.ar

Abstract. This paper presents a model-driven approach to the development of
web applications based on the Ubiquitous Web Application (UWA) design
framework, the Model-View-Controller (MVC) architectural pattern and the
JavaServer Faces technology. The approach combines a complete and robust
methodology for the user-centered conceptual design of web applications with
the MVC metaphor, which improves separation of business logic and data
presentation. The proposed approach, by carrying the advantages of Model-
Driven Development (MDD) and user-centered design, produces Web
applications which are of high quality from the user's point of view and easier
to maintain and evolve.

Keywords: Web Engineering, Model-Driven Development, Model Transforma-
tion, Model Driven Architecture, UWA, UML, MVC, JavaServer Faces.

1 Introduction

Web applications design methodologies available in the literature can be classified
into those which focus on “what” the application is required to do (conceptual design
in the problem domain) and those which focus on “how” the application can satisfy its
requirements and implement the “what” (logical design in the domain of solutions).
UWA [38], OOHDM [36], OOWS [32] and OO-H [9] pertain to the first category;
Conallen’s proposal [13] belongs to the second one; UWE [19][22] and WebML
[10][11][12] can be considered hybrid methodologies, as they cover both conceptual
and logical design.

Conceptual design methodologies abstract from implementation details and offer
an overall view of the system from the view point of the users. Conceptual modeling
is the right starting point to implement complex systems. However, the big distance
between the conceptual model of a web application and its implementation makes the
use of conceptual design methodologies insufficient for the development of a web
application. If intermediate design levels for translating conceptual specification into
implementation design are not provided, then the implementation activities of a web
application may proceed independently from conceptual design, which will thus be
under-exploited or even a waste of effort.

458 D. Distante et al.

The trend of well-known design methodologies to evolve towards Model-Driven
Development (MDD) shows the need for integrated approaches that support the whole
web application lifecycle. Methodologies that have recently moved in this direction
include OO-H [3], OOWS [3], UWE [18][20] and OOHDM [35], discussed more in
detail in the related work section.

This paper presents a model-driven approach to developing web applications based
on the Ubiquitous Web Application (UWA) conceptual design methodology and the
Model-View-Controller architectural design pattern. Compared to others, the UWA
design framework, with its methodology and models, is particularly suited for
designing web applications which are intended to be ubiquitous (accessible by
different user types in different usage contexts and with different goals) and user-
centered. By combining the characteristics of UWA with the advantages of the MVC
architecture and the MDD paradigm, the resulting approach is particularly suited for
developing ubiquitous web applications in a user-centered perspective as well as for
supporting their maintenance and evolution.

UWA models are made at the right abstraction level to be used with application
stakeholders and, at same time, can be detailed enough (design in the small) to provide
useful information to the application developers. The methodology is also supported by a
number of tools for drawing up UWA models and generating application design
documentation. Nevertheless, since UWA models are independent from implementation
details, they do not specify aspects such as the architecture, the software components, nor
the database that the developer should implement to realize the designed application. By
creating an intermediate design model to represent the application being implemented
and a set of heuristics to map the UWA conceptual models onto it, we lay the basis for a
model-driven approach to developing UWA-based web applications.

The intermediate design model (referred to as the logical model in the following) is
based on standard UML diagrams and adopts the Model-View-Controller (MVC)
architectural design pattern [8].

The main contributions of the paper are:

1. The definition of a logical model that describes the application code to be
developed and maps it to the application requirements;

2. The definition of a set of heuristics to translate UWA conceptual models to the
new logical model;

3. The definition of an MDD approach based on UWA to support the entire web
application lifecycle.

The remainder of the paper is organized as follows. The next section discusses the
background and motivations of the work. Section 3 presents the proposed UWA-based
MDD approach and an example of its application. Related work is presented in Section 4
while Section 5 concludes the paper and provides an overview of future work.

2 Background and Motivations

2.1 A General Framework for the Development of Web Applications

Despite the differences between the various methodologies for engineering web
applications found in the literature, a set of common concerns and development steps

 Model-Driven Development of Web Applications 459

can be identified [37]. Fig. 1 graphically represents these common features. Basically
any design methodology models web applications at three construction levels
(content, navigation and presentation) and addresses a number of aspects spanning
from structure to behavior. Aspects are orthogonal to all construction levels. Structure
applies to content (how contents are structured) as well as to navigation (hypertext
structures) and presentation (e.g., page organization). Similarly, behavior (e.g.,
business rules and user operations) can be associated with content, navigation and
presentation.

