
A Logic for Real–Time Systems Specification, Its

Algebraic Semantics, and Equational Calculus

Gabriel A. Baum1, Marcelo F. Frias2, and Thomas S.E. Maibaum?3

1 Universidad Nacional de La Plata, LIFIA, Departamento de Informática.
gbaum@sol.info.unlp.edu.ar

2 Universidad de Buenos Aires, Departamento de Computación, and
Universidad Nacional de La Plata, LIFIA, Departamento de Informática.

mfrias@sol.info.unlp.edu.ar
3 Imperial College, 180 Queen’s Gate, London SW7 2BZ, U.K.

tsem@doc.ic.ac.uk

Abstract. We present a logic for real time systems specification which
is an extension of first order dynamic logic by adding (a) arbitrary atomic
actions rather than only assignments, (b) variables over actions which
allow to specify systems partially, and (c) explicit time. The logic is
algebraized using closure fork algebras and a representation theorem for
this class is presented. This allows to define an equational (but infinitary)
proof system for the algebraization.

1 Introduction

The motivation for this work is the need to describe industrial processes as
part of a project for a Brazilian telecommunications company. We want to be
able to give formal descriptions of such processes so as to be able to analyze such
descriptions. For example, we want to be able to calculate critical paths for tasks
in processes, throughput times of processes, etc. We also want to demonstrate
correctness of process descriptions in relation to their specifications (where this
is appropriate), derive implementations of process specifications in terms of the
available concrete apparatus in the factory, validate (using formal techniques) an
implementation against its abstract description, and so on. Available languages
for describing processes are unsuitable for various reasons, most having to do
with the nature of the formalization of such processes being used in the project.

The method used in the project for describing processes (the method) is based
on the ideas presented in [11]. This method sees the world as being modeled in
terms of two (and only two) kinds of entities: products and processes. A product
is a description of an entity in the real world (a referent) in terms of measurable
attributes. (Here, we use measure and measurable in the traditional sense of sci-
ence and engineering. See [2][11][14].) A product instance is characterized by the

? The third author would like to thank the EPSRC(UK), CNPq(Brasil), Imperial
College, LMF-DI/PUC-RJ and The Royal Academy of Engineering for their financial
support during the conduct of this research.

A.M. Haeberer (Ed.): AMAST’98, LNCS 1548, pp. 91–105, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

92 Gabriel A. Baum, Marcelo F. Frias, and Thomas S.E. Maibaum

values (measures) associated with its attributes (and, implicitly, by the theory
of the product, i.e., the defined relationships between the potential measured
values of its attributes). Hence, such a product instance may be seen as a model,
in the sense of logic, of the product. We may see products as being characterized
by data types in first order logic, for example.

The distinguishing characteristic of products is that they exist ‘indepen-
dently’ at an instant in time, where time is used here in its normal scientific
sense. (Independence here means that a product is defined without recourse
to any other referent or only in terms of other (sub)products. Products of the
former kind are called atomic products.) In fact, all products have a time at-
tribute whose value in a product instance indicates the time instant at which the
values of the attributes were (co)determined, presumably by some appropriate
measurement procedures. On the other hand, processes are distinguished enti-
ties which do not exist at a time instant, but which have time duration. Further,
processes are not independently definable, but are defined in terms of their input
and output products.

Processes also model entities of the real world and again are defined in terms
of attributes. The method imposes a very restrictive notion of process, namely
one in which all processes have a single input and a single output. (The rea-
sons for this restriction need not detain us here, except to say that they are
methodologically very well motivated. The restriction clearly will have a pro-
found influence on the nature of the language we define below.) Distinguished
attributes of a process include the transfer function(s) ‘computed’ by the pro-
cess (i.e., how the input product is transformed into the output product), upper
and lower bounds on the time taken for the process to execute, a flag indicat-
ing whether the process is ‘enabled’, and so on. The transfer function may be
described in terms of an underlying state machine used to organize phases of
the process being defined and to ‘sense’ important external state information re-
quired to control the execution of the process. Like products, processes may be
defined in terms of ‘sub-processes’ and we now turn to this language of processes,
as its formalization is the subject matter of the paper.

We will use an analogy with conventional sequential programming languages
to motivate the nature of the formalization. Consider such a programming lan-
guage. The programs in the language are constructed from basic commands
(usually just assignment) and various control structures. The programming lan-
guage data types are used to model the inputs and outputs of programs. Let us
focus on a program that exhibits simple input/output behavior. We realize this
behavior by executing the program on some machine (a real machine for a low
level language and an ‘abstract’ machine for a high level language). Hence, we can
see an analogy between inputs/outputs and products and between programs and
processes. Both programs and processes are intended to model entities that de-
fine families of executions on the machine used to execute the program/process.
This is exactly how we want to understand processes, i.e., as defining a class of
potential executions over some (abstract) machine.

A Logic for Real–Time 93

The following questions must be answered, amongst others, in order to make
the analogy more exact: What is the nature of the abstract machine over which
processes are defined? What ‘data types’ are allowed as inputs and outputs
of processes? What ‘control structures’ may be used? What do we mean by
‘execution’ of a process? (Obvious further questions include: How do we specify
required processes? What do we mean by ‘refinement’ and how do we derive
refinements or prove their correctness?)

