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1. INTRODUCTION

If a = ( a l . . , ad) and b = ( b l , . . . , b d ) belong to Rd(throughout the paper we
fix an integer d > 2 ) , let (a, b] =nfi=1 (a i ,b i] . We say that a<b when
ai < bi for all i. Let G = {(a, b] : a, b e [0, 1 ] d } , .R be the class of sets which
are finite unions of elements of G and .B be the class of Borel subsets of
[0,1 ]d.

Given A£.B, a process { W ( A } } A e A is a Brownian motion (or Wiener
process) on 0.A with parameter a if its finite dimensional laws are gaussian
with E ( W ( A ) ) = 0 and E(W(A) W(B)} = R2 |A n B| for all A , B e . A . When
a = 1 we have a standard Brownian motion.
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The partial-sum processes, indexed by sets, of a stationary nonuniform O-mixing
random field on the d-dimensional integer lattice are considered. A moment
inequality is given from which the convergence of the finite-dimensional dis-
tributions to a Brownian motion on the Borel subsets of [0, l]d is obtained.
A Uniform CLT is proved for classes of sets with a metric entropy restriction
and applied to certain Gibbs fields. This extends some results of Chen(5) for
rectangles. In this case and when the variables are bounded a simpler proof of
the uniform CLT is given.
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Following the work of Goldie and Greenwood,(10) we consider on B
the metric dL(A, B) = |A AB|, where |-| is the Lebesgue measure and we
identify the sets A1 and A2 when |A1 A A2| =0.

Let A C B be a totally bounded set. Since its closure A is compact,
the metric space C A ( A ) of continuous additive real functionsfon Awith
the norm ||f||A = sup AeA | f ( A ) | is complete and separable ( f i s additive if
f(A U B ) = f ( A ) + f ( B ) -f(A n B) whenever A, B, A n B, A u B E , A ) . The
existence of a continuous Brownian motion on A (that is a Brownian
motion with sample paths in C A ( A ) ) requires that ,A satisfies a metric
entropy condition which is stronger than totally boundedness (see
Dudley(7)). We say that ,A is totally bounded with inclusion with exponent
of metric entropy r if for all £>0 there is a finite set N ( A , E ) C A with
minimal cardinality eH(e) such that for all AeA there exists A-, A +e
N(.A, E) satisfying A~ C = A C A + , |A + - A-|<E and r is defined by

Let ( E k ) k e z d be a random field with finite means. For each neZ +

(positive integers) and k = (k1,,..., kd) E Zd such that 1<k<n (denote
x = (x,..., x)) we define the "n-cells"

and for each n e Z + and A e B let

For each n, Zn is a process with additive continuous sample paths
on B it is the partial-sum process of nth-level of ( E k ) k e z d . For the
dependence of the variables Ek we consider, as in Nahapetian(12) and
Chen,(5) the nonuniform O-mixing condition: there exists O: [0, +oo)->
[0, +00) with limt-> +00 O(t) = 0 such that for every pair A1, A2 of finite
subsets of zd

where R i , = R ( E k : k e A i } ) is the R-algebra generated by { E k : k E A i } ,
d ( A 1 , A2) = min{||k1 — k2|| :kiE Ai} and ||.|| is the euclidean norm);
without loss of generality we will assume that O is nonincreasing and
O(0) = 1. It is known that some Gibbs random fields satisfy this condition
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but not the uniform O-mixing condition, in which the factor # ( A 1 ) is absent
(see Nahapetian,(12) p. 533). Nevertheless, in Section 6 we point out that our
results continue to hold under other mixing assumptions; for example,
Theorem 3 remains valid under a nonuniform absolute regularity condition.

We obtain for stationary random fields the finite-dimensional con-
vergence of Zn on B to a Brownian motion (Theorem 1 later) under the
same moment and mixing rate assumptions as Nahapetian(12) [Thm. 1]
(which is a central limit theorem for an increasing sequence of rectangles).
This extends [Chen,(5) Thm. 2.1] to Borel sets under weaker hypotheses.

