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A constituent gluon model that is informed by recent lattice field theory is developed. The model is then
used to compute hybrid strong decay widths that could be useful for the GlueX Collaboration at Jefferson
Lab and the PANDA Collaboration at FAIR. Commensurately, forthcoming data from GlueX and PANDA
will test the model. Widths tend to be typical of charmonia, except for those of the lightest hybrid S-wave
multiplet. Selection rules, extensions, limitations, and applications are discussed.
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I. INTRODUCTION

Long-standing interest in hybrid mesons continues
because they offer a window into the unknown dynamics
of nonperturbative gluonic degrees of freedom in quantum
chromodynamics (QCD). In particular, robust experimental
programs are under way by the GlueX Collaboration at
Jefferson Lab [1] and by the PANDACollaboration at FAIR
[2]. The spectrum, radiative transitions, and strong decay
widths are of interest to the experimental community as
these are crucial to informing experimental design and the
interpretation of experimental results. A simple model of
hybrid structure is developed in the following and is applied
to the strong decays of charmonium hybrids, which is a
focal point for the PANDA Collaboration.
A variety of hybrid models have been developed since

the 1970s; these chiefly fall into two camps: constituent
gluon models and flux tube models. The former include bag
models [3] or simple constituent glue models [4], while the
latter include string models [5] or more elaborate flux tube
models [6]. Most of this work predates the substantial
progress that has been made in understanding hybrid
properties by the lattice gauge community. This effort
had revealed flaws in the early models, most of which are
severe enough to invalidate the models (see Ref. [7] for a
recent review of the experimental and theoretical status of
hybrids). Given this situation, and the impending data from
GlueX and PANDA, it is incumbent to revisit hybrid
structure modeling. Of course, it is preferable that new

models incorporate the features of gluodynamics that the
past 20 years of lattice gauge computations have revealed.
Among these are the spectrum of adiabatic gluonic exci-
tations [8,9], the gluelump (bound states of gluons and a
static adjoint color source) spectrum [10], and properties of
charmonium hybrids [11–13]. Of particular interest is the
confirmation that the heavy quark multiplet structure
anticipated in Ref. [9] is reflected in the charmonium
spectrum [11]. It is interesting, and very suggestive, that
this multiplet structure can be reproduced by degrees of
freedom consisting of a quark, an antiquark, and an axial
gluon with quantum numbers JPC ¼ 1þ− [14,15].
Indeed,work has started along these lines, startingwith an

examination of the adiabatic gluon potentials in a constituent
gluon model based on the Hamiltonian of QCD [16]. This
work obtained decent agreement with lattice but noted that
the level ordering was incorrect. Subsequently it was
realized that gluonic three-body interactions can correct
the level ordering problem [17], and this was used to
construct models for gluelumps [18] and heavy quark
hybrids [14]. Here we shall follow a similar approach with
an eye to developing the simplest model possible that
captures the necessary features revealed by the lattice.
This will be described in Sec. II. The resulting hybrid wave
functions will then form the starting point for the compu-
tation of strong decays of charmonium hybrids.
It is useful to note that advances in the application of

effective field theory to hybrids have also been occurring.
This approach has led to a more thorough understanding of
systematics in heavy quark hybrids, including subtleties
concerning angular momentum and the structure of sub-
leading spin-dependent operators [19,20]. Although these
results are interesting, and inform our model building, they
are not of direct relevance to the present work because
gluonic degrees of freedom are integrated out, precluding
the application of the formalism to hadronic transitions.
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Hybrid meson decay models also have a long history.
The earliest work we are aware of is due to Tanimoto [21]
(see also the first entry in Ref. [4]), who assumed a simple
P-wave symmetric Gaussian wave function for all hybrids
and decay via gluon dissociation to a quark-antiquark pair.
In contrast, the model of Isgur and Paton assumed that
gluon dynamics can be described by a nonrelativistic string
[22] and that strong decays occur via a string breaking
mechanism with vacuum quantum numbers [23]. A model
for hybrid decay that employed the same philosophy but
assumed vector quark pair creation was developed by
Swanson and Szczepaniak [24] and applied in Ref. [25].
The approach adopted here is predicated on the simple

constituent gluon model we adopt and is guided by the
QCD Hamiltonian. Namely, we shall assume that the gluon
simply dissociates into a light quark pair via the perturba-
tive quark-gluon coupling. Thus we resurrect the Tanimoto
decay model, but with the addition of a reasonable model of
hybrid structure and with the benefit of lattice predictions
of the charmonium hybrid spectrum. The decay model will
be described in Sec. III followed by conclusions in Sec. IV.

