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Abstract

We present the first systematic study of the stellar populations of ultra-diffuse galaxies (UDGs) in the field,
integrating the large area search and characterization of UDGs by the SMUDGes survey with the twelve-band
optical photometry of the S-PLUS survey. Based on Bayesian modeling of the optical colors of UDGs, we
determine the ages, metallicities, and stellar masses of 100 UDGs distributed in an area of ∼330 deg2 in the Stripe
82 region. We find that the stellar masses and metallicities of field UDGs are similar to those observed in clusters
and follow the trends previously defined in studies of dwarf and giant galaxies. However, field UDGs have
younger luminosity-weighted ages than do UDGs in clusters. We interpret this result to mean that field UDGs have
more extended star formation histories, including some that continue to form stars at low levels to the present time.
Finally, we examine stellar population scaling relations that show that UDGs are, as a population, similar to other
low surface brightness galaxies.

Unified Astronomy Thesaurus concepts: Low surface brightness galaxies (940); Stellar populations (1622); Stellar
ages (1581); Metallicity (1031); Stellar masses (1614)

Supporting material: machine-readable table

1. Introduction

Ultra-diffuse galaxies (UDGs) are a recently defined class of
low surface brightness (LSB) galaxy initially found in large
numbers in the Coma Cluster (van Dokkum et al. 2015). Their
unusually large half-light radii, R 1.5 kpce , for galaxies with
such low central surface brightness, m  24g0, mag arcsec−2,
are striking. Although large LSB galaxies have been known for
quite some time (Disney 1976; Sandage & Binggeli 1984;
Impey et al. 1988; Schombert & Bothun 1988; Schwartzenberg
et al. 1995; Dalcanton et al. 1997; Sprayberry et al. 1997), the
current excitement originates from indications, either from
kinematic measures of the unresolved light or globular clusters
in these galaxies (Beasley et al. 2016; Toloba et al. 2018; van
Dokkum et al. 2019), or from the numbers of globular clusters
alone (Beasley & Trujillo 2016; Peng & Lim 2016; van
Dokkum et al. 2017, 2018a), that at least some UDGs lie in
massive (>1011 Me) halos.

The detection of populations of UDGs in galaxy clusters (e.g.,
Mihos et al. 2015; van Dokkum et al. 2015; van der Burg et al.
2016; Shi et al. 2017; Venhola et al. 2017) led to the exploration
of a possible evolutionary link between these galaxies and their
harsh environment (Safarzadeh & Scannapieco 2017; Bennet
et al. 2018; Conselice 2018; Ogiya 2018; Carleton et al. 2019).
However, UDGs were also found in less dense environments,

such as filaments (e.g., Martínez-Delgado et al. 2016), groups
(e.g., Makarov et al. 2015; Smith Castelli et al. 2016; Román &
Trujillo 2017; van der Burg et al. 2017; van Dokkum et al.
2018b), the field (e.g., Leisman et al. 2017; Greco et al. 2018)
and even voids (Román et al. 2019). Moreover, observational
studies (e.g., Yozin & Bekki 2015; Zaritsky 2017; Amorisco
et al. 2018; Sifón et al. 2018) and theoretical ones (e.g.,
Amorisco & Loeb 2016; Di Cintio et al. 2017; Rong et al. 2017;
Chan et al. 2018; Jiang et al. 2019; Liao et al. 2019) found that
UDGs span a wide range of physical properties and perhaps a
correspondingly large range of origin stories.
A key challenge in developing a unified understanding of

UDGs and their relation to other galaxies is that the data so far
come from disparate studies, with different selection criteria,
and mostly focus on high density environments. These deficits
are exacerbated by the difficulties posed in observing such LSB
galaxies. Photometric information, such as broadband colors
(e.g., Prole et al. 2019), are available for many UDGs but are
of limited value in determining the properties of the stellar
populations, while spectroscopy, which can provide the
necessary information, is only available for a small number
of galaxies (e.g., Martínez-Delgado et al. 2016; Kadowaki et al.
2017; Ferré-Mateu et al. 2018; Gu et al. 2018; Ruiz-Lara et al.
2018).
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Recently, Zaritsky et al. (2019) presented the initial results
from the Systematically Measuring Ultra-diffuse Galaxies
(SMUDGes) survey, a systematic study to detect and character-
ize the photometric properties of UDGs over a large area of the
sky (∼14,000 deg2) using data from the Legacy survey (Dey
et al. 2019). In its initial release, SMUDGes provided a catalog
containing 275 UDG candidates, including most of the galaxies
previously reported within 10° of the Coma cluster by van
Dokkum et al. (2015) and Yagi et al. (2016), using a relatively
small area of the total survey (334 deg2). SMUDGes has now
analyzed the Sloan Digital Sky Survey (SDSS) Stripe 82 region
and identified 172 candidate UDGs in this region, which is a
much more typical region of the sky than that around the Coma
cluster (D. Zaritsky et al. 2020, in preparation).

The limited passbands of the Legacy survey preclude stellar
population modeling and spectroscopic observations of the
SMUDGes candidates will always be highly limited (Kadowaki
et al. 2017; J. Kadowaki et al. 2020, in preparation). Interestingly,
the requirement of large field-of-view (FoV), multi-passband
imaging in the study of UDGs intersects with the interest of
several ongoing cosmological surveys, such as the Javalambre-
Physics of the Accelerated Universe Astrophysical Survey
(J-PAS, Benitez et al. 2014), the Javalambre Photometric Local
Universe Survey (J-PLUS, Cenarro et al. 2019), and the Southern
Photometric Local Universe Survey (S-PLUS, Mendes de
Oliveira et al. 2019). Here we explore the synergy between
SMUDGes and S-PLUS to perform the first statistical study of
the stellar populations of UDG candidates over an area of sky that
is not dominated by high density environments. Despite limited
overlap within Stripe 82 between the two surveys, we were able
to study a sample of 100 UDG candidates and perform the largest
detailed population study of these galaxies to date.

This paper is structured as follows. In Section 2, we describe
the two data sets used in this work. In Section 3, we describe the
photometry of the UDG candidates in the context of S-PLUS, and
in Section 4, we present the method developed to determine their
stellar populations using a Bayesian framework. In Section 5, we
present our results and discuss the main implications of our work
for our understanding of the nature of UDGs. We conclude and
summarize this work in Section 6. Throughout, we assume a
standard ΛCDM cosmology whenever necessary, assuming
H0=70 km s−1 Mpc−1. All magnitudes use the AB system
(Oke 1964; Oke & Gunn 1983).