Lemma 1 presents a fourth-moment inequality which is a key compo-
nent in our work. Our technique of proof allows to use the criteria by
Goldie and Greenwood(9) and does not depend on Nahapetian.(l2)

Theorem 2 shows the convergence in distribution of Zn in CA(G) to a
continuous Brownian motion for the case of a stationary random field of
bounded variables. The proof of tightness uses Lemma 1 and the results
of Bickel and Wichura(2) for the Skorohod space, following the lines in
Deo.(6) It simplifies in this case the proof given by Chen(5) [Thm. 1.1];
also, our condition on O is weaker.

Theorem 3 is a central limit theorem in C A ( A ) , for A C B satisfying
a metric entropy restriction, and is analogous to Goldie and Greenwood,(10)

[Thm. 1.1], where the mixing is uniform. It extends Chen(5) [Thm. 1.1]
which is a CLT in CA(G), and thus (Corollary 1 later) the uniform CLT
for the Gibbs fields of the Ising model given by Chen(5) [Cor. 4.2], to sub-
stantially larger classes of sets.

2. A MOMENT INEQUALITY AND CONVERGENCES OF
FINITE DIMENSIONAL DISTRIBUTIONS

It is well known the existence of positive constant L1, L2, K1, K2 such that:

In our results we will consider (p = O or p = P1/2.

If (p: [0, + oo) -> [0, +00) is nonincreasing, it can be proved, using (2.1)
and (2.2), that:
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Lemma 1. Let (Nk)kezd be a random field with the nonuniform-O-
mixing condition with h = supt>0 t 2 d O ( t ) < +00. Suppose that there exists
C> 0 such that |Nk(w)| < C for every k and w and ENk = 0 for all k. Then,
for all finite sets M c Zd:

with KO = 4!(1 + 4 ( £ w e z d O ( | | W ) ) 2 + 6K2
19dh) where K1 is the constant in

inequality (2.1).

Proof. First, we bound the value of | E ( n i n j n k n l ) | in the different
cases in which the set T = {i, j, k,l} can be presented. We have En4 <C4

when #(T) = 1. If #(T) >2 let r = r (T) be the greatest distance between
two nonempty sets A and B such that {A, B} is a partition of T. Suppose,
for instance, that | | i— j | |=r with ieA and jeB. We claim that
A c{X: ||x-i|| <3r] and B C {X : ||x-j|| <3r}. If #(T) = 2 there is
nothing to prove. Assume #(T) = 3 and that keA and ||k —i | | >3r; then
||k-j||>r and {{k},{i, j}} would be better than {A,B}. If #(T)=4,
keA and ||k — i | | > 3 r then we take the partition {{k}, {i, j , l}} if
\\l — k| |>r or {{l,k}, {i,j}} if \l — k| |<r. Hence we have the announced
inclusions of A and B. Now we apply an inequality similar to Billingsley,(3)

[Lemma 2, p. 171] (considering the cardinality), that is:

where A i C Z d , y i e R ( { N k , k e A i } ) and | y i | < C i . If # ( T ) > 2 we have two
cases:

Finally, taking into account (with excess) the possible permutations of
i, j, k, l:
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Note that the convergence of £ O( ||v||) is a consequence of h < + oo
and (2.3). D

Remark 1. The preceding result extends [Deo,(6) Lemma 4] where
(£ k ) is stationary, the mixing is uniform and M is a rectangle in Zd.

Lemma 2. Let (£ k ) k e Z
d be a random field whose variables £k have

all the same distribution with E£k = 0, E£k < + oo and satisfying the non-
uniform-O-mixing condition with

If, for each finite set MCZd and each collection L = (L j) jEM of real
numbers such that 0<L j<1 Vj, we define TM,L = EjeMLjEj

 then the

family ( T 2
M , l / # ( M ) ) M , l is uniformly integrable.

