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S U M M A R Y
Simulation-based probabilistic inversions of 3-D magnetotelluric (MT) data are arguably the
best option to deal with the nonlinearity and non-uniqueness of the MT problem. However,
the computational cost associated with the modelling of 3-D MT data has so far precluded
the community from adopting and/or pursuing full probabilistic inversions of large MT data
sets. In this contribution, we present a novel and general inversion framework, driven by
Markov Chain Monte Carlo (MCMC) algorithms, which combines (i) an efficient parallel-in-
parallel structure to solve the 3-D forward problem, (ii) a reduced order technique to create
fast and accurate surrogate models of the forward problem and (iii) adaptive strategies for
both the MCMC algorithm and the surrogate model. In particular, and contrary to traditional
implementations, the adaptation of the surrogate is integrated into the MCMC inversion. This
circumvents the need of costly offline stages to build the surrogate and further increases
the overall efficiency of the method. We demonstrate the feasibility and performance of our
approach to invert for large-scale conductivity structures with two numerical examples using
different parametrizations and dimensionalities. In both cases, we report staggering gains in
computational efficiency compared to traditional MCMC implementations. Our method finally
removes the main bottleneck of probabilistic inversions of 3-D MT data and opens up new
opportunities for both stand-alone MT inversions and multi-observable joint inversions for the
physical state of the Earth’s interior.

Key words: Composition and structure of the mantle; Magnetotellurics; Inverse theory;
Numerical approximations and analysis; Numerical modelling.

1 I N T RO D U C T I O N

The magnetotelluric (MT) method (Tikhonov 1950; Cagniard 1953; Vozoff 1990) is a passive electromagnetic (EM) technique that aims
to determine the electrical conductivity distribution of the subsurface at depths from tens of metres to hundreds of kilometres (Vozoff
1990). Given the strong sensitivity of the electrical conductivity of rocks to temperature, hydrogen and fluid/melt content inside the Earth
(Karato 1990; Roberts & Tyburczy 1999; Ten Grotenhuis et al. 2005; Wang et al. 2006; Dai & Karato 2009; Yoshino et al. 2009, 2012;
Yoshino 2010; Karato 2011; Evans 2012; Karato & Wang 2013; Selway 2014; Khan 2016), MT has become one of the most useful and
cost-efficient techniques to identify deep fluid pathways and associated mineralization events (e.g. Ogawa et al. 2001; Wei et al. 2001),
characterize pluming systems in active volcanic areas (e.g. Heise et al. 2008; Comeau et al. 2016), detect partial melting in the deep
mantle (e.g. Evans et al. 2005; Selway et al. 2019) and study the thermochemical structure of the lithosphere in general (e.g. Fullea
et al. 2011; Meqbel et al. 2014; Jones et al. 2017). These and other features of MT gave impetus for recent data acquisition programs
over large grids such as the MT component of the USArray in US (www.usarray.org/researchers/obs/magnetotelluric), the AusLAMP
program in Australia (www.ga.gov.au/about/projects/resources/auslamp) and the MT component of Sinoprobe in China (www.sinoprobe.org).
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Similarly, the availability of high-quality magnetic field measurements with uniform global coverage done by satellite missions (e.g. see
Sabaka et al. 2004; Olsen et al. 2006; Kuvshinov 2008; Olsen et al. 2013) makes it now possible to study lithospheric and whole-mantle
conductivity anomalies at global scale (e.g. Kuvshinov & Olsen 2006; Kuvshinov et al. 2006; Kelbert et al. 2009; Kuvshinov & Semenov
2012; Semenov & Kuvshinov 2012).

The formal combination of MT measurements with gravity and seismic data via joint inversions (e.g. Moorkamp et al. 2007; Jegen et al.
2009; Moorkamp et al. 2010; Vozar et al. 2014; Bennington et al. 2015; Jones et al. 2017) also holds great potential, as these data sets have
complementary sensitivities to the physical state of the lithosphere. For instance, specific types of seismic data can be used in combination
with gravity observations to provide the background (or regional) temperature structure and compositional layering (Khan et al. 2008; Afonso
et al. 2013a,b; Jegen et al. 2009; Afonso et al. 2016a). By accounting for the effect of this background in MT data, conductivity anomalies
associated with factors other than temperature and bulk composition (e.g. fluid content, presence of melt and anomalous mineral assemblages)
could be identified more reliably.

Due to the potential of MT methods, significant efforts have been made in the past two decades to develop robust and efficient forward
and inversion algorithms (e.g. deGroot Hedlin & Constable 1990; Mackie & Madden 1993; Newman & Alumbaugh 2000; Zhdanov et al.
2000; Newman & Alumbaugh 2000; Sasaki 2001; Farquharson et al. 2002; Siripunvaraporn et al. 2005; Han et al. 2008; Avdeev & Avdeeva
2009; Siripunvaraporn & Egbert 2009; Egbert & Kelbert 2012; Key 2016). In particular, deterministic methods have been successfully
applied in the inversion of high-dimensional MT problems and currently represent the most widely used techniques for inverting 3-D MT
data (Mackie et al. 1996; Zhdanov et al. 2010; Tietze & Ritter 2013; Meqbel et al. 2014; Yang et al. 2015; Robertson et al. 2020). Some
popular 3-D deterministic inversion algorithms include those of Mackie & Madden (1993), Newman & Alumbaugh (2000), Newman & Boggs
(2004), Kelbert et al. (2008, 2014), Siripunvaraporn et al. (2005), Siripunvaraporn & Egbert (2009) and Egbert & Kelbert (2012), based
on finite-difference forward solvers; the algorithms developed by Zhdanov & Hursan (2000), Zhdanov et al. (2000) and Avdeev & Avdeeva
(2009), based on an integral equation formulation of the forward solver; and that of Haber et al. (2004), based on a finite-element (FE)
formulation. A review of the different methods available for inversion of 3-D MT data can be found in Avdeev (2005) and Siripunvaraporn
(2012).

The main advantage of deterministic inversions is that they typically require only a few tens or hundreds of forward evaluations to
achieve convergence. This is particularly important to make large-scale 3-D MT inversions practical, as the forward problem is notoriously
computationally expensive. However, deterministic solutions of nonlinear problems often depend on the choice of the initial model (to be
perturbed during the inversion) and on arbitrary regularization parameters to smooth-out the solution (e.g. Robertson et al. 2020). It is well
known that if our bias is inappropriate for the problem at hand, the regularized solution can be far from the true solution (Shen et al. 2012;
Aster et al. 2018). In addition, the linearization of the problem and optimization algorithms used in determinisitc inversions are tailored for
the search of a single optimal or best-fitting model. This makes it difficult, if not impossible, to perform thorough statistical analysis of model
uncertainties and (perhaps more importantly) non-uniqueness.

Probabilistic inversion methods (Gregory 2005; Tarantola 2005; Mosegaard & Hansen 2016) are better suited to handle these limitations.
They do not focus on single best solutions but rather on providing a full probability distribution over the whole model parameter space.
This distribution, known as the posterior distribution, contains all the information about the unknown parameters given data and modelling
assumptions and thus, it represents the most general solution to the inverse problem. The main benefits of probabilistic solutions to the
MT inverse problem (including full consideration of its nonlinear nature) have been recently highlighted by Conway et al. (2018), Brodie
& Jiang (2018), Jones et al. (2017), Chen et al. (2012) and Rosas-Carbajal et al. (2013) in the context of 1-D and 2-D inversions driven
by Markov Chain Monte Carlo (MCMC) algorithms. However, for the case of high-dimensional 3-D MT inversions, the large number of
costly forward computations required (∼ 105–107) has so far rendered it impractical. For instance, Rosas-Carbajal et al. (2015) performed
a time-lapse 3-D MCMC inversion using a Legendre moment decomposition of a saline plume to reduce the dimensionality of the inverse
problem to only fourteen parameters. Despite this drastic reduction of the parameter space, convergence was achieved after 60 d of
computation.