As to the first of these questions, we do not envisage a single abstract machine
which will underpin all potential processes. Rather, we assume that our abstract
machine is provided by an object, in the sense of object oriented programming.
Such an object has

– a set of internal states;
– a set of methods, with appropriate input and output parameters, that it can

execute and which change the internal state;
– a set of potential behaviors that it can exhibit, with the behavior being

exhibited ‘chosen’ by the program being executed.

So, the purpose of a process, like a program, is to ‘choose’ a particular behav-
ior allowed by the object (our abstract machine). Of course, the object itself is
used, in our case, to model the basic capabilities of the organization whose indus-
trial processes are being modeled or prescribed. These basic capabilities may be
those of machines (computers, presses, conveyor belts, etc.), or people (program-
mers, hardware engineers, salesmen, managers, etc.), or even (sub)organizations.
The aim of the exercise is to choose from all the potential behaviors (jointly)
exhibitable by this abstract machine those which have the appropriate char-
acteristics (i.e., manufacturing a product with appropriate quality and other
characteristics and in a dependable manner).

We should add here two important comments about our underlying ‘object’.
Firstly, such a complex underlying object may itself be built in a structured
manner from sub-objects by using standard object oriented structuring meth-
ods. See [3][4] for a formal account of this. Secondly, there are lacuna in object
oriented programming methods to do with exactly what we are attempting here,
i.e., defining a particular subclass of behaviors from those potentially exhibitable
by the object. In object oriented programming, this problem of defining threads
of computation over objects is usually overcome by defining a ‘system object’
that drives the choice of desirable behaviors. Different applications over the same
object base then require different ‘system objects’ to choose the different behav-
iors.

The methods of this abstract machine represent the atomic ‘machine ex-
ecutable’ processes from which our industrial processes will have to be built.
Consider the example below, presented using the diagrammatic notation of the
method.

The two entities we have discussed, products and processes, are denoted,
respectively, by arrows and boxes. (We use lower case letters for process names
and upper case letters for products.) Each product is represented in terms of its
attributes and each execution of the process will assign to each of these attributes

94 Gabriel A. Baum, Marcelo F. Frias, and Thomas S.E. Maibaum

PI- p1
P1- d

g1

�
��P1

@
@RP1

p2

p3

P2 -

-
P3 P3

d
g2

-

p4

p5

@
@R

�
��

P4

P5

d
g3

-P6 = 〈P4, P5〉
p6 -PO

Fig. 1. A complex process example.

specific values from the appropriate domains. Each process is an atomic method
from the underlying object. There is a third kind of entity in the diagram that
we have not yet discussed. This is the gate, which is an artifact of the method
used basically for two purposes: i) helping to enforce the single input, single
output regime of processes, and ii) acting as guards on processes so as to control
the computation. For example, g1 copies the output product P1 to create single
inputs for each of p2 and p3. The gate g2, on the other hand, is a guard which
is intended to stop progress of P3 until, for example, p2 has terminated (or even
forcing p5 to wait for an external event, like turning on the machine). Gate g3

is used to create the single input to process p6 from the outputs P4 and P5 of
processes p4 and p5, respectively. P6 is simply a tuple of products synchronized
in time. (The single input mechanism here is used to enforce a unique time
for the process to be initiated with the required input. The method uses the
unique initiation and termination times of processes to attain a specific notion
of well definedness and the single input and single output regime is an aid to
accomplishing this.) As we see, we need the following constructs in our language:

– sequential composition of processes;
– parallel composition of processes (with parallelism being interpreted as ‘don’t

care’ parallelism, in the sense that it is potential parallelism of which an
implementer may take advantage);

– nondeterministic choice among processes;
– guards for processes (which may be combined with copying and ‘restructur-

ing’ of products);
– a loop construct to allow us to define iterative processes with a guard to

control the number of iterations.

The language is formalized by extending first order dynamic logic with a
parallel combinator and the ability to express real time constraints. (The only
construct above not used in dynamic logic is the parallel combinator.) The se-
mantics of dynamic logic uses a notion of transition system that is used to
represent the underlying abstract machine capable of executing the atomic pro-
cesses. The logic is extended with variables over processes so that we can specify
abstractly the processes we are interested in building. There is a notion of re-
finement associated with such specifications, allowing us to demonstrate that
a process satisfies its specification. Finally, we demonstrate, using techniques

A Logic for Real–Time 95

developed in [7][8], how to algebraize this logic and thus obtain an equational
proof system for our process formalism. In order to algebraize the logic we will
use omega closure fork algebras (ω-CFA). These algebras are extensions of rela-
tion algebras [13] with three new operators, a pairing operator called fork [6][5],
a choice operator [12] and the Kleene star. A consequence preserving function
mapping formulas of the logic to equations in the language of ω-CFA will be
defined. We will also present a representation theorem which, together with the
mapping, will allow to reason equationally about properties of the logic.

The paper is organized as follows: in Section 2 we will present a first order
formalization of objects. In Section 3 will be presented the logic we propose
for specifying and reasoning about the properties of processes. In Section 4 we
introduce the class of omega closure fork algebras. In Section 5 we present the
algebraization. Finally, in Section 6 we present our conclusions about this work.

