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We are reporting here the results of some calculations made with Faddeev (1) equa-
tions for the simplest three-body system: the nonrelativistic three-boson system. Our
aim is to study the J= 0 bound-state energy spectrum of the system formed by
three structureless alpha-particles (x) and compare it as a reference with the low-lying
J = 0 states of the nucleus 2C (2). The nuclear interaction between the alphas is rep-
resented by pair-wise (V) nonlocal separable potentials. We are, therefore, mainly
concerned with the comparison of the different descriptions of the low-energy prop-
erties of the 3« system as obtained with different nuclear potentials V.

To that end, the system under analysis is preferable to, say, the 3-fermion system
(3-nucleon system), since the involved angular-momentum algebra of the 3N’ system
is absent here, The quantum numbers of the 3« system are simply obtained by adding
the total (orbital) angular momentum of the a-« pair to the orbital angular momentum
of the spectator «. We limit ourselves to the J = 0 (I = 0) three-body state and build
the system by considering only S-wave (x-«) states, neglecting higher partial waves. The
subsystems («-a) are then deseribed by the potential V,,, whose parameters are calculated
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by fitting the S-wave (x-o) scattering phase shift (8,(#)) in the energy range (laboratory
system) (0.6=-77.0) MeV. Now, some interesting questions arise since, as is well known,
0o(E) presents a very peculiar behaviour (3).

i) An (x-a) resonance (®Be) shows up at Hp= 94.5 keV, slightly above threshold
for «-a scattering. This point cannot be discussed by simply considering a nuclear po-
tential; in fact, for energies up to 400 keV the measured ratio of total to Mott scattering
is exactly one (3¢), indicating that the Coulomb repulsion between the alphas is not
disturbed by the nuclear force—up to that energy, of course.

ii) If we start at £ = 0.6 MeV, § () decreases monotonically with F and changes
sign at about B, = 20 MeV. Unlike the first point, we can safely neglect the Coulomb
interaction for this energy region (at laboratory energies of 0.6 MeV the ratio to Mott
scattering is already different from one (3”)) and look for a nuclear potential which in
turn must combine an attractive and a repulsive part in order to reproduce the change
in sign of &y(E).

Here we are concerned with the second point, neglecting the Coulomb interaction
and using two different types of attractive-repulsive nuclear potentials: a) a rank-two
of the Yamaguchi type (*) and b) a rank-one like that proposed by TaBaxin for the
nucleon-nuecleon problem (5). These potentials have the following analytical expressions:

a) Yamaguchi rank-two

(1a) Ve (P P') = 2, 25095 (P92 P) »
=1.2

(10) 95 (p) = 2
]7 + B;

b) Tabakin type

(2a) Voa(p, P)) = X9 (P9 (P »
(20) 9 (p) = (PP —p)(p*+ d)/I(p*+ V) (p*+ a)].

In @) the attractive part is represented by the term with negative strength A,,, while
B; measures the range of the corresponding term. In ) the attractive-repulsive character
is obviously provided by the term p®— p2, where p, corresponds to Jy(p,) = 0. We
refer to the original paper by TaBaxiN for a further description of Vi: With potentials
(1) and (2) we fitted the « nuclear » (*) §,(E). We also produce the same fit with a single
rank-one potential of the Hulthén type in order to compare with other results. The
result of the fit, together with the experimentally measured d,(E), are shown in Fig. 1.

Let us now briefly describe the three-body problem. At the low energies in which
we are interested and in the separable two-body potential approximation, the three-

(*) Y. YamacucHr and Y. YAMAGUCHI: Phys. Rev., 95, 1635 (1954).

(*) F. TABAKIN: Phys. Rev., 174, 1208 (1968).

(*) Here «nuclear » means « S-wave phase shift without completely removing the Coulomb contribu-
tion ». This indicates the well-known, fact that 6,(E) appears in the full scattering amplitude in the fol-
lowing combination:

7 = Fuue +Fcoul » Faue = (21k)~* exp [2¢0,] [exp [2¢0,(E)] — 1], foom = (21k)~*[exp [2ic,] — 1],

where o, is the pure Coulomb phase shift.
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Fig. 1. — Experimental S-wave o-o phasge shifts, together with the fits obtained with «) Yamaguchi
gingle term, b) Yamaguchi tank-two and ¢) Tabakin-type potential.

body system can be described by the Faddeev-Lovelace equations (®). These are multi-
channel Lippmann-Schwinger-type equations in which the number of channels, after
angular-momentum reduction, is proportional to the number of separable terms con-
tained in the two-body potentials. It is therefore clear that the three-body problem
becomes simpler for an interaction of the type (2) than for a two-term potential like (1),
and, actually, this is one of the reasons why the attractive-repulsive rank-one separable
potentials were invented. For further details of the three-body equations in the sepa-
rable approximation we refer to Lovelace’s paper (°) and we only recall that the three-
body bound-state energies are obtained by searching for the zeros of the Fredholm
determinant of the corresponding homogeneous equation for the elastic («,®Be) scat-
tering amplitude. This search was made by standard numerical procedures. Our two-
body potential, as is natural for attractive or attractive-repulsive separable potentials (7),
predicts a 2o bound state (]Be) at an energy FE,,, and therefore our search for the 3«
bound state was limited to Ej, negative and Hy < Hy,.