2. Data

2.1. SMUDGes Sample

Our ability to locate LSB galaxies has been limited both by the
lack of sensitivity and instrumental constraints, and various
attempts have been made to optimize observations at low surface
brightness (e.g., Gonzalez et al. 2001; Abraham & van Dokkum
2014; Mihos et al. 2015). However, there have been no systematic
attempts to use current, large volume archival data to search for
LSB galaxies, which have not been identified before because
standard pipelines are not optimized find such systems. The
SMUDGes project (Zaritsky et al. 2019) was conceived to
develop an automated way to search for LSB galaxies over a large
area of the sky using data from the Legacy imaging survey (Dey
et al. 2019), a deep three-band observational campaign that
supports the Dark Energy Spectroscopic Instrument (DESI)
project (Schlegel et al. 2011; DESI Collaboration et al. 2016a,
2016b).

Most of what is known about UDGs as a population is based
on observations of the Coma cluster (van Dokkum et al. 2015;
Yagi et al. 2016). In this initial stage of the project, the
SMUDGes detection algorithm has been constrained to search
UDGs similar to those found in Coma, and thus is focused on
systems with angular sizes Re  5″, which are easier to classify
than smaller objects in the absence of redshift information. The
methodology used to identify UDGs is described in detail in
Zaritsky et al. (2019) and D. Zaritsky et al. (2020, in
preparation), and here we summarize the main steps of the
process. First, bright, saturated sources are detected, modeled,
and replaced in the DESI images by background noise, whereas
fainter background and foreground sources are carefully
modeled and subtracted. Then, wavelet filtering is used to detect
sources according to size and surface brightness criteria, defined
to have μ0,g�24 mag arcsec−2 and Re>5 3. Finally, all UDG
candidates are modeled with a single Sérsic component using
GALFIT (Peng et al. 2002, 2010).
In this work, we use a sample of 172 UDG candidates in the

Stripe 82 area. From SMUDGes we adopt the values of
m m m, , ,g r z Sérsic index n, and Re in arcseconds, position
angle, and axis ratio. Without distance estimates, we cannot
determine whether these systems pass the common defining
criteria for UDGs, R 1.5 kpce , and some of these galaxies
may actually be dwarf galaxies at small distances. The redshift
by association (defining high density regions in terms of
normal galaxies and assigning SMUDGes to the redshift of that
overdensity) worked for 25 candidates in Stripe 82 and all 25
satisfy the Re>1.5 kpc criterion at the assigned distance. Only
one has Re>6 kpc, which seems to be about the upper limit on
size—it has =R 8.6 kpce —which suggests that this one may
have the wrong redshift. In this particular case, the UDG
candidate is close in projection to a nearby bright galaxy and so
it may instead be a satellite of that galaxy (D. Zaritsky et al.
2020, in preparation). Therefore, we work under the hypothesis
that we have a sample of UDGs with low contamination by
dwarf galaxies, but we examine this issue again further below.

2.2. S-PLUS DR1 Data

We use data from the S-PLUS first data release (DR1),
which covers an area of 336 deg2 in the Stripe 82 equatorial
field, observed with the T80S, a 0.8 m robotic telescope with a
wide FoV of ∼1.8 deg2, located in Cerro Tololo, Chile. The
DR1 data are already reduced and are publicly available in the
NSFʼs National Optical-Infrared Astronomy Research Labora-
tory archive.12 Details about the survey strategy and data
reduction process are described by Mendes de Oliveira et al.
(2019), while the photometric calibration is described in L.
Sampedro et al. (2020, in preparation).
The main survey strategy is aimed at obtaining large coverage of

the southern sky (∼9000 deg2) for astronomical and cosmological
studies in the local universe. The S-PLUS uses the same
photometric system as the J-PLUS survey (Marín-Franch et al.
2012), which consists of twelve optical bands, including 5 broad
bands similar to those used by the SDSS ugriz system, and a set of
seven narrow-band (Δλ=100–200Å) filters placed at various
rest-frame optical features, including [O II] (λeff=3771 Å), Ca H
+K (λeff=3941 Å), Hδ (λeff=4094 Å), G-band (λeff=4292
Å), Mg b triplet (λeff=5133 Å), Hα (λeff=6614 Å), and the Ca
triplet (λeff=8611 Å). Considering a signal-to-noise ratio (S/N)

12 https://datalab.noao.edu/splus/index.php
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threshold of 3, the survey is complete in the broad bands to
magnitudes of u=21.07, g=21.79, r=21.6, i=21.22, and
z=20.64, whereas it is complete to magnitudes of ∼20.4 in all
narrow bands (Mendes de Oliveira et al. 2019).

The S-PLUS DR1 data cover Stripe 82 using a pair of
exposures at each R.A., limiting the decl. to the range
-  +  1 .4 decl. 1 .4. Moreover, the S-PLUS DR1 data did
not use dithering, causing occasional gaps between exposures,
resulting in a few UDGs that are not observed despite being
within the footprint of the survey. In total, we have observations
for only 100 SMUDGes from the initial sample of 172. Figure 1
shows the spatial distribution of the SMUDGes Stripe 82 sample
overlapped with the S-PLUS DR1 footprint.

3. Photometry of UDGs from the S-PLUS Data

UDGs are not easily detected given the surface brightness
limits of the S-PLUS survey, and only one UDG was
previously detected in the DR1 catalog of photometric redshifts
(Molino et al. 2019). Therefore, we had to obtain our own
photometry of the UDGs from the S-PLUS images leveraging
the information from the deeper SMUDGes photometry.

Regarding the data quality of S-PLUS, all images in the
S-PLUS Main Survey, which includes Stripe 82, were obtained
during photometric nights with seeing �2″. Among the 61
different tiles used in this work, the mean full width at half
maximum (FWHM) over all bands is 1 4. Moreover, because
each field is imaged in all bands consecutively in a given
observational block, there are only small seeing variations
among all bands for each tile (mean standard deviation among
bands of 0 14). We conclude that there is no need to
homogenize the seeing across the images for our photometry.

