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Abstract—High-performance computing continues to increase
its computing power and energy efficiency. However, energy
consumption continues to rise and finding ways to limit and/or
decrease it is a crucial point in current research. For high-
performance MPI applications, there are rollback recovery based
fault tolerance methods, such as uncoordinated checkpoints.
These methods allow only some processes to go back in the face
of failure, while the rest of the processes continue to run. In
this article, we focus on the processes that continue execution,
and propose a series of strategies to manage energy consumption
when a failure occurs and uncoordinated checkpoints are used.
We present an energy model to evaluate strategies and through
simulation we analyze the behavior of an application under
different configurations and failure time. As a result, we show
the feasibility of improving energy efficiency in HPC systems in
the presence of a failure.

Index Terms—Energy consumption, energy saving, power
management, fault tolerance, uncoordinated checkpoint, HPC,
distributed memory, MPI, DVFS, ACPI

I. INTRODUCTION

High Performance Computing (HPC) continues to increase
its computing power and energy efficiency [1], [2]. For ex-
ample, the supercomputer Fugaku1, number 1 of the Top500,
presents 415.5 PFlop/s against the 148.6 PFlop/s of its prede-
cessor, Summit. At the same time, these supercomputers are
in the top ten of the Green500, with around 14.7 GFlops/W.
However, energy consumption continues to increase; while the
Summit computer has a consumption of 10 MW, Fugaku goes
up to 28 MW. As this increase in energy consumption is not
sustainable, it is necessary to reduce it.

A parallel message passing application can be affected by
failures from computer system components. In this work, we
refer to permanent failures, which cause fail-stops in MPI
(Message Passing Interface), in homogeneous clusters. There
are methods to continue with the execution in the presence of
a failure. One of the most widely used methods is rollback-
recovery through the use of checkpoints. When a node fails, it
is possible to use an uncoordinated checkpoint scheme where
the processes of the nodes that have not failed continue their

This research has been supported by the Agencia Estatal de Investigación
(AEI), Spain and the Fondo Europeo de Desarrollo Regional (FEDER) UE,
under contract TIN2017-84875-P and partially funded by a research collabora-
tion agreement with the Fundacion Escuelas Universitarias Gimbernat (EUG).

1https://www.top500.org/system/179807/

execution. These processes will eventually stop when they
need to communicate with a process that is recovering. As
there will be a wait, we think that this scenario presents
opportunities for energy savings. If waiting is unavoidable,
what is the best strategy to consume less energy at that time?
The challenge is to investigate what possibilities exist when
one or more processes stop their execution. How to take
advantage, from an energy-saving point of view, of the great
benefit that uncoordinated checkpoints present by avoiding that
all the application processes have to go back in the presence
of a failure?

In this work, we evaluate a series of strategies that can be
applied to improve energy efficiency when a failure occur.
The strategies use the Advanced Configuration and Power
Interface (ACPI), in particular we consider the use of Dynamic
Voltage and Frequency Scaling (DVFS) techniques and system
hibernation at the node level. By having a characterization of
the energy consumption required to execute the application
and its communication pattern, we estimate the execution and
waiting times of the processes that do not fail. Then, by using
a simulator that we have designed and developed, we can
evaluate the use of the strategies. Using a simulator allows us
to simplify a real system, reduce costs, and focus on essential
features. In our case, it also allows us to have a flexible
environment to experiment with different configurations. Also,
we use a tool to present the results in a visually.

Our objective is to know and manage the energy consump-
tion of an HPC system, applying different strategies depending
on the state of the application and the characteristics of the
machine, when a permanent failure occurs and local rollback
recovery is used, without increasing execution time. We create
a model that allows predicting the energy consumption of an
HPC application with its fault tolerance (FT) method under
certain system conditions. The simulations show that in an
interval of around 40 minutes it is possible to achieve around
70% of energy saving. The main contributions of this work
are:

• The definition of a series of strategies for energy saving
when a failure occurs and only failed processes have to
rollback.