Proof. We follow Billingsley,(3) [p. 176] where the one-dimensional
case is considered. Fix M and L Let u > 0; for each k e M define:

We have TM.L= YM, U + DM , U . Now Lemma 1 applied to (N'k,u)keM

(the condition h < + oo holds by (2.3) and (2.4)) gives for each y>0
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(we denote E y ( X ) = E ( X I { x > y } ) . By an inequality similar to Billingsley,(3)

[Lemma 1, p. 170] (note that the cardinalities have value 1 and that
O(0) = 1)

Then

where K'O depends only on O and d.
Given e>0, take u such that K'OEu2(E2)<E/2; then if y>2K'Ou4/E, we

obtain E y ( T 2
M , L / # ( M ) ) <e for any M and A. This ends the proof. D

For each neZ+ let Hn be the class of subsets of [0, 1]d which are
union of n-cells Cn,k. Observe that for each A € B , V(n,A) =
Ucn,knA=O Cn,k is the smallest element of Hn containing A.

Lemma 3. The family ( Z 2 ( A ) / | V ( n , A ) | ) A E B , n E Z +, under the same
conditions of Lemma 2, is uniformly integrable.

Proof. Take M = MA = {j: C n , j n A =O} and for each jeM let
Lj=LA,j = |AnCn , j | / |Cn , j | . Observe that Z n ( A ) = n -

d T 2
M , L , | V ( n , A ) | =

n - d # ( M ) and apply Lemma 2.

Lemma 4. Let % = {IIi = 1 ( a i , bi] e G : 3L>0 with b i-q i = L Vi}
and F={(n, A): neZ + , A e G , | A | > n ~ d } . Then, under the same condi-
tions of Lemma 2, the family ( Z 2 ( A ) / | A | ) ( n , A ) E F is uniformly integrable.

Proof. Use Lemma 3 and the fact that (n,A)€F implies | V ( n , A ) | <
3d|A|.

Lemma 5. Let (E k )kez d be a random field with all the £k equally
distributed, E£2 < + oo and satisfying the nonuniform-O-mixing condition
with S(O) < +00. Let f: R-> R be a Borel-measurable function such that
|f(x)| < |x|for all x.

By (2.6), (2.7) and the inequality T 2
M , L < 2 Y 2

M , U + 2 Y 2
M , U :
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Then, for all n e Z + and A €B:

Proof. For each k denote nk = f ( £ k ) and Uk = |A n Cn k| . Recalling
that C n - k | = n - d a n d O(0) = 1 we have

Proposition 1. Let (£ k ) k e Z
d be a strictly stationary random field with

E£0 = 0, E£2 < +00 and satisfying the nonuniform-O-mixing condition
with S(O) < + oo. Then, £kez

d £(£o£k) converges absolutely to a value
R 2 > 0 . If R2>0, the partial-sum processes {Zn(A)} AeB converge, in the
sense of finite dimensional distributions, to the Brownian motion on R
with parameter a.

Proof. The summability of £ E(£o£k) holds by the facts S(O)< +00
and |£(£0£k)| < 2O1/2( ||k||) EE2. The argument by Goldie and Greenwood,(10)

which next proves (ii), shows that the sum cannot be negative. Since R2 >0
we suppose without loss of generality that R2 = 1. By using Goldie and
Greenwood,(9) [Thm. 2.2] it suffices to show that the following conditions
are verified:

( i ) l im n - > 0 0 EZ n (C)=0. VCeG.

(ii) limn_00EZ2(C) = |C| VCeG.
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when n-> co.

(iv) V £ > 0 1 i m m - > 0 l i m s u p n - > O T E 1 < j < m p ( | Z n ( C m , j ) | > e ) = 0.

(v) (Z2(C))n e Z is uniformly integrable for each CeG.

(i) is immediate and the proof of (ii) is essentially the same as Goldie
and Greenwood,(10) [proof of Cor. 1.4]. For (iii) we prove the case k = 2
(the general case is analogous). Let r = d(C 1 , C2), An= {Zn(C1)<z1} and
Bn= {Zn(C2) < z 2 } . By the nonuniform-O-mixing condition, (2.3) and
(2.4):

Now, we prove (iv). Let e, y >0. By Lemma 4 there ex i s t speZ + such
that for all (n,A)eF

Given m >p, for all n > m and all j it is (n, Cm,j) e F. Then:

Finally, (v) is immediate by Lemma 3.
Note that in Chen,(5) [Section 2] the proof of the convergence of the

finite dimensional distributions requires E|E0|2 + d< +00 with D>0.