Content

Navigation

Presentation

Structure

Req
uire

m
en

t

Spec
ifi

ca
tio

n
Conce

ptu
al

Des
ig

n

Logica
l

Des
ig

n

Phys
ica

l
Des

ig
n

Im
plem

en
ta

tio
n

Analisys Design Implementation

PHASES

Behavior

Im
ple

m
en

ta
tio

n

ind
ip
en

de
nt

de
sig

n
Im

pl
em

en
ta
tio

n

de
pe

nd
en

t

de
sig

n
Co

di
ng

from requirements to implementation

Customization

ASPECTS

LEVELS

Req
uir

em
en

ts

Spe
cif

ica
tio

n

an
d
Ana

lis
ys

Fig. 1. A general development framework for web applications

As represented in Fig. 1, the development process starts with requirement
specification and analysis and proceeds through a number of design steps to the
implementation phase. Design steps include:

1. Conceptual design, focused on describing the problem domain and what the
system is expected to do, independently of any technological detail.

2. Logical design, focused on the operation of the system while hiding
implementation details specific to a particular platform.

3. Physical design, which adapts the logical model of the application to obtain
detailed specifications for implementation with the chosen platform.

2.2 Model-Driven Development

Though the use of design methodologies is not yet a common practice in the field of
web engineering, it is known that a model-based approach provides a better
alternative to the ad-hoc development of web applications and its inherent problems

460 D. Distante et al.

[37]. The need for systematic approaches to be adopted when developing complex
systems and for design prior to implementation is now widely accepted.

Model-Driven Development (MDD) [5] sees software development as a process
whereby a high-level abstract model is successively translated into increasingly more
detailed models, in such a way that eventually one of the models can be directly
executed by some platform [3]. The MDD approach not only advocates the use of
models (such as those resulting from the design steps described in the previous
section) for the development of software, but also emphasizes the need for
transformations in all phases of development, from system specification to
implementation and testing [23]. Transformations from one model to the next create a
chain which enables the automated implementation of a system starting from
requirements.

The possibly most well-known initiative of MDD is the Model Driven Architecture
(MDA) proposal [25] defined by the Object Management Group (OMG). The central
idea of MDA is to separate platform-independent design from platform-specific
implementation of applications, delaying the dependence on specific technologies for
as long as possible. Therefore, MDA advocates the construction of platform-
independent models (PIM) and the support of model transformations. The model that
is directly executed by a platform (PSM) which satisfies all requirements, including
non-functional ones, is also called “code”, and is usually the last model in the
refinement chain.

The development of web applications is a specific domain in which MDD can be
successfully applied, due to the web-specific separation of concerns: content,
navigation, presentation and customization.

2.3 UWA

The Ubiquitous Web Applications design framework (UWA) [38] provides a
methodology and a set of models and tools for user-centered conceptual design of
ubiquitous web applications. Mapping UWA models onto the general web application
development framework depicted in Fig. 1, produces the diagram shown in Fig. 2.
UWA covers the phases of requirement specification and analysis and conceptual
design. Requirement elicitation is the activity devoted by UWA for the identification
of the application’s stakeholders, their goals and, through a refinement process, the
resulting requirements for the following design of the application. Requirements are
classified into content, structure of content, access to content, presentation, and
behavior (system and user operations).

Following the requirement elicitation phase, the conceptual user-centered design of
the application is developed. The UWA Information Model, Navigation Model and
Publishing Model cover the three levels of design represented on the vertical axis in
Fig. 1, respectively. Each of these models comprises the structure aspect (e.g., the
Information Model gives information on the application content, their structure, the
structures for accessing content, etc.). The behavior aspect is addressed by two
models: the Transaction Model and the Operation Model, the former addressing the
business process design and the latter the design of more elementary user
functionalities.

 Model-Driven Development of Web Applications 461

Finally, the UWA Customization Design activity, defines the customization rules
that may apply to any of the UWA design models, thus providing the designed
application with the ability to adapt to different usage contexts.

The UWA methodology enables separation of design concerns by devoting a
design activity and a resulting model to each of the levels and aspects which
characterize data- and operation-intensive web applications [34][14]. User-centered
design ability (the perspective in developing the different UWA models is that of the
different user types of the application) and context awareness for the resulting
applications makes UWA one of the most valuable conceptual design methodologies
for web applications. The availability of a MOF-Complaint metamodel for UWA [4]
makes it possible to specify the semantics associated with each modeling concept, the
valid configurations and the constraints that apply. At same time, being the UWA
metamodel MOF-compliant it is possible to create modeling tools that generate
models that can be easily exchanged, imported in different design tools, rendered into
different formats, transformed, and used to generate application code [24].