For each UDG, we perform aperture photometry in each of
the 12 bands from S-PLUS using the PHOTUTILS package
(Bradley et al. 2019). To ensure consistent photometry, for
each UDG we define an elliptical aperture with a semimajor
axis length of Re, and location, position angle, and ellipticity
determined from the GALFIT Sérsic profile fitting from the
SMUDGes analysis. We subtract local sky using an elliptical
annulus with inner and outer radii of R2.5 e and 4Re,
respectively. Presuming that the Sérsic profile is a good
approximation to the surface brightness profile of the UDGs,
this annulus is large enough to avoid contamination of the sky
region by the galaxy itself (see Graham & Driver 2005). We
use sigma clipping to remove the contribution of other sources
when we estimate the median background. All observed
magnitudes are corrected for the foreground Galactic extinction

using the dust maps from Schlegel et al. (1998) recalibrated by
Schlafly & Finkbeiner (2011), assuming that RV=3.1 for the
Milky Way (Savage & Mathis 1979).
The aperture photometry method described above has the

advantage of allowing the detection of most UDGs in
individual bands despite their low S/N. However, in most
cases (87 galaxies), at least one band had a nondetection, as the
measured flux inside the galaxy is smaller than the flux in the
sky annulus. In these cases, we are only able to set an upper
limit on the source flux. There are missing detections in most of
the bands, but the blue bands are the most affected, in particular
the narrow bands F378 and F395, for which there are flux
detections in only ∼60% of the galaxies. Nevertheless, in the
majority of cases (97 galaxies), we have flux detections in at
least six bands, which already provides better spectral coverage
in the optical than do the SDSS bands, and 80% of the galaxies
have detected flux in at least nine bands.
In Figure 2, we show a sample of detection images of

SMUDGes UDGs, produced by stacking all 12 S-PLUS bands,
ordered in decreasing central surface brightness in the g band,
m g0, , and highlight the photometric apertures.

4. Stellar Populations from Multiband Observations

We quantify the properties of the stellar populations of our
sample by performing spectral energy distribution (SED) fitting
of the galaxies in all detected bands of the S-PLUS data.
Considering that the star formation history (SFH) of galaxies is
difficult to determine from photometric data alone, and that
simulations indicate that UDGs may have bursty SFHs (Di
Cintio et al. 2017; Chan et al. 2018), we assume that SEDs may
be described by a single stellar population (SSP), such that

( ) · ([ ] ) ( )l =l
- lf f zSSP Fe H , Age, 10 , 1A

0
0.4

where f0 is a scale factor for the spectral flux density of the
galaxy, SSP represents a single stellar population model that
depends on the metallicity ([Fe/H]), age, and the redshift z of
the galaxy, and Aλ represents a dust-screen attenuation model.
One important cautionary point about the use of SSPs to
represent a potentially more complicated SFH is that the
derived properties are luminosity weighted. As appreciated
previously (see Serra & Trager 2007), luminosity-weighted
ages are expected to be biased toward the youngest popula-
tions, in contrast to the luminosity-weighted metallicity, which
reflects more closely the mass-weighted average.

Figure 1. Distribution of the SMUDGes Stripe 82 UDG candidates on the sky and their overlap with S-PLUS. The grid lines represent the S-PLUS footprint for the
Stripe 82 area, red crosses indicate all SMUDGes galaxies that are outside the footprint or fell within gaps between exposures, and filled circles indicate the location of
all UDG candidates with S-PLUS data.
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Considering both the low S/N of the observations and the low
spectral resolution of the photometric system, we expect that
derived parameters may be correlated, as is the case in the well-
known age–metallicity degeneracy problem (Worthey 1994),
and that some parameters will not be properly estimated.
Therefore, we use a Bayesian statistical model to fit the SED of
the galaxies and to estimate the stellar population parameters.
Using this approach, we can identify possible parameter
correlations and provide uncertainties that are marginalized over
the distribution of all the other parameters in the model.

Bayes’ theorem allows for the inference of the probability
distribution of a set of parameters θ in a statistical model based
on a data set D using the relation

( ∣ ) ( ) ( ∣ ) ( )q q qµp D p p D , 2

where ( ∣ )qp D represents the posterior probability distribution
of the parameters θ given the data D, p(θ) represents the prior
distribution of the parameters, and ( ∣ )qp D is the likelihood
distribution (see, e.g., Gelman et al. 2004). Below we describe
the priors for all of the parameters in our model.

4.1. Prior and Likelihood Distributions

The flux scale factor f0 can vary by orders of magnitude
depending on the brightness of the source. Therefore, it is more
convenient to model its logarithm, which can be described by

the prior

( ) ( )m s~flog Normal , , 30 0 0
2

where μ0 and s0
2 indicate the mean and the variance of the

distribution, respectively. In practice, we estimate μ0 using the
data, and we assume σ0=3 to allow a large range of
magnitudes.
Our modeling is parameterized in terms of two stellar

population parameters, the age and metallicity, whose priors
are set by the limits of the model ranges. In this work, we use
the E-MILES models (Vazdekis et al. 2016), assuming prior
distributions given by

[ ]( ) ( ) ( )~ -Fe H dex Uniform 1.79, 0.4 4

and

( ) ( ) ( )~Age Gyr Uniform 0.4, 14 . 5

The main reason to set the limits above is to ensure that the
SSP models have good quality in the ultraviolet according to
the classification of Vazdekis et al. (2010), resulting in the
exclusion of SSP models with [Fe/H]=−2.27, which may
not be appropriate for metallicity estimation. Additionally, we
also require a regular grid in the parameter space to perform
linear interpolation of the SSP models, allowing a continuous
coverage of ages and metallicities. As a consequence, we had
to restrict the models to ages greater than 0.4 Gyr because part
of the young SSP models are not extended to the near-infrared,

Figure 2. Six example detection images of SMUDGes galaxies in S-PLUS. The panels are ordered according to decreasing g-band central surface brightness, starting
in the upper left. The solid red ellipses outline the 1Re photometric aperture while the dashed red lines indicate the annulus used for background estimation.
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which is necessary to cover the S-PLUS z band properly. In
particular, we adopt SSP models with a bimodal initial mass
function (IMF), a piecewise function defined by Vazdekis et al.
(1996) that matches the Salpeter IMF for masses > M0.8 but is
flattened at lower masses similarly to the Milky Way IMF (e.g.,
Chabrier 2003). Given that the current version of the E-MILES
stellar population models does not include the abundance of
individual or alpha elements yet, we are restricted to the base
models, which assume that [M/H]=[Fe/H] at solar metalli-
city. However, this assumption does not hold at low
metallicities because the Milky Way stars used in the
computation of the models are themselves alpha enhanced
(see Vazdekis et al. 2010). The consequences of possible
offsets resulting from nonsolar abundance ratios are discussed
further below.