Theorem 1. Under the same conditions of Proposition 1 the partial-
sum processes {Zn(A}} AeB converge, in the sense of finite dimensional dis-
tributions, to the Brownian motion on B with parameter a.

(iii) If C1,...,CkeG satisfy d ( C i , C j ) > 0 for i=j and z1,,..., zke R,
then
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Proof. By Goldie and Greenwood,(9) [Thm. 3.1] it is sufficient to
prove:

(i) { Z n ( A } } A e R converges, in the sense of finite-dimensional dis-
tributions, to the Brownian motion on R with parameter a;

(i i) If A e B and (C1) is a nonincreasing sequence of sets of R such
that |n C 1 - A | = 0 then, for all c>0

Proposition 1 gives (i). Condition ( i i ) is a consequence of the
inequality

which is valid by Chebyschev inequality, the additivity of Zn and Lemma 5.

3. A UNIFORM CLT FOR RECTANGLES

Let A be a totally bounded subset of B such that there exists a
Brownian motion with paths in C A ( A ) . In order to show that (Zn) con-
verges in distribution in C A ( A ) to a Brownian motion it suffices to prove
the convergence of the finite-dimensional distributions and the following
tightness condition:

where Aa = {A —B: A, B e A : |A — B | < a } (see Goldie and Greenwood,(10)

[5.7 and (5.3.4)]).
In this section we consider G, which satisfies G = G and whose exponent

of metric entropy r = 0 guarantees the existence of a continuous Brownian
motion. In this case (3.1) is equivalent to

(note that A — B is the union of at most 2d disjoint sets of G when
A, B E G}.
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Now, given a process X (with sample paths) in C A ( G ) we define the
process X, indexed by the points of [0,1 ]d, in the Skorohod space
D [0, l ] d ) (see Bickel and Wichura,(2) [p. 1662]):

The sample paths of X are in the subspace of D[0, 1]d) whose
elements are the continuous functions vanishing in the points with at least
one null coordinate. If B = IId

i=1 (si,ti] we have

Given a random field (£ k ) k E Z
d with zero means, besides the smoothed

partial sum processes Zn we consider its non-smoothed versions

where [nt] =(nt1],..., [ntd]), which also have sample paths in
D([0, 1]d). Proposition 2 will be used for the comparison of Zn and Tn.

Proposition 2. Let (Ek)k E Z
dbe a random field with E£k = 0 for all k.

Let neZ + , A = I I d
i = 1 ( u i , v i ] e G . Then, there exist p, qeZ d with

|ui — (P i /n) | < 1/n and |Vi — (qi/n )| < 1 1/n for all i, such that B =
Yl1=i (p i / n , q i /n} satisfies | Z n ( B ) | > | Z n ( A ) | .

Proof. Take, for each i, integers ri, Si such that O < r i / n < u i <
( r i+1)/n<1 and 0 < s i / n < v i < ( s i + 1 ) / n < 1 . We claim that there exist
PdE { r d , r d + 1 } and qdE {sd,sd+ 1} with pd<qd, such that if we take
5i=(I I d - 1 (u i ,v i ] )x(p d , /n ,q d /n] then |zn(B1)|> Z n(A) | . To prove this
fact define f: [rd/n, (sd+ 1)/n] -> R as f(L) = Z n ( ( I I d - 1 (u i , v i ] ) x
(rd/n, L]) when l>rd/n and f ( r d / n ) =0. We will prove first that / is a
polygonal function whose vertices are (m/n, f ( m / n ) ) with meZ and rd<
m < sd + 1. It is sufficient to see that for all m there exists cm such that for
every L e (m/n, (m + 1)/n],f(L) — f(m/n) = cm(L - m/n). By the additivity of
Z n , f ( L ) - f ( m / n ) = Z n (E L , M ) where £L,m = (IId-1 (ui,vi) x (m/n, L].