It is clear that if fully probabilistic inversions of high-dimensional 3-D MT problems are to become a reality, significantly more
efficient (yet accurate) forward solvers need to be developed. This is precisely the purpose of this work, which presents a new reduced
order strategy to solve the probabilistic 3-D MT inverse problem. The new approach is based on a judicious combination of a reduced
order technique (Reduced Basis Method) to construct fast and accurate surrogate models, an efficient parallel-in-parallel structure of the
3-D forward problem and adaptive strategies for both the surrogate and the MCMC algorithm. We will illustrate the feasibility and general
performance of our approach with two numerical examples of complex, lithospheric-scale conductivity structures. In particular, we will
demonstrate that probabilistic inversions of high-dimensional 3-D MT problems are now a practical option, even with modest computational
resources.

The remainder of the paper is structured as follows: Section 2 reviews the general formulation of the probabilistic inverse problem.
Section 3 introduces the forward problem in terms of primary and secondary fields, and the associated variational formulation. Sections 4 and
5 describe the Reduced Basis (RB) Method and our combined RB+MCMC strategy, respectively. Section 6 presents numerical examples that
illustrate the benefits and limitations of the method in the context of stand-alone 3-D MT inversions for large-scale lithospheric structures.
Section 7 deals with practical aspects of our approach, further improvements and remaining challenges. Lastly, the main outcomes and results
of this work are summarized in Section 8.
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2 P RO B A B I L I S T I C I N V E R S E P RO B L E M S

2.1 Bayesian inversion

The Bayesian approach (sometimes referred to as the statistical or probabilistic approach) to the inverse problem recognizes that the data (d)
and the model parameters (m) that characterize the system will never be known with absolute certainty and it considers them to be random
variables represented by an associated probability distribution (e.g. Tarantola et al. 1982; Gilks et al. 1995; Sen & Stoffa 1996; Gregory 2005;
Mosegaard & Hansen 2016). The most general solution to the inverse problem is therefore a posterior probability density function (PDF)
over the parameter space which is formally given by the Bayes’ rule

P(m|d) = P(d|m)P(m)

P(d)
, (1)

where P(m|d) is the posterior conditional PDF of m given d. P(d|m) is the conditional PDF of d given m, P(m) is the prior PDF of the
model parameters m and P(d) is the prior PDF of the data. When a particular observation is made, P(d|m) is considered a function of m and
referred to as the likelihood,L(m). Considering this and the fact that P(d) is independent of m, eq. (1) can be written as

P(m|d) ∝ L(m)P(m). (2)

In the most general case of high-dimensional and nonlinear problems with complex priors, the only practical solution for eq. (2) is based
on the construction of a Markov Chain that has P(m|d) as their equilibrium or stationary distribution (Gilks et al. 1995; Gregory 2005;
Tarantola 2005). MCMC algorithms are designed to produce unbiased approximations of the true posterior by repeatedly drawing models mt

and evaluating their posterior probability P(mt |d).
In this work, we use the Metropolis–Hastings (MH) algorithm (Metropolis et al. 1953; Hastings 1970) combined with the Adaptive

Metropolis (AM) approach of Haario et al. (2001). At the core of these algorithms is a proposal distribution, q( · | · ), used to generate new
moves or trials. In principle, the proposal distribution can be chosen rather freely from a large family of distributions (cf. Gilks et al. 1995;
Gregory 2005). In practice, however, the actual form of q( · | · ) exerts a strong influence on the efficiency of the MCMC algorithm. The AM
algorithm alleviates the problem of choosing an optimal proposal before the MCMC simulation starts by updating the proposal at regular
intervals according to the statistics of the chain. The reader is referred to Haario et al. (2001) for further details on the AM algorithm.

At each step of the MCMC simulation, a new move in the parameter space (mt ) is proposed from q( · | · ) and its posterior probability is
compared to that of the current state of the chain (mt−1). If the new proposal has a higher probability than the current state, it is accepted as
part of the chain and the current position is updated to the new state. If the new proposal has a lower probability than the current state, it is
accepted with probability α(mt−1, mt ), defined as

α(mt−1, mt ) = min

{
1,

L(mt )P(mt ) q(mt−1|mt )

L(mt−1)P(mt−1) q(mt |mt−1)

}
, (3)

where we have assumed that the new proposal is conditional on the current state of the chain (Gilks et al. 1995; Gregory 2005). Details about
the proposal distribution and the AM algorithm relevant to this work can be found in Appendix B.

2.2 The likelihood function

The likelihood function is a measure of the distance between the observed data and the solution of the forward model, that is, it is determined
by the statistical distribution of the data errors. Under the common assumption of additive independent Gaussian errors, the likelihood function
is given by:

L(m|d) = 1

(2π )N/2
∏N

i=1 si

exp

[
−1

2

N∑
i=1

(
gi (m) − di

si

)2
]

, (4)

where N is the number of independent observations, si denotes the standard deviation of the ith data error and g(m) is the data predicted by
the forward problem for the model m.

3 T H E M A G N E T O T E L LU R I C F O RWA R D P RO B L E M

3.1 Magnetotelluric equations

The basis of the MT method is the EM induction problem, viz. EM fields are induced within the Earth by EM fields that propagate
perpendicular to the surface of the Earth as a plane monochromatic wave of frequency ω. The induced EM fields satisfy the following
time-harmonic Maxwell’s partial differential equations:

∇ × H = σE, (5a)
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∇ × E = −iωμ0H, (5b)

where E is the electric field (V m−1), H is the magnetic field (A m−1), μ0 is the magnetic permeability of free space (Vs A−1 m−1) and σ is
the electrical conductivity of the medium (S m−1).

3.2 Variational formulation

This paper follows the formulation of Zyserman & Santos (2000) where the electrical conductivity distribution in a domain � ∈ R3 is
considered as the superposition of a background or primary conductivity of a layered Earth (σ p) and an additional conductivity associated
with the presence of 3-D anomalies (σ s). This formulation allows to rewrite eqs (5) in terms of primary fields (Hp and Ep) induced in the
layered Earth and secondary fields (Hs and Es) which are generated by the presence of the conductivity anomalies. Using the absorbent
boundary conditions defined by Sheen (1997), our MT problem in 3-D is formulated as follows:

Find Es and Hs in a domain � ∈ R3 such that,

σEs − ∇ × Hs = −F = −σsEp in �, (6a)

iωμ0Hs + ∇ × Es = 0 in �, (6b)

(1 − i)Pτ aEs + ν × Hs = 0 on ∂� ≡ 
, (6c)

where 
 ≡ ∂� is the boundary of the domain � and a is defined as a = (σ /2ωμ0)1/2. In the first term of eq. (6c), Pτϕ = ϕ − ν(ν · ϕ) refers
to the projection of the trace of any vector ϕ on 
 where ν is the unit outer normal to 
.

Omitting the subscripts for the secondary fields, the variational formulation of the mixed problem solved in eqs (6) reads as follows
(Douglas et al. 2000):

Find (E, H) in the suitable spaces V × W such that,

(σE,ϕ) − (H, ∇ × ϕ) + (1 − i)〈Pτ aE, Pτϕ〉
 = (F,ϕ) ϕ ∈ V, (7a)

iωμ0(H, ψ) + (∇ × E, ψ) = 0 ψ ∈ W . (7b)

3.3 Numerical forward solution

Numerical solutions to the variational problem in eqs (7) are obtained using a non-conforming Galerkin FE method (Douglas et al. 1999,
2000; Zyserman & Santos 2000). This requires finding (Eh, Hh) ∈ Vh × Wh such that,

(σEh, ϕ) −
Ne∑
j

(Hh, ∇ × ϕ)� j + (1 − i)〈〈Pτ aEh, Pτϕ〉〉
 = �(ϕ) ∀ϕ ∈ Vh, (8a)

iωμ0(Hh, ψ) +
Ne∑
j

(∇ × Eh, ψ)� j = 0 ∀ψ ∈ Wh, (8b)

where Ne is the number of non-overlapping parallelepipeds �j such that � = ∪j�j, j = 1,. . . , Ne; ϕ and ψ are the set of FE shape functions
for the electric and magnetic field, respectively, and NFE and MFE are the degrees of freedom for each field. The FE subspaces Vh ⊂ V and
Wh ⊂ W are defined as