• The design and development of a simulator oriented to
evaluate the proposed strategies and to select the most
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convenient one from the energy point of view.
• The definition of a model that allows us to asses the im-

pact of the strategies application on energy consumption
under different scenarios.

The rest of the paper is organized as follows. Section II
presents some preliminary concepts used in the article and
some related works. Section III describes the proposal and its
motivation, and presents the energy model. The simulator and
the experimental results are presented in section IV. Finally,
conclusions are summarized in section V.

II. BACKGROUND AND RELATED WORK

The following subsections introduce some concepts that are
used in the article, such as active waits in MPI, rollback
recovery mechanism, and the states defined by ACPI. The last
subsection presents some related works.

A. Waits in MPI

In MPI parallel applications, it may happen that one process
must wait for another to send or receive a message. During
these waits, the process can keep the processor busy by active-
waiting, or release it, and use polling or interrupts. An active
wait keeps the processor busy and consuming energy, without
doing useful work. An idle wait can impact on application
performance, due to C states transitions [3], among others.
Various MPI implementations provide active wait as the de-
fault operating mode. As this operating mode is configurable,
in this work we consider both cases.

B. Rollback recovery

A consistent global state can be found during a successful
and fault-free execution of parallel computing. Inconsistent
states occur because of failures. A fundamental goal of any
rollback-recovery protocol is to lead the system to a consistent
state after a failure. This method consists of periodically saving
the state of the application in stable storage, which is known
as a checkpoint. At failure time, it is possible to restart the
application from the last successfully saved state, which is
called restart. There are two main approaches: coordinated
and uncoordinated checkpoints. In the case of coordinated
checkpoints, the consistent global state is obtained by synchro-
nizing all the processes at checkpoint time, and when a process
fails, all processes restart from the last checkpoint. As we can
see, all the application processes re-executing produce energy
and performance overhead. In the case of uncoordinated
checkpoints, processes take their checkpoints independently,
avoiding synchronization overheads and I/O contention [4].
At failure time, only failed processes restart from the last
checkpoint, using fewer resources for its recovery than a
coordinated checkpoint. However, ensuring a consistent global
state is not as straightforward as in the case of coordinated
checkpoints. When a process restarts, orphaned and/or lost
messages can appear, causing other processes to roll back to
ensure consistency. This is called domino effect, and there are
different techniques to control it, such as the use of message
logging [5].

There are hybrid approaches to take advantage of coor-
dinated and uncoordinated checkpoints. In this scheme, the
processes are divided into groups. Within each group coordi-
nated checkpoint is used, but between groups, uncoordinated
checkpoint is used. There are different criteria for defining
groups. For example, all processes running on the same node
could be in a group, because when a node fails all its processes
must restart [6]. Another way to define groups can be with
processes that communicate frequently [7]. The first approach
is the one used in the present work.

C. ACPI

The ACPI specification provides an open standard that
allows the operating system to manage the power of the
computing system and provides advanced mechanisms for
energy management2. The specification defines a series of
global states and substates for the system. In the global
sleeping state G1 the computer consumes a small amount of
power and applications are not executed. As the context is
saved, the operating system does not need to restart when
waking up. Latency for returning to the working state varies
on the type of sleeping substates selected (S1-S4). In this work,
we use performance and sleeping states (P and S states).

D. Related Work

Some works that take advantage of the waits of processes
that do not rollback when a failure occurs. In [8], they look
to improve the efficiency of the computer system by replacing
the application when the waits are long enough. That way,
while the failed processes are recovering, another application
is allowed to advance. Most articles seek to regulate power
consumption using DVFS. In [9] they analyze the active waits
of an MPI application and evaluate potential energy savings
by changing the clock frequency during those waits. Other
works slow down the non-critical path to consume less power
without substantially increasing execution time [10], [11]. [12]
is the most similar proposal to this work, since they propose a
localized rollback based on the data flow, and reduce the clock
frequency of the waiting processes to the minimum possible.
We evaluate other strategies, in addition to changing to the
minimum frequency, and we do so both for the computation
and waits of the processes that continue to execute.