For the following calculations we observe that L m = { k : C n , k n
EL,m=O} does not depend on L We have Vk = (k1,..., kd)eLm
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Then

We obtain cm = nd/2 £keLm wk. Now by a simple property of the
polygonal functions, there exist pde {rd, rd+ 1}, qde (sd, xd+ 1} with
Pd <qd such that

This proves the existence of B1. Apply now the same argument suc-
cessively for k = 2,..., d— 1, obtaining sets Bk and integers p d - K + 1 , q d - k + 1

such that:

Lemma 6. Let (Ek)kEZ
d a random field with £<Jk =0 for all k. Then,

the following facts are equivalent:

(a) (ZJ satisfies (3.2).

(b) (Zn) satisfies (3.4).

(c) ( T n ) satisfies (3.4).

Proof. ( a ) = > ( b ) . If a>0 and ||s —1|| <a, by a property similar to
the mentioned after ( 3 .1 ) and the additivity of Zn, we have
|ZJt)-ZB(s)KSf=I \Z a (A i ) \ , where p < 2 d and A,e<S, |Ai| <a for all i .

Finally, B = B d = P i = 1 ( P i / n , q i / n ] satisfies \Zn(B)\ > \ Z n ( B d - 1 ) \ >
\ Z n ( A ) \ . D

Now consider the following tightness condition for a given sequence of
processes ( Yn) in D([0, 1]d):
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Then sup^^ jZn(t) -Zn(s)| <2dsupAeG,|A|<a|A|<a|\Zn(A}\.

(b )=>(c) . Given a>0 take n>2d1 / 2 /a. . Then, for every s, t with
||t —s| |<a , taking t n =[nt ] /n and sn = [ns]/n, we have Tn(t) = Zn(tn),
Tn(s) = Zn(sn) and ||tn-sn|| <2a. This shows that sup | | t_s | l<a \Tn(t)-
rn(s)|<sup1 | t_ s | l<2a |Zn(t)-Zn(s)| .

(c) => (a). Assume a > 0 and n ^ 2/a1/d If A = IIi= 1 (ui,vi] e G with
|A| < a, Proposition 2 gives p, qeZ d such that, defining s, = pi,/n, ti= qi/n
for all i and B = Hi=1 (s i,t i]. we have |si-ui|< 1/n |ti — vi| < 1/n for all
i and |Zn(B)| > \Zn(A)\. Since |A| <a and n >2/a1/d, there exists; satisfying
|tj — sj| <2a1/d; suppose without loss of generality that j=1. For each
m = (m2,..., m d )E {0, 1}d-1 we consider

and

Theorem 2. Let (£ k ) k e Z
d be a strictly stationary field of bounded

random variables with E£,0 = 0 and satisfying the nonuniform-O-mixing
condition with S(O)<+co. Suppose that £k ezd-£(fo£k) = R 2>0. Then
the sequence (Zn) of partial-sum processes converges in distribution in
CA(G) to the continuous Brownian motion with parameter a.

Sketch of proof. By Proposition 1 we have the convergence of the
finite-dimensional distributions. Apply now Lemma 1 when M is a product
of finite integer intervals. As in Deo(6) [Lemma 5], the inequality (2.5) and
the results of Bickel and Wichura(<2) imply (3.4) for Tn. Conclude applying
Lemma 6.

Remark 2. It is easy to prove, under the conditions of Theorem 2,
the convergence of the finite dimensional laws of (Zn) and (Tn) thus
obtaining their convergence in distribution in D([0, 1]d). This last case
gives a version of Deo(<6) [Thm. 1] for nonuniform-O-mixing when the
variables are bounded.
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4. A UNIFORM CLT THEOREM FOR MORE GENERAL
CLASSES OF SETS

The conditions imposed on the class A in the following result, guaran-
tee the existence of a continuous Brownian motion on A(see Dudley(7)).