UWA Information Model
(Hyperbase and Access
Structures)

UWA Navigation Model
(Node and Clusters)

UWA Publishing Model
(Pages and Sections
and Publishing units)

U
W

A
 T

ra
ns

ac
tio

n
M

od
el

&
 O

pe
ra

tio
n

M
od

el

UWA
Conceptual

Design

Analisys Conceptual Design Implementation

Content

Navigation

Presentation

B
eh

av
io

r S
tr

uc
tu

re

UWA
Requirements

Elicitation
(Stakeholders,

Goals,
Sub-Goals,

Requirements)

UWA Customization
Rules

C
on

te
nt

, N
av

ig
at

io
n

an
d

P
ub

lis
hi

ng
st

ru
ct

ur
e

Logical
and Physical Design

PHASES

ASPECTS

LEVELS

ASPECTS

LEVELS

Fig. 2. UWA Requirement Elicitation and Conceptual Modeling overview

3 A UWA-Based MDD Approach

3.1 Process Overview

The proposed UWA-based MDD approach to the development of web applications
uses a series of models and successive model transformations to progressively refine

462 D. Distante et al.

and enrich the application requirements so as to obtain the application source code.
The different models are also the basis for updated project documentation, at different
levels of abstraction.

Fig. 3 depicts the overall development process and the generated models. The
process begins with UWA Requirements Elicitation, to identify the stakeholders of
the application and their goals, from which the application requirements are derived.
Stakeholders, goals, sub-goals and requirements are represented by means of
stereotyped UML use-case diagrams.

The conceptual design is carried out using the UWA methodology and the
conceptual model of the application produced. This model includes the Information
Model, the Transaction Model, the Navigation Model, the Operation Model, the
Publishing Model and Customization Model.

The conceptual design phase is followed by logical design. The UWA conceptual
models are transformed, by means of suitable translation rules, into a logical model
that is closer to the specifics of implementation but still platform-independent. The
adoption of standard UML diagrams and of the MVC architecture for the resulting
application gives the name “UML-MVC” to our proposed logical model.

The final phase of the MDD process consists of specializing the UML-MVC
logical model to the specific platform chosen for implementation, obtaining a

UWA Conceptual
Models

Information
Model

Transaction &
Operation Model

Customization
Model

UML - MVC Logical Models

Struts
Models

.Net
Models

……..

Translating Conceptual Model to
 Logical Model

CIM

PIM

PSM

Model
Class Diagram

View
Class Diagram

Sequence
Diagram

Publishing
Model

Navigation
Model

Mapping
 PIM to PIM

Mapping
 PIM to PSM

Mapping
PSM to Code

Translating
Logical Models to

Physical Models

UWA Requirement
Elicitation

JSF Models

XML
Configuration

Files

Controller

View Model

Business
Object Component

Tree

Fig. 3. An overview of the UWA-based MDD process

 Model-Driven Development of Web Applications 463

platform-specific model. Any implementation of the MVC architectural design
pattern is suitable as the destination platform for the UML-MVC logical model
defined in the previous step. In particular, we detail the case of the JavaServer Faces
(JSF) technology [15][17] which is the technology we chose for experimenting our
approach with an e-commerce web application.

As emphasized by Fig. 3, the proposed process, in addition to be model-driven,
adheres to MDA. The UWA Requirement Elicitation model can, indeed, be
considered a CIM as it focuses on functionalities required for the application. The
UWA conceptual model and the UML-MVC logical model are PIMs, as they do not
imply any specific technology to be used for the implementation. Finally the JSF
model is a PSM as it is the specialization of the UML-MVC PIM for the JavaServer
Faces technology.

In the following of this section we describe the UML-MVC logical model, the
transformation rules to obtain this model from the UWA conceptual models, and the
guidelines that can be used to map the UML-MVC model onto the JavaServer Faces
implementation framework.

3.2 The UML-MVC Logical Model

The logical model we elaborated consists of stereotyped standard UML diagrams and
is intended to model the software components to be developed for each of the three
layers of the MVC architecture [8] as well as the relationships among them.
Specifically, the model is structured into the following UML diagrams:

1. Model Class Diagram (MCD): an UML class diagram modeling the classes
that participate in the Model layer and implement the application business
logic and data persistency.