Vh = span{ϕ1, ..., ϕNF E }, (9a)

Wh = span{ψ1, ..., ψ MF E }. (9b)

The probabilistic behaviour of the 3-D MT inverse problem is introduced when we assume that the electrical conductivity is a random
field of the form σ (x, θ ) where x ∈ � is the vector position and θ ∈ � refers to the randomness, being � the set of all possible outcomes of
θ . For a specific sample of σ (x, θ ), the approximate electric and magnetic field on each �j can be expressed in terms of the shape functions
as follows:

Eh(x, θ ) =
NF E∑
α=1

εα(θ )ϕα(x), (10)

Bh(x, θ ) =
MF E∑
η=1

hη(θ )ψη(x), (11)

where εη(θ ) and hα(θ ) are the unknown coefficients to be determined for a that sample σ (x, θ ).
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Introducing eqs (10) and (11) into eqs (8) and selecting one shape function at the time ϕn, n = 1, . . . , NF E and ψm, m = 1, . . . , MF E

we obtain the following algebraic system of equations for the sample σ (x, θ ):

(
σ (x, θ )

NF E∑
α=1

εα(θ )ϕα(x),ϕn(x)
)

−
Ne∑
j

( MF E∑
η=1

hη(θ )ψη(x), ∇ × ϕn(x)
)

� j

+ (1 − i)〈〈Pτ a
NF E∑
α=1

εα(θ )ϕα(x), Pτϕ
n(x)〉〉
 = �(ϕn(x)) ∀ϕn, (12a)

iωμ0

( MF E∑
η=1

hη(θ )ψη(x),ψm(x)
)

+
Ne∑
j

(
∇ ×

NF E∑
α=1

εα(θ )ϕα(x),ψm(x)
)

� j

= 0 ∀ψm. (12b)

Eqs (12) can be further simplified as the choice of the shape functions establishes a relationship between hη and εα (see Douglas et al.
2000; Zyserman & Santos 2000). When computing the integral over an element �j, the first term of eq. (12b) is different from zero only when
η = m allowing the coefficients hη of eq. (12b) to be be expressed in terms of εα and replaced in eq. (12a). This simplification results in a
linear system of equations where the unknown is a vector U with the coefficients εα for the approximated electric field in the whole domain.
This system of equations can be represented in the following matrix form:

K (θ )U(θ ) = F(θ ), (13)

where K is a sparse and symmetric stiffness matrix of size NFE × NFE and F is the force vector of size NFE × 1.
In our implementation of the original code of Zyserman & Santos (2000), the system of eqs (13) is solved using the MUlti-frontal

Massively Parallel Solver (MUMPS) version 5.1.2 (Amestoy et al. 2001, 2006). This allows us to define an efficient parallel-in-parallel
structure. The first level of parallelization involves assigning a block of np processors to each frequency (i.e. parallelization by frequencies).
The second level involves parallelizing the solution of the actual forward problem (eqs 13) for each frequency using MUMPS and the np
processors in each block. This structure reduces the computational time of each forward solution by ∼ 80 per cent, regardless of the number of
frequencies used. Results for standard 3-D MT benchmarks using this implementation are provided in Section 1 of the Supporting Information.

Despite the parallel strategy described above, the computational time taken by the forward problem remains the main limitation preventing
its use in MCMC-driven probabilistic inversions of 3-D MT data. The following section presents a novel strategy based on reduced order
modelling that overcomes this limitation.

4 R E D U C E D B A S I S

In order to ameliorate the computational burden of probabilistic inversions and optimization problems, various methods for reducing the
cost of the full (high-fidelity) forward problem have been proposed (see reviews in Frangos et al. 2010; Peherstorfer et al. 2018). Among all
available techniques, the projection-based RB method (Patera et al. 2007; Florentin & Dı́ez 2012; Quarteroni et al. 2015; Hesthaven et al.
2016) is particularly well suited for our purposes due to its strong connection to FE discretizations, its implementation simplicity and its
outstanding performance in situations where the same physical problem needs to be solved many times for different input parameters (as is
the case in MCMC-driven inversions). In the RB method, the solution of every new model (i.e. forward problem) is sought as a projection
onto a space built from previous high-fidelity solutions called bases. The space containing these high-fidelity solutions is referred to as the
reduced basis. Previous work has shown that RB can speedup the numerical solutions of complex problems by several orders of magnitude
without compromising the accuracy of the solutions (e.g. Rozza et al. 2007; Chen et al. 2010; Lieberman et al. 2010; Florentin & Dı́ez 2012;
Rozza et al. 2013; Cui et al. 2015; Ortega-Gelabert et al. 2020). In this paper, we will show that staggering gains in computational time can
also be achieved for the 3-D MT problem. The reader is referred to Quarteroni et al. (2011, 2015), Benner et al. (2017) and Hesthaven et al.
(2016) for more details on RB methods and their applications to a range of problems.

4.1 Reduced Basis solution

The RB approach used in this paper (cf. Florentin & Dı́ez 2012) disassociates the discretization space (�) and the stochastic space (�) in a
sense that the spatial discretization used to find the high-fidelity FE solution is not allowed to vary across the MCMC simulations, that is, the
stochasticity is only assigned to the conductivity distribution, not to the FE discretization. Since the coefficients hη for the magnetic field can
be expressed as functions of the coefficients εα for the electric field, the low-fidelity RB solution, URB, seeks to approximate the electric field
only,

URB(θ ) ≈ U. (14)

The main idea behind the RB method is to generate a subset VRB of Vh with dimension NRB � NFE such that,

VRB = span{V1, V2, . . . , VNRB } ⊂ Vh, (15)

where the associated basis vectors Vi are defined as high-fidelity FE solutions of the system of eqs (13) for certain realizations of σ (x, θ ). The
generation of these bases will be described in Section 5 and we assume, for the time being, that we have an available VRB . While performing
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the probabilistic inversion, the solution of eq. (13) for a new sample σ (x, θ ) is first sought as a linear combination of the basis vectors in VRB:

URB(x, θ ) =
NRB∑
i=1

ai (θ )Vi = VR Ba(θ ), (16)

where VR B = [V1, V2, . . . , VNRB ]NF E ×NRB and a(θ ) = [a1, a2, . . . , aNRB ] is the vector of unknown coefficients accompanying the bases Vi .
Introducing URB(x, θ ) into eq. (13) and multiplying both sides of the equation by V T

R B , we obtain:

(VR B
T K (θ )VR B)a(θ ) = VR B

T F(θ ). (17)

Defining K R B(θ ) := VR B
T K (θ )VR B and FRB(θ ) := VR B

T F(θ ), we can rewrite eq. (17) to obtain the following system of equations:

K R B(θ )a(θ ) = FRB(θ ), (18)

where K R B is the RB matrix of size NRB × NRB and FRB is the force vector of size NRB × 1.
The RB solution, URB(θ ), for a particular sample σ (x, θ ) is then found by solving the system of eqs (18) for the coefficients a(θ ) and

substituting them into eq. (16). Note that the linear system of eqs (18) is of size NRB � NFE and thus significantly less expensive than the
complete FE system of eqs (13) of size NFE.

4.2 Error estimation

Once the RB solution is obtained for a particular sample σ (x, θ ) and a particular basis VR B , it is necessary to evaluate whether the basis was
sufficiently rich to produce an accurate RB solution. Much work has been done to define reliable error estimators and to certify the accuracy
of the RB solution (Chen et al. 2010; Quarteroni et al. 2011; Hesthaven et al. 2012, 2016). In this paper, we define the approximation error
between the RB and the FE solution at every step of the MCMC simulation as:

ERB := URB − U. (19)

Since U is the high-fidelity FE solution that we do not want to compute, we multiply ERB by the stiffness matrix K to obtain the so-called
residual of the RB solution:

K ERB = K URB − K U. (20)

Replacing eq. (13) into eq. (20), dividing by the vector of forces F and computing the L2 norm, we obtain the following RB relative
error:

RRB := ||K URB − F||
||F|| (21)

which is an adequate estimator of the energy norm of the RB solution error (Quarteroni et al. 2015; Hesthaven et al. 2016). At this stage, a
criterion is necessary to evaluate the accuracy of the approximation. The simplest criterion involves defining a tolerance β in a way that the
RB solution becomes admissible only if RRB ≤ β. In the case of a relative error larger than β, the RB solution is considered unacceptable
and the high-fidelity FE solution is computed. This new FE solution is added to the space VRB (i.e. enrichment of VRB), which is then used
in subsequent MCMC steps. This process is further discussed in the following section.