2 Objects

The first problem we confront when trying to formalize these concepts is that of
characterizing the ‘abstract machine’ over which our processes will be defined.
These processes are meant to use the underlying capabilities of the organization,
as represented by the behaviors displayed by individual components within the
organization. (Such individual components may be people, groups, manufactur-
ing machines, etc.) These behaviors are organized (at least in some abstract
sense) into a joint behavior which IS our ‘abstract machine’. In the last decade,
we have learned to organize such behaviors in terms of concepts used in object
oriented programming. Objects are characterized by the data structures that are
maintained by the object (seen in terms of the different states of the object) and
the methods (which we call actions below) that may be executed by the object
and which may change its state.

Hence, we will assume as given some object (which may be very complex
and built as a system from less complex components [3]), which represents the
potential behaviors of the organization as an abstract machine. This object will
represent the actions/methods, state variables, external events/actions and some
prescription of allowed behaviors from which individual processes must be built.
(We note again the analogy between computers and programs, on the one hand,
and the object/abstract machine and processes, on the other. Our processes
will be used to define specific classes of behaviors in which we are interested,
our required processes, from the very large class allowed by the object.) The
definitions below give a somewhat non standard account of objects in terms of the
underlying transition system defining the object’s allowed behaviors. However,
the standard parts of such descriptions (i.e., methods, state variables, etc) are
easily distinguishable.

Definition 1. An object signature is a pair 〈A, Σ 〉 in which Σ = 〈S, F, P 〉 is
a many-sorted first-order signature with set of sorts S, set of function symbols
F and set of predicate symbols P . Among the sorts, we will single out one sort

96 Gabriel A. Baum, Marcelo F. Frias, and Thomas S.E. Maibaum

called the time sort, denoted by T . A is a set of action symbols. To each a ∈ A is
associated a pair 〈s1, s2〉 ∈ (S∗)2 called its arity. We will denote the input arity
of a by ia(a) and the output arity of a by oa(a).

Definition 2. Given an object signature S = 〈A, 〈S, F, P 〉 〉, an object struc-
ture for S is a structure A = 〈S,A,F,P 〉 in which S is an S-indexed family
of nonempty sets, where the set T is the T -th element in S. In general, the
set corresponding to sort s will be denoted by s. A is an A-indexed family
of binary relations satisfying the typing constraints of symbols from A, i.e., if
ia(a) = s1 . . . sm ∈ S∗ and oa(a) = s′1 . . . s′n ∈ S∗, then aA (as we will denote
the a-th element from A) is contained in (s1 × · · · × sm) × (s′1 × · · · × s′n). To
each f : s1 . . . sk → s in F is associated a function fA : s1 × · · · × sk → s ∈ F.
To each p of arity s1 . . . sk in P is associated a relation pA ⊆ s1 × · · · × sk ∈ P.

Regarding the domain T associated to the time sort T , we will not deepen on
the different possibilities for modeling time, but will rather choose some adequate
(with respect to the application we have in mind) representation, as for instance
the fields of rational or real numbers, extended with a maximum element ∞. We
will distinguish some constants, as 0, ε, etc.

3 The Logic, the Relational Variables, and the Time

We will extend a standard notation for specifying and reasoning about programs,
namely dynamic logic. What we want to do is define processes/programs over
our objects which reflect the intuitive model outlined in the introduction. Dy-
namic logic starts with basic actions and constructs programs by using certain
combinators. The usual basic action is assignment, but we will replace this with
the actions of the underlying object. The basic actions will be represented by
binary relations. The input and output domains of such relations will be tuples
of state variables or a choice of a set of state variables, thus reflecting the single
input, single output idea of processes. The combinators are also extended with
one to allow us to express (potential) parallelism of processes (defined via the
intersection operator for binary relations).

Another important aspect of processes, as we wish to define them, is the
real–time aspect. In defining processes, we often want to reason about time:
throughput time, critical paths, optimization of processes. This requires that we
are able to deal with reasoning about time within the formalism. We adapt a
real–time logic developed in [1] which presents an extension of the logic pre-
sented in [3]. Each basic action is supplemented with a specification of lower
and upper time bounds for occurrences of that action. These bounds may have
various interpretations, amongst which we have the following: the lower bound is
interpreted as the minimum time that must pass before which the action’s effects
are committed to happen and the upper bound gives a maximum time by which
the action’s effects are committed to happen. Specifications of processes will also
have associated lower and upper bounds, and refinements will be expected to
provably meet these bounds.

A Logic for Real–Time 97

In this section we will present the Product/Process Modeling Logic (P/PML).
Consider the formula ϕ(x) := [xAx]β(x) where A is an action term (a binary
or n-ary relation) and the notation [xAx]β means that “all executions of ac-
tion A establish the property β”. According to our previous discussion about
processes and products, we read ϕ as stating that β is a truth of the system
A, then proving the truth of ϕ can be seen as the verification of the property
β in the system described by A. Opposed to the previous view, is the notion
of an implicit specification of a system, in which A is not a ground term, but
rather may contain some relational variables that represent subsystems not yet
fully determined. In what follows we will denote by RelVar the set of relational
variables {R, S, T, . . .}.

Definition 3. Given an object signature S = 〈A, 〈S, F, P 〉 〉, the sets of rela-
tional terms and formulas on S are the smallest sets RT (S) and For(S) such
that

1. a ∈ RT (S) for all a ∈ A ∪ RelVar ∪ { 1,t : t ∈ S∗ }.
2. If r ∈ RT (S) and ia(r) = oa(r), then r∗ ∈ RT (S). We define ia(r∗) =

oa(r∗) = ia(r).
3. If r, s ∈ RT (S), ia(r) = ia(s) and oa(r) = oa(s), then r+s ∈ RT (S)

and r ·s ∈ RT (S). We define ia(r+s) = ia(r ·s) = ia(r) and oa(r+s) =
oa(r ·s) = oa(r).