III. PROPOSAL

In the following subsections, the motivation is reinforced,
the strategies and their application are defined, and an energy
model that allows estimating the energy savings achieved is
shown.

A. Motivation

Uncoordinated checkpoints allow only the processes of the
failed node to be restarted, while the others continue execution.
After a failure, re-execution time depends on the time of
the last checkpoint. The further from the last checkpoint the
failure occurs, the longer will be the re-execution time. The

2https://www.uefi.org/specifications

Authorized licensed use limited to: MINCYT. Downloaded on July 07,2022 at 18:52:31 UTC from IEEE Xplore.  Restrictions apply. 



duration of this re-execution time will affect the duration of
the waits suffered by the processes that continue execution.
During these waits, the processes consume energy without
doing useful work. In an application with several processes,
as is the case of HPC applications, this can mean a significant
waste of resources. Managing these waits in order to achieve
lower energy consumption motivates the present work.

B. Strategies definition and application

When a node fails, the strategy to be applied to surviving
nodes is evaluated, analyzing the state of its processes. In
order to improve energy efficiency and taking into account
the impact on execution time, the strategies combination that
should be applied to nodes that continue to execute after a
failure is evaluated. Fig. 1 shows different scenarios, where
two processes, P1 and P2, are running on different nodes.
Vertical rectangles indicate that the process is performing
checkpoints. As uncoordinated checkpoints are used, they may
be performed at different times, as shown in the figure. P1
sends two messages to P2, indicated by t send1 and t send2.
The computation and wait phase of surviving process P2, form
the intervention interval and are indicated with 1 and 2 in
case B. The computation phase comprises the execution of
the application from the moment of failure until it is blocked
waiting for communication with a process that has failed, at
which point the waiting phase begins. It may happen that
during the computation phase additional waits appear, but
caused by other surviving processes and not by a process in
recovery. It may also happen that during this phase checkpoints
are perform.

At failure time, which clock frequency is more convenient
to use for the computation phase in combination with the
action for the waiting phase is determined. The action for the
waiting phase can be to sleep the node (in some state S1-S4,
subsection II-C) or to switch to the minimum clock frequency.
The strategies can be summarized as follows:

• Frequency change for the computational phase (case C).
• Frequency change for the waiting phase (case D).
• Sleeping for the waiting phase (case E).
Case A shows a failure-free execution, where messages

are sent and received in a synchronized way as is in the
application. Case B shows an execution where process P1
fails and must recover. After the failure, the restart is executed
and the re-execution follows, indicated in green. We can
see how the sending of the second message is delayed due
to the failure, and the process P2 must wait, indicated in
red. This is the case that will serve as a reference for the
evaluation of the strategies. In the following cases, we observe
the implementation of the strategies. In case C, the P2 node
changes to a lower clock frequency during the computation
phase, indicated by the wavy line. This makes P2 submit the
second reception later, shortening the waiting phase. In case
D, it was decided to change the clock frequency during the
waiting phase. This action does not affect the waiting phase
duration, but it does impact energy consumption. In case E,
the P2 node goes to sleep during the waiting phase, reducing

power consumption. These strategies can be applied together.
For example, it could be the case that the clock frequency is
changed for the computation phase and the waiting phase. As
we can see, there are several possible scenarios where different
actions must be evaluated and managed.

The evaluation of the strategies for the computing and
waiting phase is done altogether. The selected configuration
will be the one that achieves the lowest energy consumption
for the intervention interval without affecting the execution
time. For this, the frequency selected for the computing phase
should not slow down the intervened process to the point that
the recovered process must wait for it. Regarding the waiting
phase, if the duration of this phase is long enough to get the
node to sleep and to wake up, and at the same time lower
energy consumption is achieved, then this option is selected.
Otherwise, if the waits are configured to be active waits, the
minimum frequency is selected, and if they are configured to
be idle waits, then no action is taken.

Algorithm 1 shows the pseudocode for the evaluation of
the strategies3. This is executed at the time of failure for each
surviving process. The first function, estimate times(p),
estimate T comp and T failed, for process p at maximum
frequency. T comp is the computational phase duration, and
T failed (indicated with 3 in case B of Fig. 1) is the time
that elapses from the failure, until the recovered process is
blocked by communication with the process p. The outputs of
the algorithm are the frequency selected for the computational
phase and the action to be taken for the waiting phase for each
evaluated process.