5 A C O M B I N E D R B +M C M C M E T H O D F O R 3 - D M T I N V E R S I O N P RO B L E M S

In traditional implementations of RB methods, the creation of the basis (computationally expensive as it involves many solutions of the
high-fidelity FE problem) is computed in an offline stage at specific locations within the parameter space defined by an heuristic criterion or
greedy procedure (Rozza et al. 2007, 2009). During the subsequent probabilistic inversion or simulation process, known as the online stage,
these bases are used to obtain the fast low-fidelity RB solutions (Prud’Homme et al. 2002; Hess & Benner 2013; Quarteroni et al. 2015;
Hesthaven et al. 2016; Hess 2016). This type of approach is particularly useful when the number of parameters is small and when only a
small number of high-fidelity solutions are able to represent the complete parameter space.

In the context of high- and ultrahigh-dimensional (>103 parameters) probabilistic inversions, it is practically impossible to pre-explore
the parameter space in an offline stage to create relevant bases that will guarantee accurate solutions within the entire parameter space,
but most importantly, within the (so far unknown) high-probability regions. Put differently, in order to guide the creation of the relevant
basis, we would have to know a priori the regions of high probability, which implies that we already have a solution to the inverse problem.
While this is in principle possible by splitting the inversion into three stages—for example, an initial low-dimensional (fast) deterministic
inversion, the offline creation of the relevant basis and a final MCMC inversion with the RB surrogate—in the most general case, an adaptive
MCMC approach where the basis is computed and adapted during the MCMC simulation seems to be a more effective concept. This is
particularly relevant to our goals because of the intrinsic behaviour of MCMC inversions, which typically start in a region of low probability
(i.e. bad models) and quickly converge to a restricted region in the parameter space where the most probable models reside. Therefore, the
RB solutions that may have been relevant to the initial stages of the chain will become less relevant when the chains have converged to the
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high probability regions. For the same reason, fewer basis enrichment (high-fidelity solutions) are needed as the chain converges, because the
RB space becomes rich enough to provide good solutions within the restricted parameter space. Florentin & Dı́ez (2012), Cui et al. (2015),
Yan & Zhou (2019), Zhang et al. (2019) and Ortega-Gelabert et al. (2020) have introduced similar ideas. Ortega-Gelabert et al. (2020), in
particular, demonstrated the benefits of this type of RB adaptation and applied it in MCMC inversions of complex geodynamic problems.
We emphasize that this approach does not preclude the option of using bases created in previous simulations. Indeed, bases generated during
a previous inversion or during a parallel MCMC chain (if different chains can exchange information) can be easily re-used to improve the
performance of both subsequent and simultaneous parallel inversions.

5.1 A hybrid approach for high-dimensional probabilistic inversions

Our hybrid approach is similar to that put forward by Ortega-Gelabert et al. (2020) in that it automatically updates/enriches the RB space VR B

during the MCMC inversion by adding high-fidelity solutions (i.e. new bases) as needed by the evolution of the chain. The main differences
between the two approaches are in the way they estimate the error introduced by the RB approximation and in the implementation of the
adaptive scheme for both the basis and the MCMC algorithms. For instance, our parallel structure allows us to create and adapt the basis
per frequency and orientation of the EM fields. This adaptation is also controlled by the use of variable tolerance and an orthonormalization
procedure (described below). In the case of the MCMC algorithm, we have implemented an AM algorithm (Section 6.3) to update the proposal
and incorporated a modified ratio that accounts for Delayed Rejection (Haario et al. 2006; Mira et al. 2001) when a new high-fidelity solution
is computed and the proposed sample is rejected (described below).

The basic steps of our RB+MCMC algorithm (Algorithm 1) can be summarized as follows:

(i) In the case of having previous solutions from an offline stage or from previous probabilistic inversions, we proceed to load these solutions
as the initial basis VR B . Otherwise, we compute the high-fidelity solution of the starting model (i.e. starting point of the Markov Chain). In
MT, each forward solution requires the computation of two (typically orthogonal) components of the EM fields per frequency i, i = 1, . . . ,
nfreq. Here, these orthogonal solutions per frequency are referred to as Si and Si

⊥.
(ii) At every proposed sample, mt = σt (x, θ ), we compute the fast RB solutions (URB

Si
and URB

Si
⊥ ) and their relative RB errors (RRB

Si
and

RRB
Si
⊥ ) for all frequencies.

(iii) If all the relative RB errors are smaller than a prescribed tolerance β, we accept URB
Si

and URB
Si
⊥ as good approximations of the

high-fidelity solution for all frequencies. The corresponding approximate likelihood, L(mt ), and acceptance probability, α(mt−1, mt ), are
computed and the sample is either accepted or rejected according to the MH criterion.
(iv) If any RRB is larger than β, the high-fidelity FE solution for that frequency and component of the EM field is computed at the

proposed sample mt = σt (x, θ ). This solution is added as a new basis into the corresponding space V Si

R B or V Si
⊥

R B , thus enriching the RB
surrogate.
(v) Since the posterior probabilities of the proposed sample mt and that of the current sample mt−1 are no longer comparable (i.e. they were
computed with different solvers, FE and RB, respectively), we recompute URB

it−1 (and the associated likelihood) using the newly enriched
RB space. If mt is rejected by the MH criterion, a new trial m∗

t is proposed in the vicinity of mt and its likelihood is computed with the newly
enriched RB space. This new trial m∗

t is accepted/rejected according to a modified Metropolis ratio to account for the delayed rejection (i.e.
two proposals) step (see e.g. Mira et al. 2001; Haario et al. 2006).

Step five above is critical to keep the ergodicity of the algorithm. While other choices can be implemented for this purpose, they usually
require additional high-fidelity computations at the current state of the chain mt−1 (e.g. Yan & Zhou 2019; Ortega-Gelabert et al. 2020).
Also, although the delayed rejection step is not strictly necessary from an MCMC algorithmic point of view, it is rather important in practice.
This is because, despite the fact that the posteriors of both models mt and mt−1 have been computed with the same updated surrogate, the
surrogate solution for mt still outputs a ‘more accurate’ high-fidelity (FEM) solution (i.e. the surrogate is effectively an FE solver at mt , but
still an approximate surrogate at mt−1). We have observed that this tends to decrease the acceptance probability of mt and using a delayed
rejection step with a small variance counteracts this undesired effect.

The success of our approach relies on a judicious combination of the RB method, the MCMC sampling that drives the generation of
bases and the prescribed tolerance β. These elements allow us to adapt and refine the low-fidelity solutions to obtain a very efficient and
accurate sampling of the posterior distribution (or equivalently, L(mt ) tends to the true likelihood L(mt ) as the surrogate is adapted). At the
same time, it is imperative that the number of elements in the basis is kept as small as possible without compromising the quality of their
predictions (cf. Ortega-Gelabert et al. 2020). In order to achieve this, we have implemented the use of variable tolerances and singular value
decomposition (SVD) of the basis as additional functionalities.