4. If r, s ∈ RT (S) and oa(r) = ia(s), then r ;s ∈ RT (S). We define ia(r ;s) =
ia(r) and oa(r ;s) = oa(s).

5. If α ∈ For(S) is quantifier free and has free variables x1, . . . , xn with xi of
sort si, then α? ∈ RT (S) and ia(α?) = oa(α?) = s1 . . . sn.

6. The set of first-order atomic formulas on the signature Σ is contained in
For(S).

7. If α, β ∈ For(S), then ¬α ∈ For(S) and α ∨ β ∈ For(S)..
8. If α ∈ For(S) and x is an individual variable of sort s, then (∃x : s)α ∈

For(S).
9. If α ∈ For(S), t ∈ RT (S) with ia(t) = s1 . . . sm and oa(t) = s′1 . . . s′n,

→
x= x1, . . . , xm with xi of sort si,

→
y = y1, . . . , yn with yi of sort s′i and l, u

are variables of sort T , then
〈→

x l t
u
→
y
〉

α ∈ For(S).

Definition 4. Let R ∈ RT (S) with ia(R) = s1 . . . sm and oa(R) = s′1 . . . s′n,
→
x= x1, . . . , xm with xi of sort si,

→
y = y1, . . . , yn with yi of sort s′i, and l, u

variables of sort T . An expression of the form
→
x lR

u →
y is called a timed action

term.

We will assume that a lower and an upper bound are assigned to atomic
actions, namely la ∈ T and ua ∈ T for each action a ∈ A. From the bounds of
the atomic actions it is possible to define bounds for complex actions in a quite
natural way.

98 Gabriel A. Baum, Marcelo F. Frias, and Thomas S.E. Maibaum

Definition 5. Let S be an object signature. The functions l and u from RT (S)∪
For(S) to T are defined as follows1:

1. If a ∈ A, then l(a) = la and u(a) = ua.
2. If R = X ∈ RelVar , then l(X) = 0 and u(X) = ∞.
3. If R = 1,t, with t ∈ S∗, then l(R) = 0 and u(R) = ε (ε being a constant of

sort T).
4. If R = S∗, then l(R) = 0 and u(R) = ∞.
5. If R = S+T , then l(R) = min { l(S), l(T) } and u(R) = max { u(S), u(T) }.
6. If R = S ·T , then l(R) = max { l(S), l(T) } and u(R) = max { u(S), u(T) }.
7. If R = S ;T , then l(R) = l(S) and u(R) = u(S) + u(T).
8. If R = α? with α ∈ For(S) quantifier free and with free variables

→
x , l(R) =

l(α) and u(R) = u(α).
9. If α = p(t1, . . . , tk), then l(α) = lp ∈ T and u(α) = up ∈ T, with lp ≤ up.

10. If α = ¬β, then l(α) = l(β) and u(α) = u(β).
11. If α = βopγ with op ∈ {∨,∧,→}, then l(α) = min { l(β), l(γ) } and u(α) =

max { u(β), u(γ) }.
12. If α =

〈→
x l R

u →
y
〉

β, then l(α) = l(R) and u(α) = u(R) + u(β).

Given a set of sorts S = { s1, . . . , sk } and domains S = { s1, . . . , sk } for
these sorts, by a valuation of the individual variables of sort si we refer to a
function ν : IndVarsi → si. A valuation of the relational variables is a function
µ : RelVar → P (S∗ × S∗).

Definition 6. Given a valuation of the individual variables ν and an array of
variables

→
x= x1, . . . , xn, by ν(

→
x) we denote the tuple 〈ν(x1), . . . , ν(xn)〉.

Let A be an object structure and µ a valuation of the relational variables.
Given valuations of the individual variables ν and ν′ and a timed action term→
x l R

u →
y , by ν

(→
x l R

u →
y
)

ν′ we denote the fact that:
〈
ν(
→
x), ν′(

→
y)

〉
∈ RA

µ

(the denotation of the relational term R, formally defined in Def. 7), for every
variable z not occurring in

→
y , ν′(z) = ν(z), and, ν(l) ≤ l(R) and ν(u) ≥ u(R).

The semantics of formulas is now defined relative to valuations of individ-
ual variables and relational variables. In the following definition, the notation
A |=P/PML α[ν][µ], is to be read “The formula α is satisfied in the object struc-
ture A by the valuations ν and µ”.

Definition 7. Let us have an object signature S = 〈A, 〈S, F, P 〉 〉 and an object
structure A = 〈S,A,F,P 〉. Let ν be a valuation of individual variables and µ
a valuation of relational variables. Then:

1. If a ∈ A then aAµ is the element with index a in A.
2. If R ∈ RelVar , then RA

µ = µ(R).
3. If R = 1,t with t = s1 . . . sk, RA

µ = { 〈〈a1, . . . , ak〉 , 〈a1, . . . , ak〉〉 : ai ∈ si }.
1 We will only consider quantifier-free formulas, since these are the ones used for

building actions of the form α?.

A Logic for Real–Time 99

4. If R = S∗, with S ∈ RT (S), then RA
µ is the reflexive-transitive closure of

the binary relation SAµ .
5. If R = S+T , with S, T ∈ RT (S), then RA

µ = SAµ ∪ TA
µ .