Theorem 3. Let (Ek)kEZ
d be a strictly stationary random field with

E£,o = 0 and A c B a class of sets which is totally bounded with inclusion
with exponent of metric entropy r. Suppose that there exists a real number
S>0 satisfying £ |£0 |2+S< +00, r<1/1+d and that (£k) is nonuniform-
O-mixing with limt-> +00 t2d(1 +r-1)O(t) = 0. Then, if ZkEzd£(£o£k) = R2 >0,
the sequence (ZJ of partial-sum processes converges in distribution in
C A ( A ) to the continuous Brownian motion with parameter a.

Proof. We use the criterion mentioned at the beginning of Section 3.
Since (2.3) and lim t ->+00 t2d(1 + ( d ) l O ( t ) =0 imply S(O)< +00, the conver-
gence of the finite-dimensional distribution follows from Theorem 1. For
tightness it is sufficient to prove (3.1). We follow Goldie and Greenwood(10)

(where an uniform mixing is considered) and Chen's(5) ideas for nonuniform-
O-mixing. The method is an adaptation of a technique due to Bass.(1) Denote,
as in Goldie and Greenwood,(10) s' = 2 + S and £„_ j = n~~d/2£j.

Step 1: Truncation. Let, for x > 0, h(x) = Ex |£0 |
s. If 0 < u < v < oo,

n e Z + and 1 < j < n we define

Using the same argument by Goldie and Greenwood,(10) we arrive to
[Ref. 10, (5.4.1)]: it suffices to prove

Step 2: Blocking. Define pn = [ns'/(2(s'~1))] and mn = n/(2pn). Divide
each cell C p n _ k (k<pn) in 2d sub-cells of the form C2pn,j. Denote these by
In, k,i,i= 1, . , 2d, indexed the same way in each Cpn k (see [Ref. 10, 5.5]).
Let, for each i,
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For all A we have

Then it is sufficient to prove, in place of (4.1), that for each /

where

We take now a fixed value of i. By the additivity of Zn we have for
each A

with T(n, k , i ) = { j < n : C n / M i k ) / ^ 0 } . Observe that j1 e T(n, k 1 , i ) ,
j2e T(n, k2, i) and k 1 = k 2 imply ||j2 — j1, || >mn — 2 (recall that we use the
euclidean norm). For neZ + , j E U r < k < p T ( n , K , i ) , we consider random
variables En,j such that for each k the processes (En , j}jeT(n, k, i),
{En , j}jeT(n,k, i) have the same distribution and (En , j ) jeT(n ,k , ) , 1 < k < p n ,
are independent. Define now
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We prove that for each a (L(X) denotes the law of the r.v. X; ||-||Var

is the total variation norm)

As in [Chen,(5) Prop. 3.3] we deduce that # ( T ( n , k , i ) ) <
C'nd ( s ' -2 ) l ( 2 ( s ' - 1 } \ where C depends only on d. Denote, for each k < Pn,

Ln k the law of V n , k ( , u, v) (u and v are fixed), Lj the joint law of all the
Kn,j( •, u, u) with j =k and let Ln be the joint law of all the V n , k ( , u, v). If
for each k, Ak = R ( V n , k ( - , u, v)) and A(k) = a({ V n , j ( - , u, v), j = k } ) , we use
[Eberlein,(8) Lemma 3.5] and the nonuniform-O-mixing condition to
obtain

Applying a result similar to Goldie and Greenwood,(10) [Lemma 5.0]:

where K->0 when n->cc. Since lim,t-> +cc t2d(1+d-1)O(t) = 0 we deduce
(4.3).

Now the following implies (4.2):

For its proof we must verify some a.s. bounds which are required in
the last step for the application of the Bernstein inequality to sums of inde-
pendent variables:

and
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hold with the same proof as Goldie and Green wood.(10) We obtain also
Var Zn(A, u , v ) < C \ A \ and Var Un(A, u,v)^C\A\ by using our Lemma 5
to prove condition (B) of [Ref. 10, Lemma 5.1] with C = 2S(O) E£2.