5.1.1 Variable tolerance

During the so-called burn-in stage, a finite number of simulations (and associated forward solutions) is required to move away from the initial
low-probability region and towards the support of the posterior PDF. Since these samples are not considered for the statistical analysis of the
posterior PDFs, a relatively large tolerance β1 > β can be used during this initial stage to encourage the algorithm to move quickly towards
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Algorithm 1 Creation of the basis

procedure REFINEMENT( URB
k
i j (mt−1), URB

k+1
i j (mt ))

• Propose model mt from current position mt−1

for i = 1, 2...N f req do
for j = S, S⊥ do

• k basis members for that frequency i and orientation j
• Compute RB solution URB

k
i j (mt ) and error RRB

if ( RRB ≤ β ) then
Use URB

k
i j (mt ) in computation of L(mt ) and α(mt−1, mt )

else if (RRB > β) then
• Compute FE solution for mt → Ui j (mt )
• Add Ui j (mt ) to Vk

R Bi j
→ Vk+1

R Bi j

• f lagi = 1
end if

end for
end for
if (any f lagi = 1 ) then

• Return to position mt−1

• Re-compute the RB solution for frequency i and L(mt−1)
• Re-evaluate α(mt−1, mt )
• Accept/reject mt with Metropolis-Hasting criterion
if ( mt is accepted) then

• Continue with the RB+MCMC simulations
else if ( mt is rejected) then

• Propose new sample m∗
t in the vicinity of mt

• Compute α2(mt−1, mt , m∗
t )

• Accept/reject m∗
t using a delayed rejection-Metropolis ratio.

end if
end if

end procedure

the high probability regions. After this stage, the tolerance can be reduced to guarantee that the sampling within the support of the posterior
PDF satisfies the user’s criteria for accuracy. Numerous tests (not shown here) and the results in Section 6.3 demonstrate that this simple
tactic results in noticeable gains in efficiency during the inversion. While in principle, the actual reduction of the tolerance can be done in
any number of steps of decreasing β, we have not attempted a systematic exploration of all possible combinations. The results presented in
Section 6.3 illustrate the use of a one-step reduction (i.e. two tolerance values).

5.1.2 Decomposition of the basis

Our RB approach incorporates new solutions into the RB spaces that cannot be explained by the previous basis within a prescribed tolerance.
This, however, does not guarantee orthogonality of the individual basis members. A simple way to remove redundancy of information
and/or basis members that do not contribute significantly to the RB solution is to apply an SVD procedure (Brunton & Kutz 2019). In our
algorithm, the SVD is applied to any RB basis space once its size reaches a pre-defined value Nsvd. We keep the most relevant Nrel orthogonal
elements of the basis up to a pre-defined energy threshold (usually between 0.95 per cent and 0.999 per cent). After the SVD procedure is
performed, we redefine a new N ∗

svd as N ∗
svd = Nsvd + Nrel. This redefinition of Nsvd allows the size of the basis to progressively increase as

needed.
Section 2 of the Supporting Information presents an application to a simple 1-D heat transfer problem. The computational time of this

simple forward problem allows us to approximate the true posterior PDFs with high accuracy (using high-fidelity FEM solutions and standard
MCMC algorithms) and thus evaluate the accuracy of our RB+MCMC method.

6 N U M E R I C A L E X A M P L E S

In this section, we illustrate the performance of our 3-D MT RB+MCMC algorithm by inverting synthetic data corresponding to two complex
large-scale lithospheric models with dimensions 1600 × 1600 × 460 km (Figs 1 and 10). In both cases, the computational domain is
discretized with 40 × 40 × 20 FEs.
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Figure 1. 3-D rendering views of the true conductivity structure where the iso-surface of −2.8 log10 S m−1 is plotted as a reference. The white rectangle
indicates the region used for the inversion. Panel (a) illustrates the 20 × 20 station grid in black and four of the 400 stations (black triangles). The model
parameters are the depths to the LAB of 196 columns. Panel (b) displays the location of these columns (white small squares) and, in particular, the 50 columns
shown in Fig. 6. The reader is referred to Section 6.2.1 for details on the parametrization.

6.1 Synthetic data

The synthetic data are the off-diagonal apparent resistivities and phases computed for 12 periods between 3.2 and 104 s at 400 stations. The
stations are located on a grid of 20 × 20 (Fig. 1a) with an interstation distance of 80 km. The data errors are assumed to be uncorrelated
and normally distributed with a standard deviation of 12 per cent for the apparent resistivities and 1.5◦ for the phases. For the model used in
Section 6.2, we avoid the so-called ‘inverse crime’ by generating the data with a finer FE mesh than that used in the inversion. In the second
example (Section 6.3), the data are generated with the true conductivity value for each FE cell whereas the models used during the inversion
are obtained via interpolation of the parameters’ value. This also means that a perfect fit to data may not be achievable during the inversion.

6.2 Example 1: large-scale lithospheric structure

6.2.1 Model setup

The area selected for the inversion is subdivided into 14 × 14 columns (white squares in Fig. 1b) of size 80 × 80 × 460 km. The model
parameters are the depths to the thermal lithosphere–asthenosphere boundary (LAB) of the 196 columns within the inversion area, that is,
there is one model parameter per column. Here, we identify the LAB with the depth to the 1250 ◦C isotherm (cf. Afonso et al. 2016a). The
goal is to retrieve the LAB depths of the model from noisy data.

The ‘true’ model is shown in Fig. 1. In order to obtain the conductivity structure of the true model from LAB depths, we first compute
the thermal structure by solving the steady-state heat transfer problem with Dirichlet boundary conditions at the surface (T0 = 10◦C) and
at each LAB depth (TLAB = 1250 ◦C). For simplicity, we assume a linear temperature gradient between the LAB and 410 km depth, where
the temperature is fixed at T410 = 1550 ◦C. This gradient is extrapolated to the bottom of the numerical domain, located at 460 km depth. A
pressure profile is also computed in each column using the following quadratic lithostatic-type approximation:

P(z) = 0.99 × (4.4773 × 10−3z2 + 3.2206 × 104z − 1.284278 × 108) (22)

where P is pressure in Pa and z is depth in m. As a further simplification, we assume a dry and homogeneous mantle composition with the
following mineral modes: 0.520, 0.202 ,9.798e−2 and 0.179 vol per cent for olivine, orthopyroxene, clinopyroxene and garnet, respectively.
The electrical conductivity for each mineral phase is then obtained using eq. (A3), with parameters specified in Table A1. Finally, the
bulk electrical conductivity (i.e. that of the mineral aggregate or rock) of each FE cell in the mantle is obtained using the Hashin–Shtrikman
averaging scheme (Hashin & Shtrikman 1962, 1963). The conductivity in the crust (Moho at 49 km depth) is constant and equal to 20 000 � m.

6.2.2 Sampling strategy

The priors for the LAB depths are uniform distributions defined in a range of ±50 km, centred on the true value of each column. The
proposals are Gaussian distributions centred on the current sample with a standard deviation of 10 km (see details in Appendix B). The initial
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Figure 2. 3-D rendering views of the mean conductivity structure obtained after 2500 000 MCMC simulations. The iso-surfaces of −2.8 and −2 log10 (S m−1)
are plotted as a reference. The white rectangle in (b) indicates the region used for the inversion.

Figure 3. 3-D rendering views of the MAP (best-fitting) conductivity structure obtained after 2500 000 MCMC simulations. The iso-surfaces of −2.8 and −2
log10 S m−1 are plotted as a reference. The white rectangle in (b) indicates the region used for the inversion.

LAB model (i.e. starting point of the MCMC inversion) is defined by randomly choosing an LAB depth from the prior distribution of each
parameter. At each step of the MCMC inversion, the algorithm randomly selects a column (metropolized independence sampler) and assigns
an LAB depth from the proposal distribution. The new LAB is then used to re-compute the temperature and pressure of that column and
update the conductivity model as explained in the previous section.

6.2.3 Inversion results

We ran a total of 2500 000 MCMC simulations using only two processors (Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz processors) per
frequency. Even with such modest computational resources, the inversion took < 30 d (an average of 1.03 s per MCMC iteration). Since the
high-fidelity solution for this model takes approximately 30 s, this represents a staggering time reduction of ∼97 per cent.