The redshifts of our galaxies are of great interest because
they set the distances to the galaxies and their physical
parameters, and allow a proper classification of the candidates
as UDGs. Without additional spectroscopic redshift or redshift
by association for our sample, we consider a prior that takes
into consideration a few assumptions. LSB galaxies with
angular sizes Re5″ have only been associated to environ-
ments with distances smaller than 100Mpc (see González et al.
2018), thus we can assume all UDG candidates are nearby.
Moreover, all UDG candidates were selected with a minimum
effective radius of Re=5 3, which implies a physical radius
of Re=2.5 kpc at the distance of Coma, 100Mpc, or a redshift
of z≈0.023. At a distance as low as 200Mpc, or z≈0.046,
these UDGs would all already have an effective radius of
Re�5 kpc, which is larger than most UDGs found so far (e.g.,
Venhola et al. 2017). We conclude that it is very unlikely that
many of our candidates lie at z>0.04. Based on these
considerations, we use the prior

( ) ( )~z HalfNormal 0.03 , 62

where we adopt the half-normal distribution to restrict the
redshifts to positive values, and we assume a variance of 0.032.
In practice, this prior implies a median redshift z≈0.02,
similar to Coma, with peak probability at z=0.

Regarding the dust attenuation, our data include only
wavelengths l > 3000 Å for low redshift galaxies, avoiding
the 2175 Å bump (Stecher 1965). For these wavelengths, most
of the extinction laws, such as those obtained for the Milky Way
(Allen 1976; Fitzpatrick & Massa 1986), the Large Magellanic
Cloud (Fitzpatrick & Massa 1986), the Small Magellanic Cloud
(Prevot et al. 1984; Bouchet et al. 1985), and starburst galaxies
(Calzetti et al. 2000), agree (see Werle et al. 2019). We adopt a
parameterized extinction law from Cardelli et al. (1989), which
depends on two parameters, the total extinction in the V-band,
AV, and the total-to-selective extinction, RV. The total extinction
is modeled according to the prior

( ) ( )~A Exponential 0.2 , 7V

where 0.2 represents the mean value of the exponential
distribution. This prior restricts the value of the extinction to
positive values and also favors smaller extinction values rather
than large. We also allow RV to vary in our models using the
prior

( ) ( )~ +R Normal 3.1, 1. , 8V

which assumes that the total-to-selective extinction is
similar to that measured generally within the Milky Way

(Savage & Mathis 1979). The plus signal indicates that we
restrict RV to positive values.
Finally, it is necessary to define a log-likelihood for the use

of the Bayes’ theorem. The widely common assumption is that
the observed SED consists of independent, normal random
variables, and thus the log-likelihood can be simply described
as a χ2 distribution. However, the accuracy of the model
determined using the normal assumption may be compromised
if the observations contain outliers (see Vanhatalo et al. 2009).
In observational settings, the causes of outliers may be either
external to the source, such as contamination by cosmic rays or
the incomplete removal of sky, or internal to the source, as is
the case when the model is incomplete, for example when it
does not account for emission lines.
Emission lines have been directly observed in optical

observations of at least one cluster UDG (Kadowaki et al.
2017), and may be common in field UDGs (Leisman et al.
2017). Observationally, emission lines systematically inflate
the observed fluxes in passbands in which they appear, an
effect that is likely to be most noticeable in the bluer, narrow
bands. However, the modeling of emission lines requires the
inclusion of secondary stellar populations with young ages
(<0.01 Gyr) and/or post-asymptotic giant branch stars (Byler
et al. 2017) plus a prescription for nebular emission (e.g., Fioc
& Rocca-Volmerange 1999; Leitherer et al. 1999). To simplify
the modeling, we instead adopt a robust fitting approach that
may deal with outliers, including possible emission lines,
adopting a Student’s t-distribution log-likelihood.
Similar to the normal distribution, the Student’s t-distribu-

tion is a symmetric and bell-shaped distribution, but with long
tails that allow for a nonnegligible probability far from the
center of the distribution (see Gelman et al. 2004). Assuming
that we are modeling N discrete bands in a given SED, the log-
likelihood that we map is given by
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where Γ(x) represents the gamma function of variable x, ν

represents the degrees of freedom of the Student’s t-distribution,
σi represents the uncertainties of a given SED for the ith band,
and the mean μi represents the difference between the observed
and the model SED. The Student’s t-distribution log-likelihood
does not depend solely on the data and its uncertainties, but also
on the value of another variable, ν, which controls the amount of
weight on the tails of the Student’s t-distribution. For instance, if
n  2, the tails of the distribution have more weight in the
distribution, whereas if n  +¥, the distribution tends to a
normal distribution. We also model the value of ν during the log-
likelihood mapping assuming a noninformative prior for the
degrees of freedom given by

( ) ( )n ~ Uniform 2, 50 , 10

which is required to be open ended only in the lower bounds to
avoid the undefined likelihood that occurs if ν=2.
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4.2. Sampling and Results

To deploy the above SED fitting modeling in the context of
the S-PLUS project, we developed a Bayesian SED fitter
(BSF; C. E. Barbosa 2020, in preparation) as a general tool to
model either SEDs or spectra of galaxies. BSF is written in the
Python programming language based on the PYMC3 statistical
package (Salvatier et al. 2016), which allows for the
construction of general Bayesian models while abstracting
the complex issues related to the actual modeling and
sampling. An attractive feature of the PYMC3 package, not
found in other commonly adopted packages such as the
EMCEE (Foreman-Mackey et al. 2013), is the implementation
of the No U-Turn Sampler (NUTS, Hoffman & Gelman 2011),
a Hamiltonian Monte Carlo sampler that has been shown to
perform well in complex, multidimensional problems without
the need of manual tuning. This sampler works better than
other traditional samplers, such as the Metropolis–Hastings
algorithm (Hastings 1970) and the Gibbs sampler (Gelfand &
Smith 1990), in problems with highly correlated variables in a
space parameter with hundreds of dimensions (see Hoffman &
Gelman 2011).

As discussed in Section 3, there are a number of
nondetections in our photometry. To simplify our modeling,
we only included detected bands in the SED fitting for each
UDG, and we leave the modeling including nondetections for
forthcoming work. The samples from the posterior distributions
were generated with BSF in four chains with 500 burn-in
interactions and 500 draws. Figure 3 shows the comparison
between the observations and the models for the sample of
galaxies previously shown in Figure 2.