II. CONSTITUENT GLUON MODEL
OF HYBRID MESONS

Our model for hybrid structure will assume constituent
quarks and gluons are the dominant degrees of freedom
and that these interact according to QCD. Interactions are
made especially transparent by adopting the Hamiltonian of
QCD in Coulomb gauge [26,27]. Perhaps the strongest
reason for adopting this approach is that all degrees of
freedom are manifest (i.e., there are no ghosts) and that
an explicit instantaneous “Coulomb” interaction exists

between valence quarks and gluons. The philosophy advo-
cated for herewas developed extensively in Ref. [28], where
a mean field model of the gluonic vacuum was used to
derive an effective gluon dispersion and a nonperturbative
expression for the Coulomb operator (to be explained
further below) that recapitulates linear confinement as
observed in lattice gauge computations.
The construction of a hybrid meson proceeds by assum-

ing a dynamical constituent gluon (thus, the gluon remains
transverse) coupled to quarks. This involves a Clebsch-
Gordan coefficient that couples the canonical gluon spin
projection s to the gluon angular momentum ðlg; mgÞ to
total gluon spin, jg. Converting to the gluon helicity basis
and assuming that lg ¼ jg reduces the product of two
Wigner matrices to one and produces a factor of

χð−Þλ;μ ≡ h1λlg0jlgμi ¼
(

0;lg ¼ 0

λffiffi
2

p δλ;μ;lg ≥ 1
: ð1Þ

This represents a transverse electric (TE) gluon in our
model and forms the explicit realization of the axial
constituent gluon. Alternatively, one may set lg ¼ jg � 1

and obtain a transverse magnetic (TM) gluon with a
Clebsch factor given by

χðþÞ
λ;μ ¼ 1ffiffiffi

2
p δλ;μ: ð2Þ

The end result for a generic hybrid meson creation
operator is then

jJM½LSljgξ�i ¼
1

2
TA
ij

Z
d3q
ð2πÞ3

d3k
ð2πÞ3 Ψjg;lðk;qÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jg þ 1

4π

r
D

jg�
mgμðk̂ÞχðξÞμ;λ

×

�
1

2
m
1

2
m̄jSMS

�
hlml; jgmgjLMLihSMS; LMLjJMib†

q−k
2
;i;m

d†−q−k
2
;j;m̄

a†k;A;λj0i: ð3Þ

The momenta of the constituents are chosen as a convenient
rescaling of Jacobi coordinates, k⃗¼−2=

ffiffiffi
6

p
p⃗λ and q⃗¼

p⃗ρ=
ffiffiffi
2

p
. Finally, the hybrid state is an eigenstate of parity

and charge conjugation with eigenvalues given by

P ¼ ξð−1Þlþjgþ1 ð4Þ
and

C ¼ ð−1ÞlþSþ1: ð5Þ

Asmentioned above,we choose tomodel hybrid structure
with a simplified version of the QCD Hamiltonian. The
Hamiltonian in Coulomb gauge is written as [26,27]

HQCD ¼
Z

d3x

�
ψ†ð−iα · ∇þ βmÞψ

þ 1

2
ðJ −1=2ΠJ ·ΠJ −1=2 þB ·BÞ − gψ†α ·Aψ

�
þHC ð6Þ

with

HC ¼ 1

2

Z
d3xd3yJ −1=2ρAðxÞJ 1=2K̂ABðx; y;AÞ

× J 1=2ρBðyÞJ −1=2: ð7Þ
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The latter expression is the instantaneous interaction that
emerges from the imposition of Gauss’s law in Coulomb
gauge. This involves the Faddeev-Popov determinant

J ≡ detð∇ · DÞ; ð8Þ

which is the remnant of the ghost in this gauge. Here D
represents the adjoint covariant derivative

DAB ≡ δAB∇ − gfABCAC: ð9Þ

The color charge density that appears in Eq. (7) is
given by

ρAðxÞ ¼ fABCABðxÞ ·ΠCðxÞ þ ψ†ðxÞTAψðxÞ: ð10Þ

The kernel of the Coulomb interaction can be formally
written as [27]

K̂ABðx; y;AÞ≡ hx; Aj g
∇ ·D

ð−∇2Þ g
∇ ·D

jy; Bi: ð11Þ

Finally, A is the vector potential and Π is the conjugate
momentum given by the negative of the transverse chromo-
electric field.
Equations (6)–(11) are a full field-theoretic representation

of QCD and are therefore difficult to solve. In particular, the
Coulomb interaction involves infinitely many gluons that
build n-body operators in Fock space. The two-body
operator can be related to the Wilson loop linear confine-
ment potential in a rather direct way [28,29]. Herewe accept
the mapping to linear confinement as a phenomenologically
useful device and simply set