The mean conductivity model (i.e. mean values of the posterior PDFs) and the maximum a posteriori model (MAP) are shown in Figs 2
and 3, respectively. The electrical conductivity models corresponding to the lower and upper bound of the 95 per cent confidence interval
of the posterior PDF are shown in Figs 4. No lateral smoothing has been applied in either of these plots. It can be observed that the mean
conductivity model is in the vicinity of the MAP model. These results demonstrate that our algorithm succeeded in retrieving a representative
solution of the inverse problem. The root-mean-square (rms) values of the mean and MAP conductivity models with respect to the true model
are listed in Table 1 where we have also included the rms of the LAB depths for both models with respect to their true values.

The posterior PDFs of data for station 334 and the posterior PDFs of 50 model parameters are shown in Figs 5 and 6, respectively.
Additional posterior PDFs of data for other stations and the posterior PDFs of all model parameters can be found in Section 3 of the Supporting
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Figure 4. Electrical conductivity models corresponding to the lower (a) and upper bound (b) of the 95 per cent confidence interval of the posterior PDFs. The
iso-surfaces of −2.8 and −2 log10 S m−1 are plotted as a reference.

Table 1. Rms values of the mean and MAP conductivity and LAB models with respect to the true model. The rms
of the best conductivity model obtained with a ModEM deterministic inversion is also included.

Rms conductivity (log10 S m−1) Rms LAB depth (km)
Maximum a posteriori Mean model Maximum a posteriori Mean model

RB+MCMC 0.19 0.15 21.20 17.01
ModEM 1.04

Figure 5. Posterior PDFs of data for station 334. Synthetic data and error bars are plotted in green. (a) and (b) Posterior PDFs of the off-diagonal apparent
resistivity. (c) and (d) Posterior PDFs of the off-diagonal apparent phases.

Information. The results show that the great majority of observations are contained within one standard deviation of the posterior PDFs of the
data. In the case of the LAB depths, most of the marginal posterior distributions have mean values that agree well with the true LAB depths
within one standard deviation, that is, these model parameters are well resolved.

A closer examination of Fig. 6 reveals the well-known ‘compensation effect’ or model equivalence in MT and EM methods (e.g Wait
1962; Mallick & Verma 1979; Zhdanov & Keller 1994; Harinarayana 1999; Hoffmann & Dietrich 2004; Park & Ostos 2013), by which
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Figure 6. (a) and (b) Marginal posterior PDFs (blue bars) and best-fitting distribution (black line) of 50 model parameters obtained after 2500 000 RB+MCMC
simulations. The real value, starting value and prior bounds of each parameter are shown in green, red and light blue vertical lines, respectively. The numbers
within each panel correspond to the columns highlighted in Fig. 1(b).
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Figure 7. Basis size as a function of the MCMC simulations for different frequencies and field orientations (S⊥ mode in blue, and S mode in red).

Figure 8. Data misfit for each of the 2500 000 RB+MCMC simulations.

incorrect model parameters can compensate each other and result in a combined MT signal that is close to that associated with the true
solution. In the present example, the individual LAB depths within a cluster of adjacent columns can be relatively far from their true values,
but their combined effect still produce a conductivity model that fits the data well. The inherent compensation effect in MT is exacerbated
here by the simple parametrization and sampling strategy. For instance, we are assuming that the conductivity distribution is only controlled
by the depth of the thermal LAB (Section 6.2.1), which means that decreasing the LAB depth in a column has the effect of increasing its
average conductivity; the opposite is also true. Under this circumstances, a cluster of columns with LAB depths shallower and deeper than
the true value for the cluster can produce a good fit to the data.

The effect of the sampling strategy can be understood as follows. Let us suppose that the current state of the MCMC chain contains a
cluster of compensated columns with incorrect LAB values but with an acceptable fit to the data. Since each column is independent and we
sample only one parameter (i.e. column) per MCMC iteration, if we propose a new LAB value for any of the columns in the cluster that is
closer to the true value for that column, the combined MT signal will most likely produce a poorer misfit compared to the current compensated
state. This is because although we are proposing a value closer to the true value for one column, it is the combined effect of the cluster that
drives the misfit. In deterministic inversions, this problem is minimized by applying regularization terms. More appropriate parametrizations
and sampling strategies in the context of MCMC inversions are further discussed in Section 7.

The aforementioned compensation effect can be observed, for example, in adjacent columns 172 and 186 in Fig. 6, where the mean LAB
depth is ∼15 km deeper than the true value for column 172 and ∼15 km shallower than the true value for column 186. The same effect is
also observed in columns 144 and 145 (with mean LAB depths deeper than their true value) and columns 158 and 159 (shallower mean LAB
depths). For some parameters (178 for example), the compensation of neighbouring parameters (columns 164, 165, 177, 179, 191, 192 and
193) is such that they cannot be recovered well by the inversion given the range of data errors and the prescribed tolerance β.

The size of the basis computed per frequency and field orientation is shown in Fig. 7. A rapid increment in the basis size is observed
during the burn-in stage (first 200 000 simulations) which also correlates with a rapid decrease in the overall misfit (Fig. 8). This increment
is required to obtain representative solutions for the parameter space and, in particular, for the high-probability region. After this stage, the
basis size reaches a saturation level or plateau for all frequencies, that is, the RB space is able to reproduce any solution within the regions
of high probability. At this point, the adaptation of the RB space could be stopped without compromising subsequent solutions provided that
the chain has indeed reached stationarity.
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Figure 9. (a) and (b) 3-D rendering views of the best conductivity model obtained with an ModEM deterministic inversion using a horizontal and vertical
smoothing factor of 0.5 and 0.2, respectively. The iso-surface of −2.8 log10 (S m−1) is plotted as a reference.

Figure 10. 3-D rendering views of the true conductivity structure after interpolation of the 1782 node parameters. Conductive anomalies are highlighted in
both (a) and (b) panels. Black dots in (a) indicate the position of the node parameters within the inversion volume. Panel (a) shows the iso-surface corresponding
to −1.5 log10 (S m−1), whereas iso-surfaces of −2.15, −1.5 and −4 log10 (S m−1) are shown in (b).

For comparison, we include the results of a ModEM (Kelbert et al. 2014) deterministic inversion using the same synthetic data. Fig. 9
shows the best model obtained after 42 iterations using a vertical and horizontal smoothing factor of 0.2 and 0.5, respectively. The inversion
took 6 hr using 30 processors and the final data rms was 1.04. The rms value of the ModEM model with respect to the true conductivity
distribution is also included in Table 1. One of the main reasons for the larger rms in the ModEM inversion is that lateral smoothing had to be
imposed to stabilize the inversion (a typical requirement in determinisitc inversions). This precluded the algorithm from considering sharp
discontinuities in the solution. Another contribution to the rms is the high-resistivity regions in the mantle, which could not be recovered in
this example.

6.3 Example 2: large-scale lithospheric structure with conductivity anomalies

6.3.1 Model setup

The true conductivity model (Fig. 10) includes the large-scale lithospheric model of Section 6.2 as a background plus three additional and
localized conductive anomalies. The conductivity structure is now parametrized by 1782 nodes (black dots in Fig. 10a) sparsely located within
the inversion volume. The conductivity value of each FE cell is obtained by interpolation of the nodes’ values using a quadratic Shepard
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Figure 11. 3-D rendering views of the initial conductivity structure. The iso-surfaces of −4 and −1.5 log10(S m−1) are plotted as a reference in both (a) and
(b) panels.

method for trivariate interpolation of scattered 3-D data (Renka 1988a,b). The goal here is to recover the conductivity structure from noisy
MT measurements.

In order to define the location of the conductivity nodes, we first subdivide the domain into 14 horizontal layers; the vertical location
of the nodes correspond to the mid-points of each layer (horizontal node layers in Fig. 10a). In this example, these layers correlate with the
horizontal layers given by the FE mesh. Since bodies with dimensions smaller than the EM skin depth cannot be resolved by the data, the
horizontal distance between nodes within each layer is chosen relative to the skin depth for the range of periods and apparent resistivities
shown in the observed data. We discuss alternative options for dynamic parametrizations in Section 7.