The results of these calculations are shown in Table I, where we also display all
the two-body parameters. The result for model C) in Table I should not be taken seri-
ously, since a single attractive term cannot give a unique set of parameters through the
fit to Jo(E). It must be said, however, that the fit was done without « completely re-
moving » the Coulomb part, and, therefore, our model C) is not directly comparable
with that of HARRINGTON (8). Some interesting information emerges from the compar-
ison between 4) and B) in Table I. There is no excited state in model 4), while model
B) gives two J = 0 states, as experimentally verified. The predicted ground state is,
however, too low in both models A) and B). We can argue that by properly adding
the Coulomb repulsion, the spectrum will shift enough in the right direction. According
to ref. (%), the Coulomb energy of 3a is equal to 5.44 MeV, which is not enough to put
theoretical and experimental results in a better agreement. However, the Coulomb
repulsion will modify both models in the same way, since it depends on the asymptotic
behaviour of the 8Be wave funetion, which is the same for both models 4) or B). There-
fore, the excited state will still be absent in model A4).

(®) C. LovELACE: Phys. Rev., 135, B 1225 (1964),
(*) G. C. GHIRARDI and A. RiMint: Journ. Math. Phys., 5, 722 (1964).
() D. R. HARRINGTON: Phys. Rev., 147, 685 (1966).
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TaBLE I. — Two-body parameters and bound-state energies for the J = 0 state of the 3o
system. The energies are measured with regpect to the 2« and 3« disintegration thresholds
for two- and three-body systems, respectively. Our units are such that m,=1, i=1
and Ag= fifmye = 0.052926 fm.

By By, (MeV)
Parameters
(MeV) ground state excited state
A) Yamaguchi 1, =-—-1229.6, p,= 4.28, 6.9 945
rank-two A= 1091.6, p,— 3.9 169 —24 -
B) Tabakin A=— 281.1, a= 24,
rank-two d = 0.86, b =1023, — 1.2 —25.6 — 1.45
Po= 3.1
C) Yamaguchi 1 = — 6.9, p = 2.57
single-term - 6.62 —26.1 —17.3
Experimental values for the low-lying _ 198 £0.376

J = 0 states of 12C

These results seem to represent another example of the different low-energy prop-
erty description of a three-body system achieved by using either a rank-one or a
rank-two attractive-repulsive separable potential. The first example is the three-nucleon
system which we analysed in a previous work (°). At that time we found that the Tabakin-
type potential did not give as good a result as arank-two potential. In the three-nucleon
problem there are bound-state scattering data—the nucleon-deuteron scattering pro-
cess—and a comparison between theory and experiment can therefore be made for the
scattering energy region. This is not the case for the 3ua system, nor for any of the sim-
plest three-boson systems (three pions for instance (1°)), because a two-boson stable
bound state, to be used as a target, cannot be found in Nature, and only the three-body
bound.-state region can be analysed and compared with experimental results. From
the present analysis we can conclude that the rank-one type of potential gives a better
description of the 3« bound-state spectrum than the Yamaguchi rank-two type. How-
ever, no general answer emerges from the present caleulation to the question of which
it is best to use in a three-body problem, and we are only able to say that the Tabakin
potential is more suitable for the present problem than the other proposed models.

Finally, let us turn to the problem of describing the nucleus 2C as a three-body
system (*). The model was proposed by HARRINGTON (%) (our model ) in Table I)
and a more complete calculation, using phenomenological «-a potentials, was made
by Furco and Wona (11¢). The papers by Leune and PARk (11%) dealt with the same
problem and OsmMAN (11¢) explicitly calculated the Coulomb corrections to Harrington’s

() D. R. Avaros, L. N. EpELE and M. A. GREGORIO: Letf. Nuovo Cimenlto, 9, 441 (1971).

(**) H. CoHEN, A. PAGNAMENTA and J. G. TAYLOR: Nuovo Cimento, 2 A, 954 (1971).

(*) We only refer, of course, to those calculations which use the Faddeev equations.

() a) J. R. Furco and D. Y. WonNG: Phys. Rev., 172, 1062 (1968); b) C. C. H. LEUNG and 8. C.
PARK: Phys. Rev., 187, 1239 (1969); ¢) A. OSMAN: Phys. Rev. C, 4, 302 (1971).
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model. A eritical analysis of these works is not intended here; let us just comment
that all these remarks, together with ours, indicate that, even if a three-body model
ig feasible, the actual calculation of the low-lying states of 12C is a twelve-body problem
rather than three-body.

* % K
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