K̂ABðr; 0;AÞ → KABðr; 0Þ ¼ δAB
�
aS
r
−
3

4
br

�
: ð12Þ

Of course, this reproduces the successes of the Cornell
potential in nonrelativistic quarkmodels.Higher terms in the
n-body expansion of K̂ can be incorporated into the
formalism as required. The effects of the Faddeev-Popov
determinant are assumed to be largely confined to restricting
the gauge field to the fundamental modular region [30], and
are therefore ignored in the following. Thevector potential is
approximated by its Abelian analog when making field
expansions:

ABðxÞ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp ðaBðkÞþaB†ð−kÞÞeik·x: ð13Þ

The gluon dispersion is denoted as ω in this expression and
need not take on the perturbative form ω ¼ k because the
gluon is a quasiparticle in this approach. In fact, explicit
computation in a mean field vacuum model gives a
dispersion that is well approximated by [28]

ω2 ¼ k2 þm2
ge−k=bg ; ð14Þ

where the dynamical gluon mass is mg ≈ 600 MeV and the
parameter bg ≈ 6000 MeV. Finally, the nonrelativistic limit
is taken at all opportunities.
The resulting model can be thought of as a minimal

extension of the nonrelativistic potential quark model
with the addition of constituent gluon degrees of freedom
and possible many-body couplings (for example, the tri-
linear gluon coupling). It can also be extended to include
relativistic effects in the inverse mass expansion that may
be important for spin-dependent effects.
Our immediate goal is to obtain a rough description of the

lowest hybrid charmonium mesons. As mentioned above,
these fall into multiplets that are associated with interpolat-
ing fields as shown in Table I. A model description of these
multiplets is sought by employing a TE constituent gluon
with jg ¼ 1. This leaves the quark angular momentum (l)
and the total angular momentum (L) to be specified. Doing
so gives columns 3–6 in the table. Finally combining these
degrees of freedom with the total quark spin gives the
quantum numbers shown in the last column (the entries in
brackets correspond to S ¼ 1).
In this preliminary calculation we choose a simple

product ansatz for the hybrid wave function, namely,

Ψjg;lðk;qÞ ¼ φjgðk; βÞφlðq; αÞYl;ml
ðq̂Þ: ð15Þ

This makes explicit the angular momentum dependence in
the q coordinate. The gluon angular momentum depend-
ence is contained in the Wigner rotation matrix in Eq. (3).
In the following we shall employ simple harmonic oscil-
lator (SHO) wave functions for the φ functions and
determine the width parameters α and β variationally:

∂
∂αðβÞ hJ

0M0½L0S0l0j0gξ0�jHQCDjJM½LSljgξ�i ¼ 0: ð16Þ

The computation amounts to evaluating the diagram
illustrated in Fig. 1, where three possible two-body inter-
actions are shown. As mentioned in the Introduction, it has
been found that three-body interactions are important for
describing higher gluonic excitation surfaces. However,
these are zero for the lowest lying surface [17], with which
we deal exclusively.

TABLE I. JPC hybrid multiplets. With generating operators and
corresponding constituent gluon model quantum numbers.

Multiplet Operator ξ jg l L JPC

H1 ψ†B⃗χ −1 1 0 1 1−−, ð0; 1; 2Þ−þ
H2 ψ†∇ × B⃗χ −1 1 1 1 1þþ, ð0; 1; 2Þþ−

H3 ψ†∇ · B⃗χ −1 1 1 0 0þþ, ð1þ−Þ
H4 ψ†½∇B⃗�2χ −1 1 1 2 2þþ, ð1; 2; 3Þþ−

HEAVY HYBRID DECAYS IN A CONSTITUENT GLUON MODEL PHYS. REV. D 102, 014023 (2020)

014023-3



Model parameters were fixed to those used previously
in a potential quark model [31] along with the
dispersion of Eq. (14). Thus all parameters have been
fixed by previous work. Since this preliminary work is
not concerned with fine structure in the spectrum we
restrict attention to the nonrelativistic limit and hence
seek spin-averaged masses. Details of the calculation
are presented in the appendixes; the results for spin-
averaged S-wave and P-wave charmonia and the spin-
averaged hybrid masses are shown in Fig. 2. We remark
that the method for spin-averaging hybrid multiplets is
not obvious; here we simply take these values as the
masses of the spin zero member of the multiplet. This
procedure is justified in Ref. [32]. The figure shows two
sets of lattice charmonia masses obtained with light
quark masses that correspond to pion masses of 400
(dark boxes) and 236 MeV (light boxes). Model results
have been centered on the lattice ηc–J=ψ multiplet in
the first column. The resulting spin-averaged H2 and H3

hybrid mass predictions are high by 100–200 MeV.
Somewhat surprisingly, given that no parameters were
adjusted, the other mass predictions agree rather well
with the more recent lattice field spectrum. We find
these initial results encouraging and look forward to
performing more detailed computations. In the mean-
time, we adopt the hybrid wave function width param-
eters and move on to hybrid decays.