6. If R = S ·T , with S, T ∈ RT (S), then RA
µ = SAµ ∩ TA

µ .
7. If R = S ;T , with S, T ∈ RT (S), then RA

µ is the composition of the binary
relations SAµ and TA

µ .
8. If R = α? with α ∈ For(S) quantifier free and with free variables

→
x=

x1, . . . , xn, then RA
µ =

{〈
ν(
→
x), ν(

→
x)

〉
: A |=P/PML α[ν][µ]

}
.

9. If ϕ = p(t1, . . . , tn) with p ∈ P , A |=P/PML ϕ[ν][µ] if
〈
t1
A
ν , . . . , tn

A
ν

〉 ∈ pA.
10. If ϕ = ¬α, then A |=P/PML ϕ[ν][µ] if A 6|=P/PML α[ν][µ].
11. If ϕ = α∨ β, A |=P/PML ϕ[ν][µ] if A |=P/PML α[ν][µ] or A |=P/PML β[ν][µ].
12. If ϕ = (∃x : s)α, then A |=P/PML ϕ[ν][µ] if there exists a ∈ s such that

A |=P/PML α[νa
x][µ] (νa

x , as usual, denotes the valuation that agrees with ν
in all variables but x, and satisfies νa

x(x) = a).
13. If ϕ =

〈→
x lR

u →
y
〉

α, then A |=P/PML ϕ[ν][µ] if there exists a valuation ν′

such that ν
(→

x l R
u →

y
)

ν′ and A |=P/PML α[ν′][µ].

Example 1. The example shows how the real-time features of the specification
language (P/PML) play a decisive role in the election of the implementations
of processes. A manufacturer of candy vending machines wants to manufacture
machines with the following characteristics. If the machine has candy, then, after
money has been deposited, at most a time K1 passes before candy is delivered.
If the machine is empty, then at most a time K2 can pass before the transaction
is finished. If the machine can be fully replenished in time to meet the K2 upper
bound, then it should be replenished, otherwise, the money should be given back.

Let us model the part of the behavior of the machine after money has been
introduced and until candy has been delivered or the money was given back2.

∀m, l, u, x ($ in?(m) = t ∧ x = #candy(m) > 0 ∧ u ≥ K1 ∧ l = 0

⇒ [mlVM um] (#candy(m) = x− 1 ∧ delivered?(m) = t))

∀m, l, u ($ in?(m) = t ∧#candy(m) = 0 ∧ u ≥ K2 ∧ l = 0

⇒ [mlVM um] (#candy(m) = max candy − 1 ∧ delivered?(m) = t))

∀m, l, u ($ in?(m) = t ∧#candy(m) = 0 ∧ u < K2 ∧ l = 0

⇒ [mlVM um] (delivered?(m) = f ∧money back?(m) = t))

If the manufacturer believes that a consumer can wait for candy 3 minutes
without loosing his patience, then K2 can be set to 3 minutes in the specification.
2 Given an object m of the class “vending machine”, the method $ in? tests if money

has been deposited. Method #candy retrieves the amount of candy left in the ma-
chine. The method delivered? tests if candy has been delivered, and money back?
tests if the money has been returned to the customer. The constant max candy
stands for the maximum amount of candy the machine can contain. A formal speci-
fication of the class is not given by lack of space.

100 Gabriel A. Baum, Marcelo F. Frias, and Thomas S.E. Maibaum

Let us assume that as a constraint, this part of the machine must be built
using some of the following processes:

– RETURN PRODUCT (that returns candy provided the machine is not
empty. Its lower time bound is 0 and the upper time bound is 3 seconds).

– REPLENISH (that fully replenishes the machine. Its lower time bound is 0
and the upper time bound will be discussed later).

– RETURN MONEY (that gives the customer its money back. Its lower time
bound is 0 and the upper time bound is 3 seconds)

If the machine is to be placed inside a convenience store, then as soon as the
machine is emptied a clerk will replenish it, and therefore, a reasonable upper
time bound for the replenishing action might be 2 minutes. Then, the following
action shows a feasible implementation:

(#candy(m) > 0)?;RETURN PRODUCT

+ (#candy(m) = 0)?;REPLENISH ;RETURN PRODUCT .

If the machine is to be placed in a subway station, then it may be expected
that it will not be replenished more than twice a day. Then, the upper time
bound for the replenishing action might for instance be 12 hours. In this case, the
previously described process does not satisfy the specification, but the following
one does:

(#candy(m) > 0)?;RETURN PRODUCT

+ (#candy(m) = 0)?;RETURN MONEY .

4 Omega Closure Fork Algebras

Equational reasoning based on substitution of equals for equals is the kind of
manipulation that is performed in many information processing systems. The
role of equational logics in development of formal methods for computer science
applications is increasingly recognized and various tools have been developed
for modeling user’s systems and carrying through designs within the equational
framework (Gries and Schneider [10], Gries [9]).

In this section we present the calculus for closure fork algebras (CCFA), an
extension of the calculus of relations (CR) and of the calculus of relations with
fork [5]. Because of the non enumerability of the theory of dynamic logic, the
CCFA cannot provide an adequate algebraization. In order to overcome this re-
striction we will define the calculus ω-CCFA by adding an infinitary equational
inference rule. From the calculus we define the class ω-CFA of the omega closure
fork algebras and a representation theorem is presented, showing that the Kleene
star as axiomatized, indeed characterizes reflexive-transitive closure.