2. View Class Diagram (VCD): an UML class diagram representing the client
and server pages in the View layer. These pages have the responsibility of
presenting data and content to the user and enabling user interaction with the
system. This diagram also models:

a. Classes making part of the Controller layer;
b. Associations between user interactions (e.g., the “Submit” of a form

of a View page) and methods of classes of the Model that are in
charge to serve them;

c. Associations between attributes of classes of the View (which
correspond to data provided/requested by the application) to
methods of classes of the Model that manage them.

d. Navigation links between pages of the View.
3. One or more UML Sequence Diagram describing the interactions between the

various components of the system and their state transitions during the
execution of complex user activities and web transactions. In addition, this
diagram is used to describe the navigation steps between pages of the View
that are associated with the different return values of the execution of the
methods of Model classes.

The resulting overall model is independent of the specific technologies chosen for
the implementation of the application, thus it is a PIM in the MDA architecture, but it
is already sufficiently detailed to guide the application's development team. The

464 D. Distante et al.

model can be used to create the application with any implementation technology
based on the MVC pattern. On an experimental basis, we used the Java ServerFaces
framework [15].

3.3 Mapping UWA Conceptual Models onto UML-MVC Logical Model

The transformation of UWA conceptual models into UML-MVC logical models is
accomplished by means of a set of mapping heuristics which create appropriate
correspondences between the UWA models and modeling concepts, with the
components of the MVC architecture and the elements of the logical model. Table 1
summarizes these heuristics: the first column lists the UWA conceptual models; the
second lists the main modeling concepts included in each of the UWA models; the
third column reports the layers of the MVC architecture onto which the considered
UWA modeling concept is mapped; finally, the fourth column reports the specific
elements of the logical model that originate from the UWA concept. Elements of the
UML-MVC logical model we defined include: (i) Classes, Class Attributes and Class
Methods of the MCD; (ii) Client and Server Page Classes of the VCD; (iii) Controller
Classes mapping the user interactions with pages of the VCD onto methods of classes
on the MCD; (iv) Associations between Classes of the MCD, (v) Associations

Table 1. Summary of UWA to UML-MVC transformation rules

UWA
Conceptual

Model

UWA modeling
Concept

MVC
Component UML-MVC Modeling Element

Entity Type Model Class into MCD

Entity Component Model Class into MCD aggregated to the Class created for the Entity Type

Slot Model Private Attribute and associated set and get methods into MCD

Semantic Association Model Association between Classes into MCD

Association Center Model Association Class into MCD

Information
Model

Collection Type Model - Class into MCD associated to the Collection Center
- Method added to the Class involved in the collection

Complex Activity Model Class into MCD with a method originated from the Activity PropertySet

Suspendable
Transaction Model

Class into MCD with attributes TransactionHistory, CurrentActivity,
ExecutionState, Suspension and DeviceType

Suspendable Complex
Activity Model

Class into MCD with attributes TransactionHistory, CurrentActivity,
ExecutionState, Suspension and DeviceType

Elementary Activity Model Method added to the involved Class of the MCD to implement the activity

Transaction
Model

Execution Flow Controller
 Sequence Diagram representing the interaction between elements of the

logical model and the navigation rules associated to the different return value
from the execution of methods of Classes of the MCD

Navigation Node View Server Page Class or Client Page Class into VCD

Navigation Cluster View Navigation Links between Pages into VCD

View

- Server Page Class into VCD with input/output attributes
- Associations between input/output attributes of the Server Page Class into

VCD with methods of MCD classes managing the data
- Association between action elements of the Server Page Class (e.g. Submit

button of a Form) and Controller classes to serve them Activity Node

Controller
- Controller Class into VCD with an attribute Result.

- Association between attribute Result and method of the MCD class to be
invoked in correspondence of the user interaction with the page

Navigation
Model

Activity Cluster View - Navigation Links between Pages into VCD

Publishing Unit View Client Page or Server Page Class into VCD

Section View Client Page or Server Page Class into VCD aggregating classes originated
from Publishing Units

Page View Client Page or Server Page Class into VCD aggregating classes originated
from Publishing Sections

Page Template View Frameset Class into VCD

Publishing
Model

Link View Navigation Links between Pages of the VCD

 Model-Driven Development of Web Applications 465

between attributes of Classes of the VCD with methods of MCD classes; (vi)
Navigation Links between Pages of the VCD; (vii) Sequence diagrams representing
the workflow of a transaction and navigation rules to be implemented by the
Controller.

Broadly speaking, the UWA Information and Transaction Models merge into the
MCD, while the UWA Navigation and Publishing Models merge into the VCD.
Associations between attributes and user interaction elements of the View pages with
methods of Model classes originate from the Navigation Model and, indirectly, from
the Transaction Model. In addition, from the UWA Transaction Model the UML
Sequence Diagrams are also created.