6.3.2 Sampling strategy

The starting model (Fig. 11) is defined by randomly selecting a conductivity value for all nodes from their prior distributions. Since the
model parameters’ values can span several orders of magnitude, we define Jeffreys’ prior distributions (see Appendix B) in a range of
±2 log10(S m−1) centred on the true value of each node. During the burn-in stage, the algorithm randomly chooses one node i at a time (with
all nodes having the same probability of being chosen) and assigns a conductivity value from its proposal distribution. The proposals are
defined as log-normal distributions (eq. B4) centred on the node mi

t−1 with standard deviations of 0.5 log10(S m−1). For every new trial mi
t ,

the full 3-D conductivity model is updated via interpolation (using a quadratic Shepard method, Section 6.3.1).
After the burn-in stage, we use an AM algorithm (Haario et al. 2001) to compute and update layerwise proposal distributions using

the history and correlations of the MCMC chain (see details in Appendix B1). At each MCMC step, a metropolised independence sampler
randomly selects a layer l and the adapted proposal (eq. B5) is used to propose a new sample ml (i.e. conductivity values for all the nodes of
layer l). This sampling approach results in significant gains in efficiency and makes better use of the natural correlations inferred from the
data.

6.3.3 Inversion results

We ran a total of 2500 000 MCMC simulations for 11 frequencies using only two processors (Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz
processors) per frequency. The tolerances used were β = 0.07 for the first 150 000 steps and β = 0.05 for the remaining of the simulation. The
SVD factorization was performed every 50 new bases with an energy cut-off of 0.997. The first adaptation of the proposals for all node layers
was done at step 200 000 and we continue to adapt them every 100 000 simulations. Again, even with modest computational resources, the
inversion took < 40 d with an average of 2.88 s for each of the first 300 000 simulations (burn-in and enrichment process) and 1.58 s for the
rest of the simulations. This corresponds to a time reduction of ∼95 per cent for each forward computation after the enrichment process. It is
important to note here that most of the computational time (besides the high-fidelity solutions) is now taken by the interpolation steps rather
than by the surrogate itself. As discussed in Section 7, the inversion can be made significantly more efficient by changing the interpolation
algorithm.

The mean conductivity model (i.e. mean values of the posterior PDFs) and those representing the lower and upper bounds of the 95
per cent confidence interval of the posterior PDFs are shown in Figs 12 and 13, respectively. It is clear that our RB+MCMC algorithm and
the present parametrization result in a good approximation of the reference model, including the location and volumes of the conductive
anomalies. Examples of the posterior PDFs of the data for two stations are shown in Figs 14 and 15; the marginal posterior PDFs of 50 of the
1782 model parameters (nodes) are shown in Fig. 16. Additional posterior PDFs can be found in Section 4 of the Supporting Information.

The results show that most observed data are contained within one standard deviation of the posterior PDFs. For some stations, however,
a poor data fit is seen at particular periods (e.g. at shorter periods of Fig. 14). This poor fitting or bias is related to the so-called model

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/223/3/1837/5900140 by guest on 02 M

arch 2022



1852 M.C. Manassero et al.

Figure 12. 3-D rendering views of the conductivity structure obtained with the mean values of the posterior PDFs. Conductive anomalies are indicated in both
(a) and (b) panels. Panel (a) shows the iso-surface of −1.5 log10(S m−1), whereas the iso-surfaces corresponding to −2.15, −1.5 and −4 log10(S m−1) are
shown in (b).

Figure 13. Electrical conductivity models corresponding to the lower (a) and upper bound (b) of the 95 per cent confidence interval of the posterior PDFs. The
iso-surface of −1.5 log10(S m−1) is plotted as a reference.

inadequacy (e.g. Smith 2013), where the discrepancy between the conductivity models used during the inversion (derived from interpolation
of nodal values) and the true model used to compute the synthetic data preclude a perfect data fit.

As in the previous example, we also observe a bias of the models with respect to the true model. This is primarily due to the compensation
effect described in Section 6.2.3, which is aggravated here by the introduction of spurious oscillations produced by the Shepard interpolation
(shown in Fig. 12a). In other words, since the Shepard interpolation introduces anomalous features in regions without nodes, the conductivity
nodes that are located close to these spurious anomalies will most likely take incorrect (biased) conductivity values in order to produce
models with better fits to the data. This bias can be further explained with a possible overparametrization of the computational domain.
In overparametrized and under-regularized regions, models are expected to exhibit local variability around the true structure and still offer
equally good fits to the data. We also note that the mean values of the PDFs are more likely to be biased towards resistive values. This is due
to the low relative sensitivity of MT data to resistive structures (e.g. Berdichevsky & Dmitriev 2010; Park & Ostos 2013; Varentsov et al.
2013). This effect is well known and it has been observed in other works (e.g. Rosas-Carbajal et al. 2013; Brodie & Jiang 2018).

The number of basis vectors computed per frequency and field orientation is shown in Fig. 17. It can be seen that the number of bases
rapidly increases during the first 120 000 steps while the inversion tries to find the regions of high probability. A second rapid increase is
seen after step 150 000, which corresponds with a reduction in the tolerance of the surrogate (vertical black line in Fig. 17). The basis size
reaches a saturation level for all frequencies after ∼200 000 steps. For the long periods, we see that the SVD factorization at around step
300 000 significantly decreased the size of the basis. Subsequent basis vector computation and/or SVD factorizations do not change the
general pattern and therefore we only show the bases up to the simulation 500 000.

The data misfit for the 2500 000 simulations is shown in Fig. 18(a). As shown in Figs 18(b) and (c), the enrichment of the basis space
correlates with jumps in the total misfit. This is related to the fact that when a high-fidelity solution is computed, the misfit of the previous
sample is also re-computed with the enriched space (see Section 5.1). As this new misfit value is ‘more accurate’ and usually lower (worse)
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Figure 14. Posterior PDFs of data for station 154. Synthetic data and error bars are plotted in green. (a) and (b) Posterior PDFs of the off-diagonal apparent
resistivity. (c) and (d) Posterior PDFs of the off-diagonal apparent phases.

Figure 15. Posterior PDFs of data for station 340. Synthetic data and error bars are plotted in green. (a) and (b) Posterior PDFs of the off-diagonal apparent
resistivity. (c) and (d) Posterior PDFs of the off-diagonal apparent phases.

than the one computed before the enrichment, jumps occur in the general decreasing tendency of the misfit (Figs 18b and c). Note that these
jumps are also observed in Fig. 8 albeit smaller in amplitude compared to those in Fig. 18. These jumps are less frequent as the basis reaches
a saturation level (after 200 000 simulations), which corresponds to a quasi-plateau in the misfit.

7 D I S C U S S I O N

In this work, we have deliberately chosen to work with the simplest parametrizations and sampling strategies in order to demonstrate the
viability and performance of our approach under adverse circumstances. There are, however, a large number of possible improvements that
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Figure 16. Marginal posterior PDFs (blue bars) and best fitting distributions (black lines) for 50 of the 1782 node parameters (corresponding to the same node
layer) obtained after 2500 000 RB+MCMC simulations. The real value, starting value and bounds of each parameter are shown in green, red and light blue
vertical lines, respectively. The reader is referred to the main text for details on the node-layer parametrization.
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Figure 17. Basis size as a function of the MCMC simulations for different frequencies and field orientations (S⊥ mode in blue, and S mode in red).
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Figure 18. (a) Data misfit for each of the 2500 000 simulations. Panels (b) and (c) show the jumps in the misfit when a new basis vector is computed. The
reader is referred to the main text for an explanation of this behaviour in the misfit.

can enhance the efficiency of our algorithm (e.g. the efficiency of the MCMC algorithms, the availability of computational resources, the
parametrization of the model), especially when applied to real-world problems. In the following sections, we briefly discuss some of these
potential improvements as well as some remaining challenges.