To illustrate the process of obtaining representative values
and uncertainties for the model parameters, Figure 4 shows the
posterior samples determined with BSF for two of the UDGs
presented in Figure 2: SMDG0123079–002109, representing a
relatively faint galaxy and SMDG0238220–011927, represent-
ing a relatively bright galaxy. Throughout our analysis, we use
the median to determine the representative value of all
parameters, and we use the percentile values of 16% and
84% to estimate the 1σ confidence intervals of the parameters,
always using the marginalized posterior distribution, shown in
the histograms. In Table 1, we present the results of this
analysis for the first ten entries of the SMUDGes sample. The
full table is available online in machine-readable format.

4.3. Stellar Masses

We determine the stellar mass of each UDG combining our
SED fitting results of the S-PLUS data with the photometric
properties measured in the deeper SMUDGes images. We
adopt two different approaches. First, we use the SED fitting
photometric redshift to estimate the distance and the total
apparent r-band magnitude from SMUDGes to determine the
total magnitude, assuming a Hubble–Lemaître law with

= H 70 20 km s−1 Mpc−1. Next, we use the r-band mass-
to-light ratio from the E-MILES models (Vazdekis et al. 2010;
Ricciardelli et al. 2012) to obtain the total stellar mass,
assuming that  =M 4.65r, (Willmer 2018). These calculations
are performed using the Monte Carlo chains, and thus the
uncertainties are marginalized over all parameters in the SED
fitting model. Second, we estimate the stellar mass using the
color–mass relation from Taylor et al. (2011), which is based

on data from the Galaxy And Mass Assembly survey (Driver
et al. 2009, 2011). Reassuringly, the stellar masses resulting
from the two approaches always agree to within 0.1 dex, which
is a difference that is much smaller than the typical mass
uncertainties (∼0.8 dex). We conclude that our stellar mass
estimates are likely to be dominated by internal random
uncertainties rather than by a systematic error in the conversion
between luminosity and stellar mass. For the remainder of this
work, we use the stellar masses determined using the first
method. The stellar masses derived by the first method are also
presented in Table 1.

4.4. Evaluating the Posterior Distributions

To understand how well we constrain the parameters in our
model, we compare the posterior distributions with the prior
distribution. We perform this exercise in Figure 5, where we
show the posterior medians and uncertainties for five free
parameters in our model (AV, RV, Age, [Fe/H], and z) as a
function of mr, the apparent magnitude of the galaxies
according to the SMUDGes measurements. Overall, the fitting
is better constrained, i.e., is restricted to a narrower range of
values in the posterior distribution, for the brighter sources
(mr19), while the posterior distributions tend to be more
similar to the prior distributions for the fainter sources
(mr19). We discuss the results for the individual parameters
below.
The extinction law parameters have limited impact on the

optical SED shape of the UDGs, and no strong dust attenuation
was required to fit the models. The median total extinction of
AV≈0.1–0.2 is recovered in all cases, whereas the total-to-
selective extinction RV is mostly unchanged from the prior
distribution. In practice, both parameters have the role of
nuisance parameters in our analysis, as they are not of direct
interest for this work, but are still taken into consideration in
the analysis of the stellar populations parameters and the
redshift.
The metallicity clearly departs from the prior distribution in

most cases, with median metallicities systematically small
([Fe/H]≈−1 dex). Even though the 1σ uncertainties remain
similar to the prior for the faint UDGs, the posterior
distributions for the metallicity are usually skewed toward
low metallicities in most cases, and are not flat shaped like the
priors. The main concern in the derived metallicities occurs for
the more metal-poor galaxies, given that they are sometimes
compatible with the lowest metallicity available in our SSP grid
([Fe/H]=−1.79). Without a larger grid of models, we cannot
rule out that some of these systems have even lower
metallicities. Overall, however, we conclude that our metalli-
city estimates are well constrained by our SED fitting.
Similarly, despite the large uncertainties for the faint UDGs,

we do find that the luminosity-weighted ages tend to be smaller
than the prior median (age ≈7 Gyr). One important point in the
evaluation of the ages is that we can see more variation in the
SED’s of younger galaxies, in the sense that it is easier to
differentiate between a 1 and a 2 Gyr old population than to
differentiate between a 10 and a 12 Gyr old population. We see
that effect in practice in our modeling in Figure 5, as the
posterior distributions for galaxies with young ages are usually
narrower than the prior distribution, while for those with old
ages we tend to obtain relatively flat posteriors. Overall, we
conclude that we are able to differentiate between young
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and old stellar populations in our UDG candidates, which is
enough to allow a broad discussion of the formation of these
systems.

Finally, the quality of the modeled photometric redshifts also
depends on the apparent magnitude of the UDGs. The posterior
redshift distribution for the faint UDGs is very similar to the
prior distribution. In these cases, the quoted uncertainties in the
redshift are around 0.8 dex, which is simply the propagation of

the allowed prior range. On the other hand, the bright UDGs
have a narrower range of redshifts in the posterior distribution,
and their median redshifts are usually smaller than the prior
median of ≈0.02. However, even in these cases, the redshift
estimate is very uncertain, and we are only able to constrain the
photometric redshift with errors σz≈0.01 in the best cases.
This has important implications in the classification of the
UDG candidates, as we discuss below.

Figure 3. Resulting SED fits for the six examples presented in Figure 2. The blue filled circles represent the S-PLUS flux densities in detected bands. The shaded
regions indicate the confidence percentile levels of the SED fitting, from 5% to 95% in intervals of 10%. Each panel comes in two portions, where the upper area
shows the data and SED fit and the lower shows the residuals. A summary of the most relevant parameters is included in upper right of each panel.
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4.5. Implications of the Estimated Redshifts to the
Classification of UDG Candidates

The most important implication of the redshift uncertainty is
on the question of whether the UDG candidates are real UDGs,
i.e., are they physically large, Re�1.5 kpc. We showed in
Section 4.4 that we are only able to minimally constrain
photometric redshifts for the bright UDG candidates (mr19),
and we rely on the prior distribution to estimate the redshifts of
the fainter UDG candidates.

If, for the sake of argument, we consider the photometric
redshift estimates to be correct, we can test whether the
candidates can be classified as UDGs and whether this leads to
any obvious irregularities. First, in Figure 6 we show the
estimated effective radii of our UDG candidates as a function
of the apparent magnitude, using the posterior distribution

samples for the photometric redshift, and adopting the angular
sizes, Re, determined by SMUDGes. We use the apparent
magnitude as the independent variable to emphasize that our
ability to constrain the sizes is directly affected by the observed
luminosity of the UDGs, but this does not reflect the actual
size–luminosity relation that is expected to exist for UDGs if
they are similar to other galaxies (e.g., Kormendy 1977). All
but two candidates are larger than the UDG criterion with
greater than 50% confidence. Of course, for the fainter systems
this is principally a reflection of the adopted prior distribution,
but for the brighter systems, where the determined redshift
differs from the prior median, we have greater confidence that
the physical sizes bear some resemblance to the truth. Second,
the adopted redshifts do not lead to an unexpected set of very
large (Re>6 kpc) UDGs. As such, our determinations are not
manifestly incorrect.