C. Energy model

The model presented below estimates the energy savings
achieved when the selected strategies are applied after a
failure. The input data of the model is the selected strategy
in combination with system, application and fault tolerance
characterization data as indicated in Table I. Power and
time can be obtained from characterizations as in [13]. The
application communication pattern can be obtained from the
execution trace. Downtime refers to the time that elapses from
the failure time until the restart begins. The clock frequency
selected for the computational phase is fb, and fa is the
maximum available frequency. Table II details model param-
eters for reference. Modeled communications are blocking
communications. Case B of Fig. 1 reflects the situation where
no strategies are applied, and serves as reference.

The energy saving is estimated for each non-failed node i,
and is the difference between the energy consumption with
and without the use of the strategies, as shown in (1).

Energy savingi(fa, fb) = ENIi(fa)− EIi(fb) (1)

We call the energy consumed by node i without intervention
ENIi (No Intervention, equation 2), while EIi (equation 3),
is the Energy with Intervention. In these equations, energy

3See nomenclature in Table II Section III-C
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Fig. 1. Application cases. (A) No failure. (B) Failure and no action. (C) Frequency change for the computational phase. (D) Frequency change in the waiting
phase. (E) Sleeping in the waiting phase.

TABLE I
ENERGY MODEL INPUTS

System data Power and time required to sleep and to wake up a
node.

Application data Power dissipated and slowdown of each frequency
during the computation. Pattern and frequency of
communication among processes.

Fault tolerance
data

Checkpoint and restart duration. Power dissipated
and slowdown of each frequency during checkpoint

Variables Checkpoint interval, failure time, downtime.

estimation during the waiting phase varies whether or not
active wait is used, as this affects the power dissipated. The
equation for the energy of the computational phase is shown
in (4), and for the waiting phases in the (9), (10) and (11).
Whenever we mention the energy consumed by a node, with or
without intervention, we refer to the energy consumed during
the intervention interval. This interval is different for each
node, starting at the failure and ending when some process of
the node communicates with a recovered process.

To calculate the energy consumption during an interval of
time we need to know its duration and the associated average
power dissipation. Power is obtained from the model data
input, while the time (equations 5 and 13) depends on two
variables: the failure time and the strategy adopted. The failure
time determines the value of αij , which is the communication
interval percentage that a process from node i still needs
to complete to reach the next communication point with a
process from the failed node j. On the other hand, the adopted
strategy will indicate us which is the most convenient clock
frequency for the computation phase (fb). The slowdown factor
can be calculated from fb and indicates how much slower the
application runs with frequencies lower than the maximum
one. The energy consumed to sleep and wake up the node will
depend solely on the characteristics of the node and is a fixed
value for each hibernation substate (S1-S4) of G1 implemented
by the system. To simplify the equations we use a single value.

To sleep a node, two conditions must be met. First, the

waiting time must be greater by a certain margin (µ1 in (8)),
possibly zero, than the total time that the node requires to
sleep and wake up. This is to prevent a recovered process from
having to wait for an intervened process. Secondly, the energy
consumption while sleeping, including the energy consumed
while sleeping and waking up, must be lower by a certain
margin (µ2 in (8)) than the consumption obtained if the node
remains awake. The two options must be fulfilled to sleep
the node; otherwise, the node remains awake. In this case,
the consumption will be determined by the message waiting
configuration. If the configuration indicates that active waits
are used, the energy consumed is calculated using the power
dissipated by the lowest available frequency. On the other
hand, if idle waits are used, the processor is practically without
work, and then the energy consumed is calculated using a
power near to the base power.