III. HYBRID DECAY MODEL

It is feasible and perhaps obligatory to consider strong
hybrid decays once a reasonably robust model of hybrid
structure is in hand. The first issue is determining the
decay operator. Possibilities include absorbing the valence
gluon into a quark or the Coulomb operator and then pair
producing via a valence-valence-transverse trigluon vertex.
This is rather elaborate and is suppressed by 2 powers of a
mass scale (that is, roughly 1 GeV). We choose, instead, to
adopt the simplest and leading operator, which is quark pair
production via gluon dissociation (Fig. 3).
The calculation will be made using the hybrid wave

functions found in the previous section. In a similar
fashion, we also employ SHO wave functions for the
final state mesons. Masses for the hybrids are taken
from the lattice [11,12] and measured masses are used
for all mesons. Details are provided in the appendixes
along with a description of the P-wave mixing angles
used.
The decay model contains two selection rules: (i) spin

zero hybrids do not decay to spin zero mesons, and (ii) TE
hybrids do not decay to mesons with identical spatial wave
functions. The former follows from the 3S1 quantum
numbers of the vertex, while the latter is proved in the
appendixes. These selection rules are typical of hybrid
decay models, and there is reason to believe that they are
generally true [33].
The partial widths obtained in the model generally

follow the pattern of “3S1” models, namely, the leading
partial wave is much larger than the subleading ones.
It is interesting that exceptions do exist; for example,
H2ð1þ −Þ → D�D̄ has an S/D ratio of 0.16. It is possible
that this unusual circumstance can aid in the eventual
identification of hybrid candidates. More generally, partial
wave ratios tend to be closer to unity for decay models in
which the vertex carries 3P0 quantum numbers. In fact this
can be used to distinguish strong decay models in the case
of canonical meson decays [34].
The major open issue in the current work is the selection

of the remaining parameter, the quark-gluon coupling g. In
contrast to all other model parameters, which have their
values fixed by external data or by direct computation, the
quark-gluon coupling is unconstrained. While it may be
natural to assign

g ¼
ffiffiffiffiffiffiffiffiffiffi
4πaS

p
ð17Þ

FIG. 1. Interactions contributing to the hybrid bound state.
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FIG. 2. Spin-averaged meson and hybrid masses. Dark gray
boxes, lattice results with mπ ¼ 400 MeV [11]; light gray boxes,
lattice results withmπ ¼ 236 MeV [12]; solid box, model results.

FIG. 3. Hybrid decay model.
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this is not necessarily accurate. The parameter aS results
from a fit to either the meson spectrum or lattice Wilson
loop computations of the adiabatic interquark potential. It
therefore parametrizes an effective description of non-
perturbative gluodynamics. It is possible, for example, that
aS is approximated by the string splitting [35]

aS ≈
π

12
ð18Þ

at intermediate scales (say, 1=2 fm) and therefore has
little direct contact with g. A third alternative is that
one should use the QCD coupling at the scale of hybrid
mesons, hence

g ≈ gQCDð4.5 GeVÞ ≈ 1.6: ð19Þ
Alternatively, setting g ¼ gQCD at the average gluon
momentum gives g ≈ 2.5.
The natural way to resolve the problem is to set the

coupling from a well-established hybrid decay width.
Unfortunately, no lattice field computations of open flavor
heavy hybrid decay have been made.
Turning to experiment, the quantum number exotic state

Rc0ð4240Þ is reported in the Review of Particle Properties
[36]. The claimed quantum numbers are JPC ¼ 0−−, which
are forbidden to fermion-antifermion systems. The state is
seen to decay to π−ψð2SÞ with a total width of Γ ¼
220 MeV with large errors. Note that the decay mode
implies that the Rc0 is also flavor exotic. A 0−− hybrid can
be accommodated within the current model, but is a TM
hybrid, and therefore heavier than the 4.0–4.5 GeV masses
seen in the lightest multiplets. The poor agreement with
model expectations, the exotic flavor content, and the
closed flavor decay mode make it impossible to use this
state for setting the coupling.