3.4 Mapping UML-MVC Logical Model onto JavaServer Faces Platform
 Specific Model

The JSF technology is a Java implementation of the MVC architectural design pattern
which simplifies the building of user interfaces for web applications by assembling
reusable UI components in a page, connecting these components to an application
data source; and wiring client-generated events to server-side event handlers [17].

As synthesized by bottom part of Fig. 3, the JSF architecture is a specialization of
the MVC architecture in which the Model component is realized by means of Java
business objects, the View component is made up of JavaServer Pages (JSP) in which
custom tag libraries are used for expressing the JSF user interface components, and
the Controller is implemented by a Servlet named FacesServlet.

To map the UML-MVC logical models onto the JSF software components the
following guidelines can be used:

1. Classes of the MCD are mapped onto Java Business Objects, such as
JavaBeans (JB) or Enterprise JavaBeans (EJB).

2. Classes of the VCD are implemented by means of Java Server Pages including
the JSF user interface components specified by means of the JSF tags.

3. Associations between pages of the VCD with methods of classes in the MCD
are used to define associations between presentation JSF components included
in the Java Server Pages and attributes and methods of the Java Business
Objects.

4. Associations between Controller classes and classes of the MCD in the VCD,
together with information derived from the Sequence Diagrams on navigation
rules associated with the different return values of the execution of a method
of a Model class are used to define the “faces-config.xml” configuration file
for the FacesServlet Controller.

3.5 An Example Application

The proposed UWA-based MDD approach was applied to the development of an
e-commerce website, of which we report here the portion concerning the order
checkout and visualization. The process involved the analysis of the requirements and
the conceptual design of the application by means of the UWA methodology. The
transformations rules summarized in Table 1 were then used to obtain the logical
UML-MVC model of the application, which was finally specialized for

466 D. Distante et al.

Table 2. An excerpt of the conceptual and logical models generated by the UWA-based MDD
process for developing an e-commerce web application

 Order

1:n,10

Row

- Number
- Order Total
- State
- Date
- Shipping Address
- Management Expenses
- Delivery Expenses
- Transport Expenses

- Product Name
- Quantity
- Unit Price
- Row Total

General
Information

[1..*]

(A) Order UWA Entity Type Diagram

 Order

Order
Information

OrderCheckout

(B) Order UWA Navigation Cluster

SelectPayment

OrderCheckout

<<ACDS Activity>>
<< Requires >>

Login

<<A Activity>>

DefineShipment

BuyLater

<<AD Activity>>

ConfirmOrder

<<ADI Activity>>

<<Requires One >>

<<ACDS Activity>>

<< Visibile -Requires >>

ResumePurchase

<<AD Activity>>

<<Optional >>

(C) Order Checkout UWA Organization
Model

DefineShipment

Login

Succeeded

Retry

SelectPayment

Failed
Abort

CustomerCustomer

ResumePurchase

ABORTED
ACTIVITY

CompleteOrder

Abort

Failed
Succeeded

PayLater

Succeeded

OrderCheckout

S

(D) Order Checkout UWA Execution Model

Order
Checkout

Up
Section

Order
Information

Order
Section

Order

(E) Order UWA Publishing Page

(F) Class Order in the MCD

implementation with the Java ServerFaces technology. Table 2 shows an excerpt of
the different models that were generated during the process and a screenshot of the
final application. More in detail, the table reports the Entity Type diagram (A) and the

 Model-Driven Development of Web Applications 467

Table 2. (Continued)

(G) UML-MVC Sequence Diagram for the checkout transaction

(H) Server page Order in the VCD

(I) A screenshot of the Order View web page

Navigation Cluster (B) associated to an Order made by a customer. The first diagram
models the information characterizing the Order and is part of the UWA Information
Model. The latter models the navigation associated with the Order and the actions that
can be invoked by the user, such as Order Checkout. The Organization Model (C) and
the Execution Model (D) describe the activities in which the Order CheckOut
transaction is organized and represent a portion of the UWA Transaction Model of the
application. Diagram (E) of the table shows the UWA Publishing Model for the Order
Page. By applying the transformation rules, the Entity Type Order of the UWA
conceptual model was transformed into the class Order in the MCD (F) of the logical
model, while the Navigation Cluster and the Publishing Page Order originated the
server page Order in the VCD (H). The UML sequence diagram (G) was derived
from the Order Checkout UWA Execution Model.

Attributes of the Order class were derived from Slots of the Order Entity
Components in the conceptual model. Get and Set methods were automatically
associated to each of the attributes. The set of activities included in the Organization

468 D. Distante et al.

Model of the OrderCheckout transaction were transformed into methods for the class
Order. These methods include: setSelectPayement, setDefineShipment, BuyLater and
ConfirmOrder. The class diagram modeling the server page Order in the View Class
Diagram (H) also reports the associations between attributes of the page (i.e., JSF user
interface components in the implementation) and methods of the class Order in the
Model Class Diagram. To support traceability, class names and methods of the UML-
MVC logical model are prefixed with the acronyms of the UWA model and modeling
concept from which they originate.