ENIi(fa) = E compi(fa) + E awake waiti(fa) (2)

EIi(fb) = E compi(fb) + EI waiti(fb) (3)

E compi(f) = T compi(f)× P comp(f)+

N ckpt× T ckpt(f)× P ckpt(f)
(4)

T compi(f) = αij × I commij × β(f) (5)

T check(f) = check time× γ(f) (6)

E awake waiti(f) =

(
E active waiti(f) if active wait
E idle waiti(f) if idle wait

(7)
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Algorithm 1 Pseudo-code for strategies evaluation
1: estimate times(p); // estimate T comp and T failed.
2: min energy = MAX ENERGY;
3: for each frequency f do
4: comp time = T comp ×β(f) + N ckpt×T ckpt×γ(f);

// estimate the duration of the compute phase.
5: if comp time > T failed then
6: // the restarted process would have to wait.
7: print ”Frequency not allowed.”
8: else
9: // strategies are evaluated

10: wait time = T failed - T comp ×β(f);
11: if active wait used then
12: // estimate energy when using active waits.
13: E awake wait = wait time × P active wait;
14: else
15: // estimate energy when using idle waits.
16: E awake wait = wait time × P idle wait;
17: end if
18: // evaluate if it is worth sleeping the node: wait is

long enough and the energy saving is significant.
19: T sw = T go sleep + T wakeup;
20: if (wait time > µ1× T sw) and (EI sleep wait <

µ2× E awake wait) then
21: // node goes to sleep.
22: action wait time = sleep;
23: wait energy = E sw;
24: else
25: // node stays awake.
26: action wait time = awake;
27: wait energy = E awake wait;
28: end if
29: compute energy = comp time × P(f);
30: total energy = compute energy + wait energy;
31: if total energy < min energy then
32: // save the strategy that minimizes energy.
33: compute frequency selected = f;
34: action wait time selected = action wait time;
35: end if
36: end if
37: end for

EI waiti(fb) =



EI sleep waiti(fb)

if T waiti(fb) > µ1×
(T go sleep+ T wakeup)

and EI sleep waiti(fb) < µ2×
E awake waiti(fb)

E active waiti(fb)

if active wait and no sleeping
E idle waiti(fb)

if idle wait and no sleeping
(8)

EI sleep waiti(fb) =T go sleep× P go sleep+

T sleepi(fb)× P sleep+

T wakeup× P wakeup

(9)

E active waiti(f) = T waiti(f)× P active wait (10)

E idle waiti(f) = T waiti(f)× P idle wait (11)

T sleepi(f) = T waiti(f)−T go sleep−T wakeup (12)

T waiti(f) = T failedi − T compi(f) (13)

T failedi = T recover + αji × I commij (14)

T recover = T down+ T restart+ T reexec (15)

IV. EXPERIMENTATION AND RESULTS ANALYSIS

The following subsections describe the simulator, the sim-
ulations conditions, and the configuration data. After that, the
results obtained are analyzed.

A. Simulator

We have developed an event-based simulator that uses the
SMPL library written in C language [14]. This simulator
allows us to evaluate the strategies under different system
configurations, different characteristics of the application and
different failure times. The failure of a node in a parallel
message passing application, with uncoordinated checkpoints
at the system level is simulated. To simplify the first version
of the simulator, a single process per node is simulated,
the node’s representative process. We call the representative
process of the node to the process that first block due to
communication with some process of the failed node. The
strategy selected when evaluating the representative process
is applied to the node. Checkpoints can be triggered by events
or by time; as we seek to simulate transparent checkpoint to
the application, we activate it by time. The moving ahead
of checkpoints is simulated. If a process is going to block
by communication with a recovering process, and its last
checkpoint happened some time ago, the process performs
a checkpoint before blocking. In this way, useless waiting
time is used by a checkpoint. The checkpoint files are stored
in a parallel file system external to the nodes. The mes-
sage log and the domino effect have not been considered.
The simulated MPI functions are blocking send synchronous
mode (MPI Ssend) and blocking receive (MPI Recv).
The messages have a fixed size. The overhead caused by
the strategies evaluation and implementation is not computed.
Processes that indirectly block with a recovering process are
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TABLE II
PARAMETERS