The ψð4260Þ [previously known as the Yð4260Þ] is a
long-standing charmonium hybrid candidate. Its mass is
reported as 4320(6) MeV and width as 55(19) MeV [36].
The state is seen to decay to ππJ=ψ , either directly or via
resonances as f0J=ψ or Zcð3900Þπ. Since the Y does not fit
with well-established quark model expectations [37] it has
been suggested that it is a hybrid candidate, with a natural
identification with H1ð1−−Þ. The lattice predictions for the
mass of this state are 4285(14) MeV at mπ ¼ 400 MeV or
4411(17) MeV at mπ ¼ 236 MeV. The former value looks
promising, so it is unfortunate that decreasing the pion
mass toward its physical value worsens the agreement.
This appears to be a general feature of the computation—
with all higher mass mesons shifting upward in mass by
100–200 MeV (these mesons have an excitation energy of
approximately 1400MeV; thosewith an excitation energy of
approximately 900 MeV shift upward by tens of MeV).
An additional possible problem is that the closed flavor
decay H1ð1−−Þ → ππJ=ψ must be accompanied by a spin
flip, which is generally suppressed. Countering this is the
existence of anomalies in the hadronic transitionsϒðnSÞ →
ππϒðn0SÞ also imply a failure of naive expectations with
respect to “spin flip.” This can happen if intermediate states
such as B�B̄ can propagate for a long time and effectively
decorrelate the heavy quark spin. Indeed, the observation
of theY inZcð3900Þπ indicates that such amechanism could
be relevant here. Thus, although it is tempting, it is not
prudent to set the coupling by comparisonwith theψð4260Þ.
In view of the lack of external information on the value of

g, we proceed with the initial impulse and set g ¼ ffiffiffiffiffiffiffiffiffiffi
4πaS

p
≈

2.73 and bear in mind that the results may require
substantial modification pending the arrival of new infor-
mation. Of course this modification amounts to simply
scaling the results, so at least it is not difficult to make.

TABLE II. Hybrid decay widths (MeV), computed with the mπ ¼ 400 MeV hybrid spectrum. Suppressed channels are denoted as
follows: � � �, quantum number; ø, threshold; 0, selection rule; x, negligible.

State D�D D0D D1LD D1HD D2D D0D� D1LD� D1HD� D2D� DsD�
s Ds0Ds Ds0D�

s Ds1LDs Width

1−− (H1) x � � � ø ø ø ø ø ø ø ø � � � ø ø x
0−þ (H1) x ø ø ø ø � � � ø ø ø ø ø � � � ø x
1−þ (H1) x � � � ø ø ø ø ø ø ø 6 � � � ø ø x
2−þ (H1) x x x x 6 ø ø ø ø ø ø ø ø x

1þþ (H2) x � � � 3 11 x 4 ø ø ø ø � � � ø ø 18
0þ− (H2) x x 21 3 x 4 ø ø ø x x ø ø 28
1þ− (H2) x 12 1 1 x ø ø ø ø 1 6 ø ø 21
2þ− (H2) x 15 3 2 3 2 ø ø ø x 12 ø ø 37

0þþ (H3) � � � � � � 3 13 � � � 10 2 2 ø � � � � � � 3 1 44
1þ− (H3) x 4 6 2 4 6 3 2 x x 4 2 1 34

2þþ (H4) x x 0 17 x 12 9 2 1 x x 6 0 47
1þ− (H4) x 24 8 4 x 10 1 1 x x 28 6 3 85
2þ− (H4) x x 26 6 1 20 5 5 2 x x 12 13 90
3þ− (H4) x x 0 x 10 x x 26 7 x x x 0 43
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Table II presents partial decay widths for the complete
set of low-lying hybrid mesons to a variety of channels. In
this case we take the hybrid masses to be those obtained on
the lattice with mπ ¼ 400 MeV. Although these are some-
what lighter than those obtained with more physical light
quark masses, the calculation illustrates the effect of
assumptions about the hybrid masses and might be relevant
to nature if it is confirmed that the ψð4260Þ does indeed
contain substantial valence gluonic degrees of freedom.
The table reveals that members of the H1 multiplet are

very narrow and should appear as sharp peaks in their final
states. In contrast, all other hybrids have typical hadronic
widths. Of course, this statement relies on the assumed
value of the quark-gluon coupling constant. It is evident
that Sþ P decay modes dominant total widths when these
channels are open. This repeats a rule of thumb found in
previous hybrid decay models, such as Ref. [23].
Table III presents predicted widths when the hybrid

masses are fixed according to the lattice results with mπ ¼
236 MeV [12]. In this case more Sþ P channels open for

theH1 multiplet and these states attain typical charmonium
widths. As an illustration of an application of these
predictions, we show total hybrid widths for mπ ¼
236 MeV hybrid masses in Table IV. Widths have been
normalized by identifying the H1ð1−−Þ as the ψð4660Þ.
(It is worth stressing that this identification is not
entirely satisfactory as the corresponding lattice mass is
4411 MeV.) One observes that the predicted widths happen
to be close to those obtained with our assumed coupling
(Table III).
It is interesting to inquire into the feasibility of using

decay characteristics as a signature of gluonic content.
Table V shows partial decay widths for the cryptoexotic
H1ð1−−Þ at an assumed mass of 4111 MeV and the 43S1
charmonium vector at the same mass. The latter decay rates
have been computed with the “3P0” model [37]. Although
the predicted total widths are similar, it is evident that the
decay patterns are quite different; especially in the Sþ S
channels and in the reversed roles played by D1LD=D1HD
and D2D=D0D� decays.