Step 3: Nesting. Follow the argument in [Ref. 10, 5.6], taking r'
such that r < r' < 1/(s' — 1) and observing that we have the entropy bound
given in [Ref. 10, (5.3.5)].

5. AN APPLICATION

We refer to [Chen,(5) Section 4] for the definition and properties of
the Gibbs fields of the Ising model which are needed for the following state-
ment and its derivation from Theorem 3 (we only note that in this example
the £k's are bounded, centered and that 8 can be taken arbitrarily small
because O decreases exponentially to zero).

Corollary 1. Suppose the distribution of the random field (£k)k e z
d is

the Gibbs field of the potential {(fJ$)A; A Zd, #(A) < 00} where
0 < B < /?cr and let s4<= $ be totally bounded with inclusion with exponent
of metric entropy r<1. Then the sequence of partial-sum processes (Zn)
converges in distribution in C A ( A ) to the continuous Brownian motion
with parameter a, where 0<R2 :=£keZ

d<,E(£0£k) < co.

We remark that since in the example the random variables are bounded,
the case A = G, that is [Chen,(5) Corol. 4.2], can be obtained from our
Theorem 2.

6. ABOUT THE MIXING ASSUMPTION

In order to preserve the unity of our work, we assumed throughout
this paper the usual O-mixing condition (1.2) for Gibbs fields [see
Kunsch,(11) Nahapetian,(12) and Chen(5)]. Taken into account well known
relations between mixing coefficients, we give now some alternatives to
weaken the mixing assumptions in the preceding results.

Lemma 1 remains valid with an a-mixing condition as in
Bolthausen:(4)

where a.4(t) is the supremum of all the quantities | P ( E n F ) — P(E) P ( F ) |
for E e f f 1 , Fea2, d ( A 1 , A 2 ) > t and # ( A 1 ) + # ( A 2 ) < 4 (the notations are
the same than in (1.2)).
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Lemmas 2 to 5 hold under (6.1) and the p-mixing condition (see also
Bolthausen(4))

where p2(t) is the supremum of \Corr(X, Y))\ for X e L 2 ( a ( ^ E i ) ) ,
YeL2(a(£ i)) , with i, je Zd and ||i-j||>t.

Proposition 1 and, consequently, Theorems 1 and 2 are valid under
(6.2) and the nonuniform a-mixing condition:

where a.(t) is the supremum of all the quantities ( # ( A 1 ) ) - 1 | P ( E n F ) -
P ( E ) P ( F ) | for finite sets A1 and A2, with d ( A 1 , A 2 ) > t , EeR1 and FeR 2 .
See (iii) in the proof of Proposition 1. Another possibility is to assume the
non uniform P-mixing condition sup { t 2 d p ( t ) : t > 0 } < +00, where p(t) is
the supremum of ( # ( A 1 ) ) - 1 |Corr(X, Y ) ) | for all finite sets A1 and A2 with
d ( A 1 , A2) > t, X e L 2 ( R 1 ) and Y e L 2 ( R 2 ) . This condition implies (6.2) and
(6.3).

Theorem 3 can be proved assuming only the non uniform B(-mixing
condition

with

where the supremum is taken over all pair of finite sets A1, A2 such that
d ( A 1 , A 2 ) > t and all the partitions ( U i ) , (Vj) of the whole space Q such
that, for all i and j, U ieo 1 , Vjea2-

We give a justification of this assertion: (6.4) allows to prove the
key point (4.3). Then, it remains to show that we have enough mixing
assumptions for Theorem 1. Since 2 o L ( t ) < B ( t ) , condition (6.3) holds. By
(2.3), (6.3), and (6.4) we have Zkez"ot.6/2 + s(||k||) < +00. This fact and
Davydov's inequality (see [Bolthausen,(4) Lemma 1 ]), using that E |E0|2+s

< +00, replace the use of condition (6.2) in the arguments leading to
Theorem 1.
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