Parameter Name Description
E compi(f) Energy consumed by node i during the computing

phase, at frequency f .
E awake waiti(f) Energy consumed by node i during the waiting

phase when it remains awake.
EI waiti(f) Energy consumed by node i during the waiting

phase when intervention takes place.
E active waiti(f) Energy consumed by node i during the active

waiting phase at the minimum frequency.
E idle waiti(f) Energy consumed by node i during the waiting

phase when using idle wait.
EI sleep wait(f) Energy consumed by node i during the waiting

phase when it goes to sleep.
T ckpt(f) Checkpoint duration running at frequency f .
T compi(f) Computation phase duration when node i executes

at the frequency f .
T go sleep
T wakeup

Times required by a node to sleep and wake up,
respectively.

T failedi Time required by a failed process to recover and
to block with a process of node i.

T recover Time required by a failed process to recover and
return to the point where the failure occurred.

T down Downtime.
T rest Restart duration at maximum frequency.
T reexec re-execution time at maximum frequency.
T sleepi(f) Time that node i is sleeping (without considering

the time to go to sleep and to wakeup).
T waiti(f) Waiting phase duration of node i process when

compute phase was executed at frequency f .
T ckpt Checkpoint duration.
P go sleep
P wakeup

Power dissipated while sleeping and waking up a
node, respectively.

P sleep Power dissipated when node is sleeping.
P comp(f) Power dissipated by the application when running

at frequency f .
P ckpt(f) Power dissipated during checkpoint at frequency

f .
P active wait Power dissipated during and active wait.
P idle wait Power dissipated during and idle wait.
N ckpt Number of checkpoints in the intervention inter-

val.
αij Percentage of the communication interval between

process i and process j that still remains to be ex-
ecuted for process i to block in a communication
with process j.

I commij Duration of the communication interval between
process i and process j when executing at maxi-
mum frequency.

β(f) γ(f) Slowdown of instruction and checkpoint execution
when frequency f is used.

µ1 µ2 Time and energy threshold to determine whether
or not to sleep a node.

not evaluated in this version of the simulator. For example,
process A is waiting for the failed process B, and process C
blocks with process A, then process C indirectly blocks with
the recovering process B. The simulator inputs are the same
as the energy model described in subsection III-C, and are
detailed in Table I.

At the time of failure, the simulator evaluates each surviving
process with each of the clock frequencies provided, and
determines the best strategy to apply. The simulator output
includes the estimated energy savings when applying the
selected strategy, and a trace to visualize the behavior of

TABLE III
POWER AND SLOWDOWN AT DIFFERENT CLOCK FREQUENCIES

Application Checkpoint
Frequency (GHz) Average Power (W) β Average Power (W) γ

2.8 166 1 150 1
2.1 148 1.2 142 1.1
1.7 139 1.5 131 1.2
1.2 126 2.1 125 1.4

the application. The trace is visualized with the Paraver4

tool, a flexible HPC application performance analysis and
visualization tool.

B. Experimental settings

Table III shows dissipated power and slowdown factor (β
and γ) obtained from measurements on a six-core Intel Xeon
E5-2630 node, with a frequency range of 1.2 GHz to 2.8
GHz (with the mechanism Intel Turbo Boost disabled). The
base power is 60W. The node sleep and wake times are set
at 25 and 5 seconds respectively, and the average powers at
51 and 91 watts respectively. The average power dissipated
while the node is sleeping is 12 watts. These values were
obtained from [15] and correspond to S3 sleeping mode. The
checkpoint duration is set to two minutes, and the MPI waits
are configured as active waits, except otherwise indicated. The
scenarios present four processes (or nodes) and the node that
fails is the corresponding for process 0.

C. Results analysis

Different simulated scenarios are discussed in this sub-
section. For each scenario, the particular configuration data
is indicated. For space reasons, the trace is shown for two
representative cases. In these figures, frequency and S-state
changes are indicated by flags, checkpoints are indicated in
brown, downtime, restart and re-execution are indicated by
light blue, yellow and green respectively. The thin lines are
communications, waits are indicated in red, and sleeping node
in gray. The strategies adopted and the estimated energy saved
are summarized in Table IV. In this table, column N indicates
the node number, the Action column indicates the strategy
applied, column T indicates the phase duration, and column
TT the total duration. The last columns show the savings in
joules, joules per second, and percent.