TABLE III. Hybrid decay widths (MeV), computed with the mπ ¼ 236 MeV hybrid spectrum. Suppressed channels are denoted as
follows: � � �, quantum number; ø, threshold; 0, selection rule; x, negligible.

State D�D D0D D1LD D1HD D2D D0D� D1LD� D1HD� D2D� DsD�
s Ds0Ds Ds0D�

s Ds1LDs Width

1−− (H1) x � � � 8 33 x 25 ø ø ø x � � � ø ø 66
0−þ (H1) x 76 ø ø ø � � � ø ø ø 34 ø ø øø 76
1−þ (H1) x � � � 28 ø ø ø ø ø ø x � � � ø ø 28
2−þ (H1) x x x 1 20 x 16 24 ø x x x x 60

1þþ (H2) x � � � 5 18 x 11 5 x ø x � � � 4 2 45
0þ− (H2) x x 30 5 x 17 x ø ø x x x 1 53
1þ− (H2) x 16 4 3 5 4 x ø ø x 16 x x 48
2þ− (H2) x 16 4 3 6 7 14 5 1 x 20 4 2 82

0þþ (H3) � � � � � � 4 15 � � � 15 7 21 14 � � � � � � 14 6 96
1þ− (H3) x 4 6 3 4 9 11 16 5 x 5 8 5 76

2þþ (H4) x x 0 17 x 15 23 9 14 x x 18 0 96
1þ− (H4) x 17 7 4 x 12 2 4 3 x 31 17 8 105
2þ− (H4) x x 23 6 2 22 10 14 9 x x 28 29 139
3þ− (H4) x x 0 x 9 x x 40 13 x x x 0 62

TABLE IV. Total hybrid widths (MeV). Normalized by assuming H1ð1−−Þ ↔ ψð4660Þ.
H1 H2 H3 H4

1−− 0−þ 1−þ 2−þ 1þþ 0þ− 1þ− 2þ− 0þþ 1þ− 2þþ 1þ− 2þ− 3þ−

70 83 30 66 50 57 53 90 103 81 103 113 154 68

TABLE V. Cryptoexotic H1ð1−−Þ and ψð43S1Þ decay modes (assuming masses of 4411 MeV).

State DD D�D D�D� D1LD D1HD D2D D0D� DsDs DsD�
s D�

sD�
s Width

H1ð1−−Þ 0 0.078 0 8 33 0.0035 25 0 0.2 0 66
ψð43S1Þ 0.4 2.3 16 31 1 23 0 1.3 2.6 0.7 78
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IV. CONCLUSIONS

We have developed a simple model of hybrid structure
that leverages guidance from QCD in Coulomb gauge
and from lattice field theory computations. In particular we
have assumed that an axial constituent gluon provides a
reasonable facsimile of low-lying gluonic degrees of
freedom. Certainly, this is in agreement with recent lattice
computations of the charmonium spectrum. Furthermore,
when the interactions of the constituent gluon are suffi-
ciently tuned (in particular, by including three-body inter-
actions), it is possible to maintain consistency with the
gluelump spectrum and the gluonic adiabatic energy
surfaces. Using these observations as a starting point has
led to a reasonable spin-averaged spectrum shown in Fig. 2
and lends confidence that a more detailed calculation
should be able to provide an accurate representation of
the lowest hybrid multiplets. It will be interesting to
improve the spectrum computation and to include spin
splittings. Having a detailed structure model will also
permit the computation of other observables of interest,
such as radiative couplings.
Adopting a constituent gluon model for hybrid structure

leads naturally to the assumption that quark pair production
from the valence gluon describes strong hybrid meson
decay, resurrecting an old model of Tanimoto. The model
incorporates several familiar selection rules: spin zero
hybrids do not decay to spin zero mesons, TE hybrids
do not decay to identical mesons or mesons with identical
spatial wave functions, and Sþ P wave decay modes are
preferred. We note that the structure of the decay vertex
satisfies the general conditions of Ref. [38], and therefore
hybrid mesons will experience no relative mass shifts if
spin-averaged hadron masses are assumed.
With respect to the present work, the major remaining

issue is the determination of the quark-gluon coupling. The
most likely way forward is a direct lattice computation of
an open flavor decay. Alternatively, the dependence of
hybrid masses on the light sea quark mass evident in
Table VI (the quoted lattice computations are unquenched)
is an indication that relatively large couplings of these
states to the continuum occur. The fact that the mass shifts
are comparable to those of canonical charmonia is also an
indication that the widths predicted here are of the correct
magnitude.
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APPENDIX A: PARAMETERS