Figure 4. Sampled posterior distributions for two UDGs, SMDG0123079–002109 (left) and SMDG0238220–011927 (right), representing cases of the faint and bright
end of the apparent magnitude distribution in our sample, respectively. The histograms along the diagonal contain the marginalized posterior distribution of parameters
from where the resulting values and uncertainties are evaluated. The panels under the diagonal contain projections between pairs of variables, indicating how they are
correlated. Solid lines mark the medians of the distributions, whereas dashed lines mark the 16% and 84% percentiles used to define the 1σ uncertainties. A summary
of the results is included in the upper right corner of each panel.

Table 1
Stellar Population Parameters for SMUDGes UDGs Obtained from SED Fitting of the S-PLUS Optical Data

Name AV [Fe/H] (dex) Age (Gyr) z log Må

(1) (2) (3) (4) (5) (6)

SMD G0006543–000029 -
+0.07 0.05

0.12 - -
+1.3 0.34

0.7
-
+2.8 2.1

7.0
-
+0.018 0.013

0.020
-
+7.5 1.1

0.7

SMD G0016502–002756 -
+0.11 0.08

0.17 - -
+1.0 0.5

0.8
-
+7.1 4.0

4.5
-
+0.021 0.015

0.020
-
+8.0 1.0

0.6

SMD G0021031+004447 -
+0.18 0.13

0.28 - -
+0.4 0.8

0.6
-
+8.0 4.5

4.3
-
+0.022 0.015

0.021
-
+7.9 0.9

0.7

SMD G0025396+011515 -
+0.10 0.07

0.19 - -
+1.1 0.5

0.8
-
+5.8 4.5

5.5
-
+0.019 0.013

0.020
-
+7.5 1.0

0.7

SMD G0035569+010149 -
+0.08 0.06

0.14 - -
+1.2 0.4

0.6
-
+3.1 2.3

6.9
-
+0.017 0.011

0.021
-
+7.4 1.0

0.7

SMD G0045200–011839 -
+0.07 0.05

0.12 - -
+1.3 0.4

1.0
-
+1.5 0.9

6.0
-
+0.018 0.013

0.018
-
+7.4 1.2

0.7

SMD G0055526–011739 -
+0.14 0.10

0.24 - -
+0.8 0.7

0.8
-
+7.4 4.6

4.4
-
+0.020 0.014

0.022
-
+7.5 1.1

0.7

SMD G0058071–010201 -
+0.09 0.07

0.14 - -
+1.2 0.4

0.8
-
+4.6 3.5

6.1
-
+0.021 0.015

0.021
-
+8.0 1.0

0.6

SMD G0108359–002834 -
+0.18 0.14

0.28 - -
+0.5 0.8

0.6
-
+8.0 4.4

4.1
-
+0.022 0.015

0.024
-
+7.9 1.1

0.7

SMD G0113101–001223 -
+0.10 0.07

0.15 - -
+1.1 0.5

0.8
-
+4.3 3.4

6.6
-
+0.020 0.014

0.020
-
+7.4 1.1

0.7

Note. Table sample containing only the first ten entries.

(This table is available in its entirety in machine-readable form.)
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Given the limited redshift information contained in our
observations, we are unable to conclude that our candidates are
all real UDGs, but the bright ones are likely to be real UDGs, as
well as the ones we discussed previously as confirmed through
distance-by-association. For the sample as a whole, we argue
based on volume considerations that they are likely to be farther
away than our adopted median prior distance. The argument
goes as follows. First, we specify that the maximum size of any
UDG is Re=6 kpc, which sets a maximum distance for each of
our candidates. The candidate can lie at any distance up to
this maximum distance. Second, we assume that the parent
population of our candidates is uniformly distributed throughout
the local volume. Third, we claim that our selection is effectively
independent of distance, within this volume, because it depends
on surface brightness more than on luminosity. The latter

statement is not strictly correct, but is valid at the coarse level of
this argument (Zaritsky et al. 2019). In such a scenario the mean
distance to our candidates is 159±40Mpc, or z=0.036±0.01,
which is greater than our adopted median prior and supports
the argument that the majority of candidates are indeed UDGs. In
the next sections, we use the term UDG for all candidates,
acknowledging that some of them might not meet the physical
size criterion for UDGs.

5. Discussion

In this section we examine a variety of established galactic
relations and properties, and place our UDG sample in context.
We restrict our discussion to the stellar population properties
and to only one variable that depends on the distance, the
stellar mass, to avoid observed relations that may be
contaminated by large correlations among parameters owing
to our photometric redshift estimations.

5.1. The Stellar Mass–Metallicity Relation of UDGs

We begin this exploration by determining whether UDGs
are similar to other LSB galaxies (see McConnachie 2012; Kirby
et al. 2013), and thus follow the same stellar mass–metallicity
relation as bright galaxies (Gallazzi et al. 2005). Previous studies
found that UDGs usually conform to the stellar mass–metallicity
relation defined by dwarf galaxies, but most of those UDGs are
in or near clusters, such as Coma (Ferré-Mateu et al. 2018; Gu
et al. 2018; Ruiz-Lara et al. 2018), with a few examples of
UDGs not associated to clusters (Martínez-Delgado et al. 2016;
Greco et al. 2018; Fensch et al. 2019).
In Figure 7 we show the stellar mass–metallicity relation and

include our sample of UDGs. There is a large variety of data
types, models, and methods involved in the determination of
stellar populations of UDGs in the literature, and part of the
scatter in the mass–metallicity and other relations may be
attributed to that. For instance, Greco et al. (2018) have shown
a difference of 0.3–0.5 dex in the metallicity of UDGs by
simply changing from a single stellar population to an extended
SFH. However, despite this important caveat, our measure-
ments are consistent with previous work, with UDGs filling

Figure 5. SED fitting parameters as a function of the r-band apparent
magnitude. The blue circles indicate the posterior distribution median and the
gray vertical lines represents the 1σ uncertainties of the five free parameters,
while the orange solid (dashed) lines indicate the median (±1σ uncertainties) of
the prior distributions of the same parameters.