In the following paragraphs we will introduce the Calculus for Closure Fork
Algebras (CCFA).

Definition 8. Given a set of relation symbols R, the set of CCFA terms on R
is the smallest set TCCFA(R) satisfying: R ∪ RelVar ∪ { 0, 1, 1, } ⊆ TCCFA(R).
If x ∈ TCCFA(R),then { x̆, x∗, x� } ⊆ TCCFA(R). If x, y ∈ TCCFA(R),then
{x+y, x·y, x;y, x∇y } ⊆ TCCFA(R).

A Logic for Real–Time 101

The symbol � denotes a choice function (see [12, §3], which is necessary in
order to prove Thm. 1.

Definition 9. Given a set of relation symbols R, the set of CCFA formulas on
R is the set of identities t1 = t2, with t1, t2 ∈ TCCFA(R).

Definition 10. Given terms x, y, z, w ∈ TCCFA(R), the identities defined by
the following conditions are axioms:

Identities axiomatizing the relational calculus [13],
The following three axioms for the fork operator:

x∇y = (x; (1,∇1)) · (y ; (1∇1,)) ,
(x∇y) ;(z∇w)̆ = (x; z̆) · (y ;w̆) ,

(1,∇1)̆ ∇(1∇1,)̆ ≤ 1,.

The following three axioms for the choice operator, taken from [12, p. 324]:

x� ;1;x̆� ≤ 1,, x̆� ;1;x� ≤ 1,,
1; (x·x�) ;1 = 1;x;1.

The following two axioms for the Kleene star:

x∗ = 1, + x;x∗, x∗ ;y ≤ y + x∗ ; (y · x;y) .

Let us denote by 1,U the partial identity Ran
(
1∇1

)
. Then, the axiom

1;1,U ;1 = 1 (which states the existence of a nonempty set of non-splitting ele-
ments) is added.

The rules of inference for the calculus CCFA are those of equational logic.
Note that x∗ is the smallest reflexive and transitive relation that includes x.

Definition 11. We define the calculus ω-CCFA as the extension of the CCFA
obtained by adding the following inference rule3:

` 1, ≤ y xi ≤ y ` xi+1 ≤ y
` x∗ ≤ y

Definition 12. We define the class of the omega closure fork algebras (ω-CFA)
as the models of the identities provable in ω-CCFA.

The standard models of the ω-CCFA are the Proper Closure Fork Algebras
(PCFA for short). In order to define the class PCFA, we will first define the class
•PCFA.
3 Given i > 0, by xi we denote the relation inductively defined as follows: x1 = x, and

xi+1 = x ;xi.

102 Gabriel A. Baum, Marcelo F. Frias, and Thomas S.E. Maibaum

Definition 13. Let E be a binary relation on a set U , and let R be a set of
binary relations. A •PCFA is a two sorted structure with domains R and U
〈R, U,∪,∩, –, ∅, E, ;, Id, ,̆ ∇, �, ∗, ? 〉 such that

1.
⋃

R ⊆ E,
2. ? : U × U → U is an injective function when its domain is restricted to the

set E,
3. If we denote by Id the identity relation on the set U , then ∅, E and Id belong

to R,
4. R is closed under set choice operator defined by the condition:

x� ⊆ x and |x| = 1 ⇐⇒ x 6= ∅.

5. R is closed under set union (∪), intersection (∩), complement relative to
E (–), composition of binary relations (;), converse (̆), reflexive-transitive
closure (∗) and fork (∇), defined by S∇T = { 〈x, ?(y, z)〉 : xSyandxT z }.
Note that x� denotes an arbitrary pair in x, then x� is called a choice oper-

ator.

Definition 14. We define the class PCFA as Rd•PCFA where Rd takes reducts
to structures of the form 〈R,∪,∩, –, ∅, E, ;, Id, ,̆ ∇, �, ∗ 〉.

Note that given A ∈ PCFA, the terms (1,∇1)̆ and (1∇1,)̆ denote respec-
tively the binary relations { 〈a ? b, a〉 : a, b ∈ A } and { 〈a ? b, b〉 : a, b ∈ A }. Thus,
they behave as projections with respect to the injection ?. We will denote these
terms by π and ρ, respectively.

From the operator fork we define x⊗y = (π ;x) ∇ (ρ ;y). The operator ⊗
(cross), when interpreted in an proper closure fork algebra behaves as a parallel
product: x⊗y = { 〈a ? b, c ? d〉 : 〈a, c〉 ∈ x ∧ 〈b, d〉 ∈ y }.

A relation R is constant if satisfies: R̆ ;R ≤ 1,, 1;R = R, and R ;1 = 1.
Constant relations are alike constant functions, i.e., they relate every element
from the domain to a single object4. We will denote the constant whose image
is the value a by Ca.

Definition 15. We denote by FullPCFA the subclass of PCFA in which the re-
lation E equals U × U for some set U and R is the set of all binary relations
contained in E.

Similarly to the relation algebraic case, where every proper relation algebra
(PRA) A belongs to5 ISPFullPRA, it is easy to show that every PCFA belongs
to ISPFullPCFA. We finally present the representation theorem for ω-CFA.

