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DeseEr and LAURENT (1) found recently a linear, nonlocal theory of gravitation
which satisfies the experimental tests of general relativity. Their theory leads to a tensor
field for the static point particle, identical to the linearized Schwarzschild solution,
namely (2):
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In this paper we present an alternative theory which we think simpler and more
transparent than D.L.’s theory, and, further, it leads to the same results. (Both theories
coincide when the energy-momentum tensor is conserved.)

(*) Supported in part.by: Conselho Nacional de Pesquisas, Brazil; Consejo Nacional de Investi-
gaciones, Argentina; Fundacao de Amparo a Pesquisa, Sio Paulo; Centro Brasileiro de Pesquisas
Fisicas.

(*) 8. DESER and B, E, LAURENT: Anun., of Phys., 50, 76 (1968). Hereafter referred to as D-L.

(*) See, for example: P. G. BERGMANN: Introduction to the Theory of Relativity (Englewood Cliffs.,
N. J.), p. 203,
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In order to simplify notations we introduce the following projection operators:
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(3) Pug=Nap—0sp  and  Bup= 5

These projectors are all symmetric in yx, v and in g, ¢ independently and also sym-
metric under the interchange ur>go.

P2 is traceless and divergenceless, P! is traceless and has zero double divergence,
PO is divergenceless and P° satisfies

aaﬁpgu:ec = Pgﬂ .
Finally, they also satisfy

PiPi=¢§iiPi, TPi—1.

In the case of free massive fields they are respectively spin-two, spin-one and
spin-zero projection operators. Thus we shall use this nomenclature although it is not
correct for massless fields.

It should be noted that the subspace of « zero spin » is doubly degenerate and so
it is possible to choose in general two projectors @ and @, depending on a continuous
parameter,

Quvieo = Quv Qoo » Q,uv;ea = QWQQU s

where
cos B
Qup= 3 ——= F,3—5in 00,p,
gin 6
Qup= 73 g+ €08 00,5 .

For 6§ =0, we get @ = P, @ = P, Another choice which will prove to be convenient
is for

b=—. @Q=P, @Q=PF,
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with

i Ny — m: .
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It is easily shown that, for the solution (1), we have
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It is interesting to note that the linearized Schwarzschild solution belongs to the
space spanned by the projectors P2 and P'; i.e.

(8) (P24 Py*= p°.

We now consider to theory of massless spin-2 particles. The Fierz-Pauli (*) equation
for this field is

(9) Go($) = Oy — S0 — B + P — (85— $7e) = 0.
It can be written, in our notation,
(10) Gyv(¢) =0 (P:vga- 2P,3vgo) ¢96= 0,
or simply
O(P2—2P%¢=10.
1t should be noted that P2— 2P° is the only linear combination of the projection

operators (cf. 2), which is divergenceless, gauge invariant (*) and whose d’Alembertian
is nonsingular. (It does not contain [17%.)

(*) M. F1ERz and W, PauL1: Proc. Roy. Soc., 173, 211 (1939). See also G. WENTZEL? Quantum Theory
of Fields, Chap. VI (New York, 1949).
(*) Invariance relative to the transformation @, —@uy +&up +8yp.
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This equation is derived from the Lagrangian

L= 3" b — R ) — 8l 6 h s

1
an F = Lo(P2—2P% (¢ + divergences .

If we impose on ¢,, the Hilbert gauge
(12) av(¢vli" %nﬂvﬂbz) =0,

we obtain, by the usual procedure, a Hamiltonian density which, for a plane wave,
takes the form

(13) H =} 0P, ™.

Using again gauge (12), we obtain (when the third axis is taken along the direction
of propagation)

(14) H = 200%PraP1a + P11%1) 5
which shows that we are dealing with massless spin-two particles, as we have then only
two independent polarization states (in spite of having the projectors P2 and P° in the
equation of motion (10)).

We want to mantain Hilbert condition (12) even in the presence of interaction. We

shall do that by using the Lagrangian-multiplier technique. To simplify notation,
we introduce the new field variables

(15) alw = ¢,4v— %77/47 ¢Z = [(1 - 2P”) ¢]m) »
(1—2P")2=1 (cf. (4)),

for which the Hilbert’s gauge goes into the Lorentz’s gauge
(16) O By = 0.
The Lagrangian (11) expresged in terms of ¢,, is
F = 313(1—2P")(P:—2P%(1 —2P")0%,

which, taking into account (16) and adding the interaction and Lagrange-multiplier
terms, reads now

amn L =301 —2P)F + 1 Gy + %" T, .
(17) leads to the following equations:
(18) O[Q—2P") Juy = — %Dy + $ (3 + & A)(=9) ,

(19) Py =0.
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From (18), taking the trace,
e = s — 05 2%,
from which, replacing in (18), we obtain
(20) Dgﬂv = _"(Tm“%ﬂm TZ) + %(6;4}“:' + &, j”—_y]maaz“) .
Taking the divergence of this expression

D2, = 2%8" (T — 3 14, Ta) »

1.e.

1 v 1 [
(21) Ty = 200\ Ty — 5 M T2 ) »

which replaced in (20) is easily seen to give
(22) ¢ = —u(P2—2P") T .
For the case of the static point source, taking

(23) #Tog= 8amd(r),  Th=0, por v 0,

the solution of (22) is

(24) Bur = By + Py »
where

— 4m - m (8,  x
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Comparing with Schwarzechild’s eqs. (5) and (7) we see that

— s m
Buy— Vv = Ny T

i.e. they differ essentially by a scalar field.
This supports the addition of a scalar field to the Lagrangian (7)

(26) L =330 —2P") ¢+ 2 Gy + 28 T + o Up + dom, oT'”,
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which gives (°) besides eqgs. (18) and (19) for the tensor field, the following equations
for the scalar field:

27 e =—=T%;

taking into account (23), we have

(28) p=——.

But now the total metric (the coefficient of 7% in (26)) is
(29) Yur = B + $ 0@ 5
and now it is easy to see that, from (25) and (28),
(30) Yin = By + 310 @ = Yy -
So, we have shown that in the static point particle case, our solution coincides with
that of D-Li and thus contains all the classical tests of general relativity.

This is not the case in general, as the D-L solution has trace identically zero; on
the other hand, taking the [] of the trace of (29) and using (22) and (27) we obtain

(31) Dyl = —2x0,5 T*8
which cannot be zero unless

a“‘BTO‘ﬁ-‘—‘ 0 .

() A completely equivalent Lagrangian, without the introduction of a Liagrange multiplier A and,
of course, without a gauge condition, can be written in the following way:

& = }LUP* —2P)¢ — xg(P* — 2P)YT + toDo + 1 xp T4 .