Figure 6. Effective radii of UDG candidates as a function of their apparent
magnitude. The circles and their uncertainties indicate the median and the 1σ
uncertainties of the effective radius calculated using the posterior distributions
of the SED fitting. The orange dashed line indicates the minimum physical
radius of UDGs.
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part of the gap between dwarf and giant galaxies. In the bottom
left of the figure, we include an ellipse whose shape shows the
covariance between the two parameters, which indicates that
the stellar mass and the metallicity are basically independent in
our measurements.

Our large sample of galaxies allows for the observation of a
range of metallicities that matches the variety of metallicities
previously identified in the literature. However, the large
uncertainties of and the censored limits on the range of
metallicites do not allow for a reliable measure of the
metallicity scatter for the UDGs in the sample. Overall, the
location of the population of UDGs in the stellar mass–
metallicity diagram indicates a similarity with other dwarf LSB
galaxies, such as those observed by Kirby et al. (2013). On
average, the metallicities of the UDGs, as presented, are
slightly larger than those predicted from the extrapolation of
the relation derived from measurements of dwarf galaxies, but
there are a few important considerations that favor the idea that
the metallicity of UDGs follows the same relation as the dwarf
galaxies.

First, the UDGs are not statistically far away from the dwarf
sequence. Considering only our sample of UDGs, the mean
difference between the measured metallicity and the expected
metallicity from the Kirby et al. (2013) relation is 0.18 dex,
which is similar to the scatter of the dwarf galaxies around the
mean (0.14 dex), and much smaller than the mean error in our
measurements (0.6 dex). Second, there may be a systematic
error in our measurements related to the assumed relation
between the total metallicity and the iron abundance, [M/H]=
[Fe/H], because the low metallicity stars used in the E-MILES
models contain alpha elements. Ferré-Mateu et al. (2018)

reported a few UDGs with significant overabundances of
magnesium (0[Mg/Fe]0.4 for three out of four galaxies)
and Martín-Navarro et al. (2019) reported an even larger
overabundance in DGSAT I, [Mg/Fe]=1.5. An average
magnesium abundance of [Mg/Fe]≈0.2 dex is enough to
account for the difference we find between the metallicity of our
UDGs and that published for the dwarf galaxies.13 Finally, our
SSP models are restricted to a lower limit of [Fe/H]=−1.8,
and thus the metallicity of some UDGs in our sample may be
overestimated. Note that a factor of two smaller distance, which
would then render most of our candidates as nonUDGs, would
lead to a factor of four lower stellar mass and would exacerbate
the metallicity offset.
In conclusion, the metallicity of the UDGs is roughly

consistent with that of other galaxies of similar stellar masses,
the high-mass end of the dwarf sequence, and so do not show
any signs of a different formation path than those galaxies.

5.2. The Luminosity-weighted Ages of Field UDGs

The reported ages of UDGs have usually been large, >4 Gyr,
but again almost all published results are for Coma galaxies
(Ferré-Mateu et al. 2018; Gu et al. 2018; Ruiz-Lara et al. 2018).
In the limited available examples of field UDGs, however, the
reported luminosity-weighted ages have consistently been
younger, with ages ranging from 1 to 3 Gyr (Martínez-Delgado
et al. 2016; Greco et al. 2018; Martín-Navarro et al. 2019).
In fact, the UDG population in the field is expected to
have a larger variety of colors than that of the clusters

Figure 7. Stellar mass–metallicity relation of UDGs in our sample (filled blue circles) and from the literature (Martínez-Delgado et al. 2016; Ferré-Mateu et al. 2018;
Greco et al. 2018; Gu et al. 2018; Pandya et al. 2018; Ruiz-Lara et al. 2018; Fensch et al. 2019). The pink solid and dashed lines are the mean and the scatter of the
stellar mass–metallicity of dwarf galaxies around the Milky Way from Kirby et al. (2013). The gray lines are the mean and the standard deviation of the properties of
bright galaxies from Gallazzi et al. (2005). The shape of the blue dashed ellipse in the bottom left indicates the mean 1σ covariance between the parameters, where the
direction of largest (smallest) variance corresponds to the major (minor) semiaxis.

13 For the E-MILES models, [Fe/H]=[M/H]−0.75[Mg/Fe].
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(Di Cintio et al. 2017) and there is observational support for
this trend (van der Burg et al. 2016; Prole et al. 2019).

In Figure 8 we compare the luminosity-weighted age
distribution of galaxies in our sample to that of UDGs observed
in the Coma (Ferré-Mateu et al. 2018; Gu et al. 2018; Ruiz-
Lara et al. 2018) and Virgo (Pandya et al. 2018) clusters, to
contrast the distribution of ages in clusters and in the field. Both
the field and cluster UDGs typically have intermediate ages,
with a peak in the age histogram around 7 Gyr, but our sample
also indicates a significant fraction of UDGs with ages smaller
than 4 Gyr.

Considering that we only have luminosity-weighted ages, the
results from the our analysis are expected to be biased toward
the youngest populations within a galaxy. Therefore, a few
different, nonexclusive scenarios can explain the additional
fraction of UDGs with young ages. One possible explanation is
the existence of different UDG formation channels not present
in the cluster population (e.g., Liao et al. 2019). Other
possibilities are that UDGs in the field might have more
continuous star formation activity, presumably in the absence
of cluster-related processes, such as harassment and ram
pressure stripping, and that field UDGs have had a recent, even
ongoing, star formation burst that outshines the older and more
massive stellar component of the galaxy. Regardless of the
detailed explanation, UDGs have been able to flourish in the
field by forming stars until much more recently than UDGs in
clusters.

5.3. The Age–Metallicity Relation of UDGs

We compare in Figure 9 the luminosity-weighted age–
metallicity relation for UDGs, both in the field and in galaxy
clusters, to that of bright galaxies. Within our own field UDG
sample, there appears to be a correlation between age and
metallicity, but considering the existence of a well-known age-
degeneracy problem, we first inspect whether this is causing the
observed relation.