The structure of the Navigation and Publishing Models impacted onto the VCD, in
which they appear also the dependency with the respective classes of the MCD apt to
the management of the information. A screenshot of the web page resulting from the
implementation of the prototype of the application with the JSF technology is shown
by figure (I).

3.6 Costs/Benefits of the Approach

The introduction of an additional design phase in the development process of a web
application cause the process to lengthen and complicate, and more effort to be
required if supporting tools towards MDD are not provided.

On the other hand, no matter of if tools for the automatic transformation of
conceptual models into logical models are available, providing developers with
models which are closer to the implementation simplifies implementation choices,
reduces coding time and helps in producing higher quality software. In fact, having a
model which from one hand is directly linked to the conceptual model and from the
other is very close to the implementation details helps the development of
applications which exhibit:

• greater internal consistency, as they fully satisfy the requirements of conceptual
design;

• greater usability, as they are more able to satisfy the expectations of the users;
• greater maintainability, as design and requirements, since the impact on the code

of any changes to the model (or indeed the impact on the model of any changes
to the code) can be traced.

The proposed approach, by defining the UML-MVC logical model, makes it
possible to establish a correspondence between the UWA conceptual design of a web
application and its implementation. Maintenance and evolution operations become
easier, requirements traceability is made possible as well as alignment between
software and documentation during the entire application lifecycle.

4 Related Work

The Model-Driven Development paradigm is applied successfully by a number of
web engineering methods, such as UWE, OO-H, OOHDMDA, and WebML. These
methods use models to separate the platform-independent design of web systems from
the platform-dependent implementations as much as possible. They have associated
development environments that support code generation from model specifications,
either fully or partially automated.

 Model-Driven Development of Web Applications 469

The UWE [23] process to developing web systems follows the MDA principles
and uses the OMG standards [24-29]. The process makes use of model
transformations defined at metamodel level and specified in general purpose
transformation languages, such as QVT [26] and graph transformations. Currently,
many of the transformations have already been automated, thanks to the OpenUWE
[31] tool suite. One of the main characteristics of this suite is its open architecture
based on established standards. These standards are supported by both open-source
and commercial tools. The common data exchange language within this architecture
is based on the extensible UWE meta-model [37].

OO-H [9] supports the transformation-based construction of a presentation model
based on modelling elements of the navigation model, and code generation based on
the conceptual, navigation and presentation models [18]. OO-H transformation rules
are a proprietary part of a CASE tool called VisualWADE [39]. This tool supports
modelling and automatic generation of applications based on XML, ASP, JSP, and
PHP.

OOHDM [36] may be considered as a platform-independent domain-specific
language for web applications that provides an object model, in contrast to other web
application modeling languages. OOHDMDA [35] generates servlet-based web
applications from OOHDM models. The OOHDMDA approach follows MDA
principles by employing the OOHDM conceptual and navigational scheme of a web
application as the basic PIM for the MDA process, using any UML-based design tool,
such as Rational Rose [33], which produces an XMI-file as output. The basic PIM is
transformed into the intermediate PIM, by adding to it the behavioural semantics of
the OOHDM core features and business processes. This transformation is achieved by
modifying the XMI-file of the basic PIM. The PIM is then transformed into a servlet-
based PSM.

WebML [10-12] is a model-driven method for the development of data intensive
web applications, with an associated supporting CASE tool called WebRatio [40].
WebML follows an MDD approach for mapping its modelling elements onto the
components of the MVC Model 2 architecture, which can be transformed into
components for different platforms [11]. The web application generated by WebRatio
is deployed in a runtime framework based on a set of Java components, which can be
configured by use of XML files. The runtime architecture is based on the MVC
design pattern and is suited for the Apache Struts open-source web application
development framework [1] and the JSP tag libraries [30].

Similar to our approach, UWE, OO-H and OOHDMDA adopt an MDD process
that follows MDA principles for the models. Differently from our approach they do
not explicitly adopt the MVC architecture pattern in their PIMs. As above shortly
reported, WebML differs from our and other considered approach in that its process is
MDD but not MDA. Similar to our approach, WebML uses MVC as architectural
pattern for its PIMs. All the considered approaches enable different technologies to be
used for the implementation of the PSMs. Our choice of adopting MVC as
architecture for the PIM logical model guarantees the availability of a wide range of
open-source and commercial technology frameworks to choose from for the different
platforms, such as J2EE, .Net and PHP.