Quark model parameters used in the spectrum compu-
tation are as follows:

aS ¼ 0.594; b ¼ 0.16 GeV2; mc ¼ 1.6 GeV;

mg ¼ 0.6 GeV; bg ¼ 6 GeV: ðA1Þ

The first three values are typical of potential quark
models [31], while the last two are obtained in a mean
field computation of the gluonic vacuum structure reported
in Ref. [28]. Additional quark masses required for the
decay computation were taken to be mu¼0.33GeV and
ms¼0.55GeV.
Hybrid masses are obtained from two lattice field compu-

tations of the charmonium spectrum, with hybrids identified
by the strength of state coupling to operators with explicit
gluonic fields. These masses are displayed in Table VI.
The wave function width parameters used in the decay

calculation are given in Table VII. These are drawn from
the cited references for mesons and are obtained from our
variational calculation for hybrids.

TABLE VI. Lattice hybrid charmonium spectra employed in
the computation.

Multiplet JPC Mass (MeV) [11] Mass (MeV) [12]

H1 1−− 4285(14) 4411(17)
0−þ 4195(13) 4279(18)
1−þ 4217(16) 4310(23)
2−þ 4334(17) 4456(21)

H2 1þþ 4399(14) 4470(25)
0þ− 4386(09) 4437(27)
1þ− 4344(38) 4438(23)
2þ− 4395(40) 4502(18)

H3 0þþ 4472(30) 4591(46)
1þ− 4497(19) 4571(27)

H4 2þþ 4492(21) 4623(32)
1þ− 4497(39) 4665(53)
2þ− 4509(18) 4631(26)
3þ− 4548(22) 4644(34)

TABLE VII. Gaussian width parameters (MeV).

State cū [39] cc̄ [39] cū [40] cs̄ [40] Hybrid ðα; βÞ
Ps 430 710 600 650
V 370 660 520 560
1P1 330 500 470 490
3PJ 320 490 430 460
3DJ 300 450 410 400
1D2 300 450 430 440
Ps(2S) 310 480 450 480
V(2S) 300 480 430 460
Ps(3S) 280 410 410 420
V(3S) 270 410 400 420

H1 415, 680
H2 405, 630
H3 405, 600
H4 405, 620
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Mixed open flavor P-wave states are defined via a
rotation from quark model states with fixed charge con-
jugation as follows:

D1L ¼ cosðθÞj1P1i þ sinðθÞj3P1i;
D1H ¼ − sinðθÞj1P1i þ cosðθÞj3P1i; ðA2Þ

with similar relationships for the Ds1 states. The mixing
angle arises from a tensor spin-dependent interaction in the
potential quark model. A specific model computation [40]
yields the results

θ1PðcuÞ ¼ −25.7°; θ2PðcuÞ ¼ −29.4°;

θ1PðcsÞ ¼ −37.5°; θ2PðcsÞ ¼ −30.4°: ðA3Þ

By way of comparison, these angle are θ1P ¼ −54.7° or
35.3° in the heavy quark limit.

APPENDIX B: HYBRID WAVE
FUNCTIONS

We seek to estimate spin-averaged hybrid masses
with the variational ansatz of Eqs. (3) and (15). In the
case of equal quark masses the kinetic energy operators
are purely radial and the angular integrals of Eq. (16) can be
performed. The result is diagonal in the quantum numbers
and of the form (delta functions in quantum numbers are
suppressed in the following)

hKi ¼
Z

k2dk
ð2πÞ3

q2dq
ð2πÞ3 jφjgðkÞj2jφlðqÞj2

×

�
2mc þ

q2

mc
þ k2

4mc
þ 1

2

�
ωðkÞ þ k2

ωðkÞ
��

: ðB1Þ

The quark-antiquark interaction gives the contribution

hVqq̄i ¼ þ 1

6

Z
d3q
ð2πÞ3

d3Q
ð2πÞ3 φlðqÞYlml

ðq̂Þφ�
lðq −QÞ

× Y�
lml

ð dq −QÞVðQÞ

¼ þ 1

6

Z
x2dxjφlðxÞj2VðxÞ: ðB2Þ

Here V is defined via KABðrÞ ¼ δABVðrÞ [see Eq. (12)].
It is worth remarking that, although the Fourier transform

of a linear function does not exist, it is easy to convince
oneself that this should be irrelevant when integrating
against strongly convergent functions such as Gaussians.
Indeed, regulating the linear potential yields a Fourier
transform