Theorem 1. Given A ∈ ω-CFA, there exists B ∈ PCFA such that A is isomor-
phic to B.
4 This comment is in general a little strong and applies to simple algebras, but is

nevertheless useful as an intuitive aid for the non specialist.
5 By I, S and P we denote the closure of an algebraic class under isomorphic copies,

subalgebras and direct products, respectively.

A Logic for Real–Time 103

5 Interpretability of P/PML in ω-CCFA

In this section we will show how theories on P/PML can be interpreted as equa-
tional theories in ω-CCFA. This is very useful because allows to reason equation-
ally in a logic with variables over two different sorts (individuals and relations).

Definition 16. Let S, F and P be sets consisting of sort, function and rela-
tion symbols, respectively. By ω-CCFA+(S, A, F, P) we denote the extension of
ω-CCFA obtained by adding the following equations as axioms.

1. For each s, s′ ∈ S (s 6= s′), the equations 1,s+1,U = 1,U and 1,s ·1,s′ = 0
(elements from types do not split, and different types are disjoint).

2. For each a ∈ A with ia(a) = s1 . . . sk and oa(a) = s′1 . . . s′n, the equation
(1,s1⊗ · · · ⊗1,sk

) ;a ;
(
1,s′1⊗ · · · ⊗1,s′n

)
= a.

3. For each f : s1 . . . sk → s ∈ F , f̆ ;f + 1,s = 1,s and (1,s1⊗ · · · ⊗1,sk
) ;f = f ,

stating that f is a functional relation of the right sorts.
4. For each p of arity s1 . . . sk in P , the equation (1,s1⊗ · · · ⊗1,sk

) ;p ;1 = p,
stating that p is a right-ideal relation expecting inputs of the right sorts.

Definition 17. A model for the calculus ω-CCFA+(S, A, F, P) is a structure
A =

〈 〈
A, SA, AA, FA, PA 〉

, m
〉

where: A ∈ ω-CFA. SA is a set of disjoint
partial identities, one for each sort symbol in S. AA is a set of binary relations,
one for each action symbol a ∈ A. Besides, if ia(a) = s1 . . . sk and oa(a) =
s′1 . . . s′n, then aA satisfies the condition in item 2 of Def. 16. FA is a set of
functional relations, one for each function symbol in F . Besides, if f : s1 . . . sk →
s, then fA satisfies the conditions in item 3 of Def. 16. PA is a set of right ideal
relations, one for each predicate symbol p ∈ P . Besides, if p has arity s1 . . . sk,
then pA satisfies the conditions in item 4 of Def. 16. m : RelVar → A.

Noce that the mapping m in a ω-CCFA+(S, A, F, P) model extends homo-
morphically to arbitrary relational terms. For the sake of simplicity, we will use
the same name for both.

In the following paragraphs we will define a function mapping formulas from
P/PML(S, A, F, P) to ω-CCFA+(S, A, F, P) formulas. In the next definitions, σ is
a sequence of numbers increasingly ordered. Intuitively, the sequence σ contains
indices of those individual variables that appear free in the formula (or term)
being translated. By Ord(n, σ) we will denote the position of the index n in the
sequence σ, by [σ⊕n] we denote the extension of the sequence σ with the index
n, and by σ(k) we denote the element in the k-th position of σ. In what follows,
t ;n is an abbreviation for t ; · · · ;t (n times). For the sake of completeness, t ;0 is
defined as 1,. We will denote by IndTerm(F) the set of terms from P/PML built
from the set of constant and function symbols F . By RelDes(K) we denote the
set of terms from ω-CCFA that are built from the set of relation constants K.

Definition 18. The function δσ : IndTerm(F) → RelDes(F), mapping individ-
ual terms into relation designations, is defined inductively by the conditions:

104 Gabriel A. Baum, Marcelo F. Frias, and Thomas S.E. Maibaum

1. δσ(vi) =
{

ρ ;Ord(i,σ)−1 ;π ifi is not the last index in σ,

ρ ;Length(σ)−1 ifi is the last index in σ.
2. δσ(f(t1, . . . , tm)) = (δσ(t1)∇ · · · ∇δσ(tm));f for each f ∈ F .

Given a sequence σ such that Length(σ) = l and an index n (n < ω) such
that vn has sort s, we define the term ∆σ,n (n < ω) by the condition6

∆σ,n =

δσ(vσ(1))∇ · · · ∇δσ(vσ(k−1))∇1s∇δσ(vσ(k+1))∇ · · · ∇δσ(vσ(l))
if k = Ord(n, [σ ⊕ n]) < l,

δσ(vσ(1))∇ · · · ∇δσ(vσ(l−1))∇1s if Ord(n, [σ ⊕ n]) = l.

Notation 1 Let σ be a sequence of indices of individual variables of length
n. Let

→
x= 〈x1, . . . , xk〉 be a vector of variables whose indices occur in σ. We

will denote by Π
σ,
→
x

the relation that given a tuple of values for the vari-
ables whose indices appear in σ, projects the values corresponding to the vari-
ables appearing in

→
x . For example, given σ = 〈2, 5, 7, 9〉 and

→
x= 〈v2, v7〉,

Π
σ,
→
x

= { 〈a1 ? a2 ? a3 ? a4, a1 ? a3〉 : a1, a2, a3, a4 ∈ A }. Similarly, Arrange
σ,
→
x

denotes the relation that, given two tuples of values (one for the variables with
indices in σ and the other for the variables in

→
x), produces a new tuple of values

for the variables with indices in σ updating the old values with the values in
the second tuple. For the previously defined σ and

→
x , we have Arrange

σ,
→
x

=
{ 〈(a1 ? a2 ? a3 ? a4) ? (b1 ? b2) , b1 ? a2 ? b2 ? a4〉 : a1, a2, a3, a4, b1, b2 ∈ A }. Note
that these two relations can be easily defined using the projections π and ρ
previously defined.