Scenario 1: Short re-execution time: The moment of
failure is configured to occur immediately after a checkpoint.
The visualization of this scenario can be seen in Fig. 2. For
the computation phase of process 1, the frequency is not
changed because, with any of them (other than the maximal),
the process would arrive late to the point of synchronization
with the recovered process, and strategies that affect the
execution time are not applied. For example, let us see what
happens with the 2.1 GHz frequency. With this frequency,
the computation phase would take approximately 21 minutes,
while the recovered process will be waiting for process 1
in approximately 20 minutes. As for the waiting phase, as

4http://www.bsc.es/computer-sciences/performance-tools/paraver
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this scenario is configured with active waits, and the wait
duration is long enough to justify a frequency change, it is
changed to the minimum frequency. It can be observed that
the checkpoint is moving ahead before starting the waiting
phase (subsection IV-A), reducing it. Nodes 2 and 3 do not
change their frequency during the computation phase either,
but unlike node 1, it is because they will go to sleep during the
waiting phase. Therefore, it is not convenient to slow down the
computation phase. With these actions, node 1 would achieve
an energy saving of 2% in an interval of 20 minutes, node
2 a saving of 60% in an interval of 5 and a half minutes,
and node 3 a saving of 50% in a 7-minute interval. Nodes 2
and 3 achieve the highest energy savings, far from the savings
obtained by node 1. If we see the j/s, node 1 achieves a 40
j/s saving, while node 2 and 3 achieve 148 j/s saving. This
difference can be explained because nodes 2 and 3 sleep in
the waiting phase.

Scenario 2: Long re-execution time: This scenario, which
can be seen in Fig. 3, has configured the time of failure far
from the checkpoint to evaluate what happens with a long
re-execution time. In this scenario, checkpoints are moving
ahead in all three processes. The waiting phases of the three
surviving processes are very long, and the three nodes will
go to sleep at this phase. For this reason, it is not advisable
to change the frequency of the computation phase, because
this would shorten the waiting phase, and therefore savings
too. With these actions, the intervened nodes would be able
to consume 70% less energy during the intervention interval,
which is around 42 minutes. This scenario achieves better
results than the previous one due to its long waits where the
nodes go to sleep.

Scenario 3: Long re-execution time and frequency be-
haviour change: This scenario presents the same configura-
tion as the previous one, but we now assume an application
where the clock frequencies impact differently. We reflect
this by changing the dissipated power and the slowdown (see
Table III). If we decrease the dissipated power by 2W, and
increase the slowdown by one tenth, the nodes change their
frequency during the computation phase, unlike the previous
scenario. During the waiting phase, all nodes sleep. With
these actions, the intervened nodes would be able to consume
70% less energy during the intervention interval, which is
approximately 42 minutes. We can see that frequency change
in the computational phase did not impact energy savings,
which is almost the same as the savings in the previous
scenario.

Scenarios 4 and 5: Short re-execution time with and
without active waits: In these scenarios, we have a short re-
execution time, and active waiting is disabled for scenario 5.
In both scenarios, the actions selected for the computation
phase is to change the frequency, probably because the nodes
are not going to sleep, since the waits are not long enough
for it. In scenario 4 the frequency is changed to 1.2 Ghz in
node 1 and to 1.7 Ghz in nodes 2 and 3, while in scenario 5
it is changed to 2.1 GHz in the three nodes. As indicated by
the defined strategies, in scenario 4 (with active waiting), the

TABLE IV
SELECTED ACTIONS AND ENERGY SAVINGS FOR EACH NODE BY

SCENARIO

Compute phase Wait phase
N Action T (m) Action T (m) TT (m) Save (J) Save (J/s) Save (%)

Scenario 1: Short re-execution time
1 No action 18.20 1.2 GHz 1.83 20.03 4,400.00 40.00 2.23
2 No action 1.73 sleep 3.83 5.56 34,034.60 148.04 61.44
3 No action 3.23 sleep 3.83 7.06 34,034.60 148.04 48.40