A final as obvious as notable difference between our approach and others proposed
in the literature lies in the conceptual design methodology on which the approach is

470 D. Distante et al.

based. Our UWA-based MDD approach enables the development of web applications
which faithfully implement their UWA conceptual model, thus benefiting from the
UWA peculiarities and the quality design characteristics as summarized in Section
2.3. This difference is the main motivation for the present work.

5 Conclusion

Conceptual design methodologies enable the analyst to abstract from implementation
and technological details and focus on application requirements in the problem
domain. This is referred to as “what” the application has to do.
The UWA design methodology and associated models are particularly suited for the
user-centered design of complex ubiquitous web applications. UWA provides
different related models to design the different levels and aspects characterizing a web
application (content, navigation, presentation, structure, behavior).

Despite the benefits deriving from the use of conceptual design methodologies,
there is a wide gap between the models they generate and the implementation of the
application. A further design step and related models are required to specify “how” to
implement the final application adhering to the conceptual models.

This paper proposed an intermediate model, named UML-MVC logical model, to
be used between UWA conceptual design phase and the implementation phase, and a
set of transforming heuristics.

The UML-MVC logical model is a platform independent model, based on standard
UML diagrams and incorporating the MVC architecture design pattern. The set of
heuristics permits the automatic transformation of the UWA models into the logical ones.
The model and the mapping heuristics are the basis of a Model-Driven Development
approach based on the UWA methodology, for web applications. In addition, the rules to
transform the logical model to a platform specific model for Java ServerFaces
applications has been defined and experimented in an example case study.

Overall, the resulting approach combines the advantages of MDD, such as
requirement traceability and maintenance and evolution better support, with the
ability of UWA to design application in a user-centered perspective and ubiquitous.
The logical model creates a link between the application implementation and the
UWA design models and application requirements.

We are currently working on the specification of our model transformations rules
using the QVT language and on the development of appropriate tools to support the
whole UWA-based MDD approach by extending the design tools provided with the
UWA methodology.

References

1. Apache STRUTS open-source framework: http://struts.apache.org/
2. ArgoUML: http://www.argouml.org
3. Arraes Nunes, D., Schwabe, D.: Rapid Prototyping of Web Applications combining

Domain Specific Languages and Model Driven Design. In: ICWE’06. Proceedings of the
6th International Conference on Web Engineering July 11-14, 2006, Palo Alto, California,
USA (2006)

 Model-Driven Development of Web Applications 471

4. Baresi, L., Garzotto, F., Maritati, M.: W2000 as a MOF Metamodel. In: Proceedings of
World Multiconferemce On Systemics, vol. 1 (2002)

5. Bézivin, J.: In Search of a Basic Principle for Model Driven Engineering. UPGRADE
V(2), Novótica (April 2004)

6. Brambilla, M.: Extending hypertext conceptual models with process-oriented primitives.
In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS,
vol. 2813, pp. 246–262. Springer, Heidelberg (2003)

7. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process Modeling in Web
Applications. ACM Transactions on Software Engineering and Methodology (TOSEM) (in
print, 2006)

8. Buschmann, F., Meunier, R., Rohnert, H., Sornmerlad, P., Stal, M.: Patter-Oriented
Software Architecture - A system of pattern, vol. 1. John Wiley & Sons Ltd., West Sussex,
England (2000)

9. Cachero, C., Gómez, J., Pastor, O.: Object-Oriented Conceptual Modeling of Web
Application Interfaces: the OO-H Method Abstract Presentation Model (2000)

10. Ceri, S., Fraternali, P., Matera, M.: Conceptual Modeling of Data-Intensive Web
Applications. IEEE Internet Computing 6(4) (2002)

11. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Application. Morgan Kaufmann Publishers, Elsevier Science (USA) (2003)

12. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a Modeling
Language for Designing Web Sites. Computer Networks 33(1-6), 137–157 (2000)

13. Conallen, J.: Building Web application with UML, 2nd edn. Addison Wesley, Redwood
City, CA, USA (2002)

14. Distante, D., Rossi, G., Canfora, G., Tilley, S.: A Comprehensive Design Model for
Integrating Business Processes in Web Applications. International Journal of Web
Engineering and Technology (IJWET) 2(1), pp. 43–72 (2007)

15. Dudney, B., Lehr, J., Willis, B., Mattingly, L.: Mastering JavaServerTM Faces. Wiley, New
York (2004)

16. Gomez, J., Cachero, C., Pastor, O.: Extending a Conceptual Modeling Approach to Web
Application Design. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789,
pp. 5–9. Springer, Heidelberg (2000)

17. JavaServer Faces Technology: http://java.sun.com/javaee/javaserverfaces/
18. Koch, N.: Transformation Techniques in the Model-Driven Development Process of UWE.