Definition 19. The mappings M : RT (S) → RelDes(A) and Tσ : For(S) →
RelDes(A ∪ F ∪ P) are mutually defined by

M(a) = a for each a ∈ A ∪ RelVar , M(1,s1...sk
) = 1,s1⊗ · · · ⊗1,sk

,
M(R∗) = M(R)∗, M(R+S) = M(R)+M(S),
M(R ·S) = M(R)·M(S), M(R ;S) = M(R);M(S),
M(α?) = Tσα(α)·1,,
Tσ(p(t1, . . . , tk)) = (δσ(t1)∇ · · · ∇δσ(tk)) ;p, Tσ(¬α) = Tσ(α),
Tσ ((∃vn : s)α) = ∆σ,n ;T[σ⊕n](α), Tσ(α ∨ β) = Tσ(α)+Tσ(β),

Tσ

(〈→
x lR

u →
y
〉

α
)

=
 1

,

∇
Π

σ,
→
x

;M(R)

 ;Arrange

σ,
→
y

;Tσ(α) ·
(
(vl ; ≤) ·Cl(R)

)
;1 ·

(
(vu ; ≥) ·Cu(R)

)
;1.

We will denote by `ω-CCFA the provability relation in the calculus ω-CCFA.
The next theorem states the interpretability of theories from P/PML as equa-
tional theories in ω-CCFA.

Theorem 2. Let Γ ∪ {ϕ } be a set of P/PML formulas without free individual
variables. Then, Γ |=P/PML ϕ ⇐⇒ {

T〈〉(γ) = 1 : γ ∈ Γ
} `ω-CCFA T〈〉(ϕ) = 1.

6 By 1s we denote the relation 1;1
,
s.

A Logic for Real–Time 105

6 Conclusions

We have presented a logic (P/PML) for formal real–time systems specification
and construction. This logic is an extension of dynamic logic by considering
arbitrary atomic actions, an operator for putting processes in parallel, and ex-
plicit time. We have also presented an equational calculus in which theories of
P/PML can be interpreted, thus enabling the use of equational inference tools
in the process of systems construction.

References

1. Carvalho, S.E.R., Fiadeiro, J.L. and Haeusler, E.H., A Formal Approach to Real–
Time Object Oriented Software. In Proceedings of the Workshop on Real–Time Pro-
gramming, pp. 91–96, sept/1997, Lyon, France, IFAP/IFIP.

2. Fenton, N. E., Software Metrics. A Rigorous Approach, International Thomson Com-
puter Press, 1995.

3. Fiadeiro, J. L. L. and Maibaum, T. S. E., Temporal Theories as Modularisation
Units for Concurrent System Specifications, Formal Aspects of Computing, Vol. 4,
No. 3, (1992), 239–272.

4. Fiadeiro, J. L. L. and Maibaum, T. S. E., A Mathematical Toolbox for the Software
Architect, in Proc. 8th International Workshop on Software Specification and Design,
J. Kramer and A. Wolf, eds., (1995) (IEEE Press), 46–55.

5. Frias M. F., Baum G. A. and Haeberer A. M., Fork Algebras in Algebra, Logic and
Computer Science, Fundamenta Informaticae Vol. 32 (1997), pp. 1–25.

6. Frias, M. F., Haeberer, A. M. and Veloso, P. A. S., A Finite Axiomatization for
Fork Algebras, Logic Journal of the IGPL, Vol. 5, No. 3, 311–319, 1997.

7. Frias, M. F. and Orlowska, E., A Proof System for Fork Algebras and its Applications
to Reasoning in Logics Based on Intuitionism, Logique et Analyze, vol. 150–151–152,
pp. 239–284, 1995.

8. Frias, M. F. and Orlowska, E., Equational Reasoning in Non–Classical Logics, Jour-
nal of Applied Non Classical Logic, Vol. 8, No. 1–2, 1998.

9. Gries, D., Equational logic as a tool, LNCS 936, Springer–Verlag, 1995, pp. 1-17.
10. Gries, D. and Schneider, F. B., A Logical Approach to Discrete Math., Springer–

Verlag, 1993.
11. Kaposi, A. and Myers, M., Systems, Models and Measures, Springer–Verlag Lon-

don, Formal Approaches to Computing and Information Technology, 1994.
12. Maddux, R.D., Finitary Algebraic Logic, Zeitschr. f. math. Logik und Grundlagen

d. Math. vol. 35, pp. 321–332, 1989.
13. Maddux, R.D., Relation Algebras, Chapter 2 of Relational Methods in Computer

Science, Springer Wien New York, 1997.
14. Roberts, F. S., Measurement Theory, with Applications to Decision–Making, Utility

and the Social Sciences, Addison–Wesley, 1979.

	Introduction
	Objects
	The Logic, the Relational Variables, and the Time
	Omega Closure Fork Algebras
	Interpretability of $@mathit {P/PML}$ in $omega unhbox voidb @x hbox {-}@mathsf {CCFA}$
	Conclusions