Scenario 2: Long re-execution time
1 No action 10.02 sleep 32.00 42.02 294,294.60 153.29 70.64
2 No action 10.52 sleep 32.00 42.52 294,294.60 153.29 69.81
3 No action 11.02 sleep 32.00 43.02 294,294.60 153.29 69.00

Scenario 3: Long re-execution time and frequency behaviour change
1 2.1 GHz 11.02 sleep 31.20 42.02 291,346.88 115.56 70.75
2 2.1 GHz 11.57 sleep 30.95 42.52 291,448.88 114.24 69.94
3 2.1 GHz 12.12 sleep 30.90 43.02 291,550.88 112.96 69.15

Scenario 4: Short re-execution time with active waits
1 1.2 GHz 4.93 1.2 GHz 0.09 5.01 12,032.00 40.00 24.10
2 1.7 GHz 4.15 1.2 GHz 1.28 5.43 9,798.90 30.08 18.12
3 1.7 GHz 4.77 1.2 GHz 1.08 5.85 10,311.40 29.39 17.71

Scenario 5: Short re-execution time without active waits
1 2.1GHz 2.82 No action 2.20 5.01 56.32 0.33 0.17
2 2.1GHz 3.32 No action 2.11 5.43 66.32 0.33 0.18
3 2.1GHz 3.82 No action 2.03 5.85 76.32 0.33 0.18

Scenario 6: Long re-execution time without moving ahead checkpoints
1 No action 8.02 sleep 34.00 42.02 312,774.60 153.33 74.74
2 No action 8.52 sleep 34.00 42.52 312,774.60 153.33 73.86
3 No action 9.02 sleep 34.00 43.02 312,774.60 153.33 73.00

waiting phase is changed to the minimum frequency, and in
scenario 5 (with idle waiting) the waiting phase is left without
action. With these actions, scenario 4 achieves energy savings
between 17% and 24% compared to the savings of 0.17% in
scenario 5, with both intervention intervals during the same
time. This shows the impact on energy consumption of using
active waits. Even when the scenario presents short waiting
times, if the system is configured with active waiting, the use
of the strategies achieves considerable energy savings.

Scenario 6: Long re-execution time without moving ahead
checkpoints: This scenario has the same configuration as the
long re-execution scenario (scenario 2), but configured so that
there is no moving ahead of checkpoints. Let us remember
that in the reference scenario, the three processes move ahead
the checkpoint before entering the waiting phase. The actions
selected in this case are the same as those in scenario 2
(as expected) and the energy savings are slightly higher,
around 74%, compared to 70% in the reference scenario. This
difference can be explained by the aggregate consumption of
the early checkpoint.

These scenarios allowed us to observe that the strategies
can achieve significant energy savings, especially when re-
execution times are long. Additionally, we found that active
waiting presents interesting opportunities for energy savings.

V. CONCLUSIONS AND FUTURE WORK

Energy saving opportunities exists in a rollback recovery
scheme where only some processes must go back and reex-
ecute. We have proposed and analyzed different strategies to
apply to the nodes of the surviving processes and we presented
a model that allows estimating the energy savings achieved
by applying these strategies. By using a simulator we showed
the behavior of an application under different configurations
and failure times. The simulations showed the validity of the
proposed strategies to achieve significant energy savings and,
in all analyzed cases, these saving were achieved without
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Fig. 2. Scenario 1: Short re-execution time.

Fig. 3. Scenario 2: Long re-execution time.

increasing the application execution time. In an interval of
around 40 minutes it was possible to achieve energy savings
of around 70%. In this way, we showed the feasibility of
improving energy efficiency in HPC systems in the presence
of a failure.

Among the future works, we plan to continue the devel-
opment of the simulator. The main extension, which can
lead to greater energy savings, is to include the processes
that indirectly block with a failed process in the evaluation
and application of strategies. Additionally, implementing the
strategies on a real system to verify the obtained results is an
open line of investigation.
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