The original age-deneracy problem (Worthey 1994) indi-
cates that the colors of an old population are similar to those
of another population three times older and with half the
metallicity. This degeneracy is specific for broad bands and old
stellar systems, and thus it is unclear whether this holds in our
analysis. However, it is an important cautionary note to any
stellar population analysis, as degeneracies are bound to
happen in SED fitting. As we indicate with the error ellipse
in the bottom of the figure, there is a correlation between the
age and the metallicity in our posterior distributions that is
similar to the known age–metallicity degeneracy. However, the
observed relation between the ages and metallicities of our
UDGs does not have a slope in the same direction as the age-
degeneracy relation. Therefore, we conclude that the observed
relation between ages and metallicities in our UDG sample is
not driven by the age–metallicity degeneracy, and thus we are
able to discuss some properties of the observed relation.
For the old UDGs (age 6 Gyr), the age–metallicity relation

follows a similar pattern to that of bright galaxies (Gallazzi
et al. 2005), in the sense that younger systems have low
metallicity and older systems have high metallicity, although
with different slope and offset. The old UDGs have
metallicities similar to those reported in other works for UDGs
in clusters, but this possible age–metallicity relation was not
hinted at in previous work.
The young UDGs have a flat age–metallicity relation, but the

modeling limitation in the range of very low metallicities limits
us in reaching further conclusions as to whether the flattening
in the relation is real or a result of the modeling restriction. The
location of our young UDGs in this space is similar to that of
the field UDGs from Greco et al. (2018), which were suggested
to be currently star forming.
Interestingly, there are also a few young UDGs (t1 Gyr)

with relatively high metallicities ([Fe/H]≈−0.5 dex), popu-
lating the location of more massive galaxies. These UDGs are
located in the age–metallicity plane in a location similar to that
of DGSAT I, a passive, field UDG found in the Pisces-Perseus
supercluster filament (Martínez-Delgado et al. 2016). A visual
inspection of our young, metal-rich UDGs does not suggest
current tidal interactions with bright galaxies, and thus it is not
likely that these particular UDGs have tidal origins, which
could have explained their higher metallicity. A more likely
scenario is that these cases indicate more massive UDGs that
have had a recent burst in star formation, such that their
luminosity-weighted metallicities are driven by a potentially
old, mass-dominant stellar component, while their luminosity-
weighted ages are driven by a less massive, young component.

5.4. The Stellar Mass–Age Relation

In Figure 10 we present the relation between the stellar mass
and the luminosity-weighted age for our UDG sample and
more massive galaxies. Similar to the age–metallicity relation,
we also observe a correlation between the ages and the stellar
masses. However, in this case, the error ellipse in the bottom of
the figure indicates that the observed correlation may be caused
by a degeneracy in the parameters, and thus we do not have any
confidence that this relation actually exists.
Most old UDGs (age 6 Gyr) follow the stellar mass—

mass-weighted age relation observed by Thomas et al. (2005),
extrapolated to the UDG regime. We explain this agreement by
noting that the luminosity-weighted and mass-weighted ages
converge the longer a galaxy is not forming stars. However, the

Figure 8. Comparison of the luminosity-weighted ages of our UDGs, which
are primarily in the field, and those of UDGs in the literature (Ferré-Mateu
et al. 2018; Gu et al. 2018; Pandya et al. 2018; Ruiz-Lara et al. 2018), which
are primarily in clusters.
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Figure 9. Comparison between luminosity-weighted ages and metallicities of UDGs in the field (this work) and from the literature (Martínez-Delgado et al. 2016;
Ferré-Mateu et al. 2018; Greco et al. 2018; Gu et al. 2018; Pandya et al. 2018; Ruiz-Lara et al. 2018; Fensch et al. 2019). Solid and dashed lines are the mean and the
standard deviation of the relation for bright galaxies (Gallazzi et al. 2005). The blue dashed ellipse in the bottom right indicates the mean 1σ covariance between the
parameters.

Figure 10. Same as Figure 9 for the relation between stellar mass and luminosity-weighted age for UDGs and bright galaxies.
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young UDGs are displaced from the relation of Thomas et al.
(2005), and have ages similar to those in the low-mass end of
the Gallazzi et al. (2005) relation. We expect these young field
UDGs to move upward in this diagram when they eventually
stop forming stars.

6. Summary and Conclusion

UDGs are large, low surface brightness galaxies. Although
such systems are now known in significant numbers, establish-
ing physical characteristics has proven to be challenging even
when using the largest telescopes of this generation. Field
UDGs, in particular, have barely been studied. In this work, we
perform the first systematic study of the stellar populations of
field UDGs combining the deep and large area search of UDGs
performed by the SMUDGes survey (Zaritsky et al. 2019) with
the multiband capabilities of the S-PLUS survey (Mendes de
Oliveira et al. 2019). Covering an area of ∼330 deg2 in the
Stripe 82 region, we fit SEDs to a sample of 100 field UDGs,
representing the largest sample of UDGs (field or cluster) for
which ages and metallicities have been measured to date.

We constrain our Bayesian SED fitting method with up to 12
broad and narrow bands from S-PLUS, resulting in estimated
luminosity-weighted ages, metallicities, and stellar masses of
the field UDGs. While stellar masses and metallicities are
mostly in agreement with previous studies, we observe a
number of UDGs with ages younger than those found in
cluster. This result suggests that UDGs in the field may have
extended star formation histories that may, in some cases,
extend to the current time, contrasting with the typical old ages
of UDGs found in clusters. We also find a few cases of
relatively high-metallicity UDGs ([Fe/H] ≈−0.5) with young
ages (ages 1 Gyr) without clear indications of tidal
interactions, which suggest ongoing episodes of star formation
among the most massive UDGs.

Previous studies have already indicated that UDGs may
represent the extension of normal galaxy properties rather than
arise from a disconnected, new path of galaxy formation, but
these conclusions have been based on small samples of
galaxies (Beasley & Trujillo 2016; Zaritsky 2017) or models
(Amorisco & Loeb 2016). By placing a large sample of field
UDGs in stellar population scaling relations, we are able to
confirm that UDGs, as a population, are similar to dwarf and
giant galaxies. There are still puzzles to solve, such as the large
globular cluster abundances in the largest UDGs (van Dokkum
et al. 2017; Toloba et al. 2018) and the offset from the baryonic
Tully–Fisher relation (Mancera Piña et al. 2019), but we
conclude that these should arise naturally from considering a
broader range of galaxies within the current picture of galaxy
formation (Martin et al. 2019) rather than any exotic processes
(Bennet et al. 2018). Of course, these statements apply to the
general case and individual exceptions, where UDGs form in
tidal tails, for example, are not excluded.

Despite the improvement in sample size in this work, there is
still much to be gained from even larger samples. In particular,
we want to apply the same analysis methods to UDGs in a
range of environments, including massive clusters, to more
confidently compare results. Even larger samples will enable us
to test for further dependencies on UDG mass, environment,
and morphology. Both SMUDGes and S-PLUS are still in their
early phases. A much larger area of the sky will be probed by
both surveys in the next years, increasing the sample for which
this type of analysis can be replicated into the thousands.
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