F ðxÞ ¼ −
8π

ðk2 þ ϵ2Þ3 ðk
2 − 3ϵ2Þ; ðB3Þ

which gives correct results in integrals like the above when
the limit as ϵ goes to zero is taken.
The quark-gluon and antiquark-gluon contributions

to the energy contain factors of 1
2
½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωðkþQÞ=ωðkÞp þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðkÞ=ωðkþQÞp �. This is equal to unity for large k and

for small k and kþQ. This leaves a small and incon-
sequential region where this factor deviates from unity,
hence we simply set this equal to 1 (doing so permits doing
the relevant integrals analytically). Explicit expressions are

hHqgi ¼ hHq̄gi ¼ −
3

2

Z
d3k
ð2πÞ3

d3q
ð2πÞ3

d3Q
ð2πÞ3 VðQÞφjgðkÞφlðqÞYlml

ðq̂Þφ�
j0g
ðkþQÞφ�

l0 ðq −Q=2ÞY�
l0m0

l
ð dq −Q=2Þ·

×
3

4π
D1�

b0ðk̂ÞD1
b00ð dkþQÞh1mg1ij1bih1m0

g1ij1b0i·
× hlml1mgjLMLihl0m0

l1m
0
gjL0M0

LihSMSLMLjJMihSMSL0M0
LjJ0M0i: ðB4Þ

The integrals over k and q can be performed leaving relatively simple functions ofQ. Finally, the integral overQ can also be
evaluated analytically. Intermediate results for the relevant cases of l ¼ 0 and l ¼ 1 are

hVqgil¼0 ¼ −
3

2

Z
Q2dQ
2π2

VðQÞe−Q2=16α2e−Q
2=4β2

�
1 −

Q2

6β2

�
ðB5Þ

and

hVqgil¼1 ¼ −
3

2

Z
Q2dQ
2π2

VðQÞe−Q2=16α2e−Q
2=4β2

�
1 −

Q2

24α2
−

Q2

6β2
þ Q4

480α2β2
fL

�
; ðB6Þ

with f0 ¼ 0, f1 ¼ 5, and f2 ¼ 3. In all cases J ¼ J0 emerges as expected.
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APPENDIX C: HYBRID DECAY

We consider the decay H → BðKÞCð−KÞ, where K is
the momentum of the meson B. With this notation, the
expression for the decay amplitude reads

AðKÞ¼−
2

3
g
Z

d3k
ð2πÞ3

d3q
ð2πÞ3Ψjg;lðk;qÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jgþ1

4π

r
D

jg�
mgμðk̂ÞχðξÞμ;λ

·

�
1

2
m
1

2
m̄

				SMS

�
hlml;jgmgjLMLihSMS;LMLjJMi

·
1ffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp χ†sσχ̃s0 ·ϵðk;λÞ ·ϕ�

B

�
q−k=2−

mc

mqþmc
K

�
×

�
1

2
m
1

2
s0
				SBMSB

�
hSBMSBLBMLBjJBMBi

·ϕ�
C

�
qþk=2−

mc

mqþmc
K

��
1

2
s
1

2
m̄

				SCMSC

�
×hSCMSCLCMLCjJCMCi: ðC1Þ

This can be simplified by noting that

χ†sσχ̃s0ϵk;λ ¼ −
ffiffiffi
2

p jsþs0jD1
sþs0;λðkÞ; ðC2Þ

combining the two Wigner functions, and performing
the sums over λ and λ0. For a TE gluon with jg ¼ 1 one
obtains ffiffiffi

2
p jsþs0 jð−Þsþs0 h1mg1 − ðsþ s0Þj1biD1�

b0ðk̂Þ: ðC3Þ

The integral over k̂ depends on the product ϕBϕC, which is
even under k → −k if the wave functions are identical.
Thus we derive the selection rule that TE hybrids cannot
decay to pairs of identical mesons.
Decay rates were computed by performing sums in

amplitudes analytically with Mathematica. The resulting
six-dimensional integrals were then evaluated numerically
and contracted with the Clebsch-Gordan coefficients to
form partial widths of good total spin and angular momen-
tum. It was crucial to set the final meson momentum along
the ẑ axis to make the last steps feasible.
Finally, for large g, it is the availability of phase space

that determines the width of most hybrids. Relevant thresh-
olds for the mπ ¼ 400 MeV case are shown in Fig. 4.
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