In: MDWE 06. Proceedings of the 2nd Model-Driven Web Engineering Workshop, Palo
Alto, CA, July 11, 2006, ACM Press, New York (2006)

19. Koch, N., Kraus, A.: The expressive Power of UML based Web Engineering. In:
Proceedings of the 2nd International Workshop on Web Oriented Software Technology
(IWWOST02) June 10, 2002, Málaga, Spain (2002)

20. Koch, N., Zhang, G., Escalona, M., j.: Model Transformations from Requirements to Web
System Design. In: ICWE’06, Palo Alto, California, USA, July 11-14, ACM Press, New
York (2006)

21. Langham, M., Ziegeler, C.: Cocoon: Building XML Applications, Sams Publishing (2002)
22. Meliá, S., Gómez, J., Koch, N.: Improving Web Design Methods with Architecture

Modeling. In: 6th International Conference on E-Commerce and Web Technologies (EC-
Web 2005) August 22-26, 2005, Copenhagen, Denmark (2005)

23. Moreno, N., Fraternali, P., Vallecillo, A.: A UML 2.0 Profile for WebML Modeling. In:
MDWE 06. Proceedings of the 2nd Model-Driven Web Engineering Workshop, Palo Alto,
CA, July 11, 2006, ACM Press, New York (2006)

472 D. Distante et al.

24. Object Management Group (OMG) Meta Object Facility Specification (MOF): http://
www.omg.org/mof/

25. Object Management Group (OMG). Model Driven Architecture (MDA):
 www.omg.org/mda/

26. Object Management Group (OMG). Query/Views/Transformations (QVT): www.omg.org/
27. Object Management Group (OMG). UML 2 Object Constraint Language (OCL):

www.omg.org/docs/ptc/03-10-14.pdf
28. Object Management Group (OMG). Unified Modeling Language (UML): Superstructure,

version 2.0 www.uml.org/
29. Object Management Group (OMG): XML Metadata Interchange (XMI) www.omg.org/
30. Open Source JSP Tag Library: http://www.java-source.net/open-source/jsp-tag-libraries
31. OpenUWE: http://www.pst.ifi.lmu.de/projekte/uwe
32. Pastor, O., Abrahão, S., Fons, J.: An Object-Oriented Approach to Automate Web

Applications Development. In: Bauknecht, K., Madria, S.K., Pernul, G. (eds.) EC-Web
2001. LNCS, vol. 2115, pp. 16–28. Springer, Heidelberg (2001)

33. ROSE: IBM Rational Software. Online at www.ibm.com/rational
34. Rossi, G., Gordillo, S., Distante, D.: Improving Web Applications Evolution by Separating

Design Concerns. In: STEP 2005. IEEE Software Technology and Engineering Practice
2005, September 24-25, 2005, Budapest, Hungary, Workshop on Evolution of Software
Systems in a Business Context (2005)

35. Schmid, H.A., Donnerhak, O.: OOHDMDA - An MDA Approach for OOHDM. In: Lowe,
D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 569–574. Springer, Heidelberg
(2005)

36. Schwabe, D., Rossi, G.: An Object-Oriented Approach to Web-Based Application Design.
Theory and Practice of Object Systems (TAPOS) 4, 207–225 (1998)

37. Schwinger, W., Koch, N.: Modeling Web Applications, in Web Engineering - Systematic
Development of Web-Applications. In: Kappel, G., Pröll, B., Reich, S., Retschitzegger, W.
(eds.) John Wiley & Sons Ltd., West Sussex, England (2006)

38. UWA Consortium, Ubiquitous Web Applications. In: Proceedings of the eBusiness and
eWork Conference 2002, (e2002: October 16-18 2002, Prague, Czech Republic) (2002)

39. VisualWADE. http://www.visualwade.com
40. WebRatio. http://www.webratio.com

	Introduction
	Background and Motivations
	A General Framework for the Development of Web Applications
	Model-Driven Development
	UWA

	A UWA-Based MDD Approach
	Process Overview
	The UML-MVC Logical Model
	Mapping UWA Conceptual Models onto UML-MVC Logical Model
	Mapping UML-MVC Logical Model onto JavaServer Faces PlatformSpecific Model
	An Example Application
	Costs/Benefits of the Approach

	Related Work
	Conclusion
	References