7.1 Parametrization of the conductivity structure

An important concept that we emphasize here is that the conductivity distribution in the lithosphere can, in principle, be treated as the
superposition of two contributions: a background conductivity related to the long-wavelength physical state, and an anomalous distribution
associated with the presence of smaller features (fluid pathways, melt-rich regions, hydrogen content, etc.). Assuming that the conductivity
of rocks were primarily controlled by the thermal structure of the lithosphere, the inversion performed in Section 6.2 demonstrated that the
long-wavelength (i.e. background) conductivity structure can be recovered satisfactorily using an LAB-based parametrization. Subsequently,
we introduced a more general, node-based, parametrization in order to include smaller scale conductivity anomalies within the background
(Section 6.3). While in principle this parametrization is capable of approximating any conductivity structure and allows for considerable
model variance, a Shepard-type interpolation is slow (i.e. computationally inefficient) and typically introduces spurious oscillations that
distort or mask the true conductivity structure (see Fig. 12a). The latter effect is exacerbated when the number and location of the nodes
used in the discretization are not optimal to allow an accurate representation of the true anomalies. This is likely the case in most real-
world scenarios, as it is generally impossible to know a priori the true variability of the conductivity in the subsurface (in practice,
preliminary or nested inversions can be used for this purpose). Although it may seem reasonable at first glance to simply increase the
number of nodes (and thus allow for more model variance), this can easily result in an overparametrization of the model, which can
seriously compromise the convergence of the MCMC algorithm (and any inversion scheme) and increase the computational time of the
interpolations.

A number of strategies can be pursued to ameliorate this problem. One possibility is to make use of well-known parameter model
reduction techniques (e.g. Marzouk & Najm 2009; Lieberman et al. 2010). While the application of such techniques to our problem is
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possible and likely beneficial, most of them require an exploratory offline stage to appraise the true dimensionality of the parameter space.
Perhaps a more promising approach is the implementation of transdimensional algorithms (e.g. Bodin & Sambridge 2009; Brodie & Jiang
2018; Ray & Myer 2019), which have been shown to be particularly effective in identifying the minimum dimensionality of the model as
required by the data itself without the need for an offline appraisal. In particular, the use of Gaussian processes, within a transdimensional
context, to generate conductivity models (e.g. Ray & Myer 2019) represents a promising approach to also tackle the interpolation cost and
spurious oscillations of the Shepard Method. We are currently exploring the performance of these methods with real-world data sets.

We would like to point out that, in the case of stand-alone 3-D MT inversions, one could combine both the LAB- and the node-based
parametrizations to represent the long-wavelength background and the smaller scale conductivity anomalies, respectively. In this scenario,
the total conductivity distribution will be the addition of the background conductivity obtained with the LAB-based parametrization and the
anomalous conductivity distribution represented by nodal values. If the ultimate goal is the total conductivity field, the LAB depths and/or the
conductivity nodes can simply be considered nuisance parameters, that is, they are not of immediate interest but they form part of the problem
formulation. The advantage of using the combined parametrization is that rapid convergence is achieved by using LAB depths to constrain
the first-order conductivity background, whereas the nodes are used to locally modify this background to fit the smaller scale features of the
data.

For the case of joint inversions of MT with other data sets (e.g. Moorkamp et al. 2007; Khan et al. 2008; Jegen et al. 2009; Moorkamp
et al. 2010; Afonso et al. 2013a,b; Vozar et al. 2014; Bennington et al. 2015; Afonso et al. 2016a,b; Jones et al. 2017) one would take
advantage of the different sensitivities of the inverted observables to the conductivity structure and use complementary paramatrizations.
For instance, the background conductivity distribution that results from the long-wavelength variation of temperature and bulk composition
can be informed by seismic and/or potential field data using their own background parametrization, such as LAB depth, composition and
pressure of individual columns of the whole domain (see e.g. Khan et al. 2008; Afonso et al. 2013a,b, 2016b; Jones et al. 2017). The
node-based parametrization could then be used only within the MT forward problem to account for conductivity anomalies superimposed to
the background and associated with factors such as fluid content, presence of melt, hydrogen content and anomalous mineral assemblages.
A detailed presentation and assessment of this concept using both synthetic and real-world data sets are left for a forthcoming publication
(Part II).

7.2 Efficiency of the RB+MCMC method

As mentioned above, a key factor to achieve computational efficiency is to maintain a small number of bases during the MCMC simulation
without compromising the quality of their predictions. An alternative to the SVD approach described above is to identify, on-the-fly, the basis
vectors that stop contributing to the RB solution (within a pre-defined threshold) once the MCMC begins to converge to the high probability
regions of the parameter space. This information can be obtained by analysing the vector of coefficients a(θ ) accompanying the bases (see
eq. 16). Small values for these coefficients indicate minor contributions to the RB solution of the associated basis. Once the uninformative
bases (e.g. those created during the burn-in period of the inversion) are identified, they can be eliminated from the RB space. While this would
be relatively easy to implement, it requires defining two additional parameters in the RB+MCMC algorithm: a minimum threshold value for
the coefficients and an interval between successive assessments of the bases (doing it at every MCMC step is extremely inefficient).

Another way of further achieving a small basis size is to seek for accurate solutions only within specific regions of the numerical
domain (e.g. Alvarez Aramberri 2015; Ortega-Gelabert et al. 2020). This stems from the fact that in many practical applications we are not
interested in high accuracy at every point inside the numerical box, but rather within a restricted region. A common approach to assess the
accuracy of low-fidelity solutions in particular regions of interest is by applying a standard (multi)goal-oriented criterion (Hartmann 2008;
Pardo 2010; Florentin & Dı́ez 2012; Alvarez Aramberri 2015; Alvarez-Aramberri & Pardo 2017) guided by the error EQ in a diagnostic
parameter known as the Quantity of Interest (QoI). The QoI is typically a scalar or vectorial functional of the forward solution that summarizes
relevant/important information about the problem at hand. When applied to a restricted region of interest, this goal-oriented criterion results
in basis of smaller size relative to those obtained by considering the entire numerical domain (cf. Ortega-Gelabert et al. 2020).

Before ending this section we would like to note that the assembly of the stiffness matrix K is expensive and including this step at every
MCMC iteration is inefficient. When using the LAB-based parametrization, each trial of the MCMC algorithm perturbs the conductivity
structure of the model only locally (i.e. within a column). In this case, only a small number of elements of the matrix K varies between
proposed samples, which in turn contribute to a small and local change of the matrix K R B . We have taken advantage of this and implemented
an algorithm that directly updates the corresponding elements in K R B (for every frequency) instead of re-computing the full K for every trial.
This strategy is also possible within the node-based parametrization. However, in the present implementation, the Shepard interpolation does
not provide a mapping between a node that changes value and the position of the perturbed cells in the conductivity model. This limitation can
be overcome using other interpolation strategies where this mapping is available, as in the case of Gaussian processes (Ray & Myer 2019).

8 C O N C LU S I O N S

We have developed a novel approach for MCMC-driven probabilistic inversions of 3-D MT data. The success of the method relies on
the combination of a reduced order technique (RB Method) to create fast and accurate surrogates, an efficient parallelization of the
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forward problem and adaptive strategies for both the surrogate and the MCMC algorithm. Unlike traditional implementations, the surro-
gate construction and adaptation (refinement) process is integrated into the MCMC inversion, thus removing the need for costly offline
stages.

The feasibility and performance of the proposed approach to invert for large-scale conductivity structures are demonstrated with two
inversion examples with different parametrizations and dimensionalities. In both cases, the RB+MCMC approach successfully solves the
probabilistic inverse problem using less than ∼5 per cent of the computational cost needed in a conventional MCMC approach. Furthermore,
the efficiency of the method increases with the length of the MCMC simulation, as fewer basis enrichments are necessary once the chain
begins to converge.

We note that the type of model parametrization and chosen MCMC scheme can significantly impact both the posterior PDFs and the
convergence of the MCMC chain. In this work, we purposely adopted the simplest parametrizations and MCMC schemes. The efficiency
of our strategy can therefore be further improved by making use of more advanced parametrization techniques and MCMC algorithms (e.g.
transdimensional schemes, Gaussian processes, delayed rejection, parallel tempering, differential evolution, among others).

As a by-product, we have obtained an optimized version (Max3D-G) of the original MT FE forward code developed by Zyserman
& Santos (2000). The new implementation solves the FE linear system of equations using the parallel solver MUMPS which reduces the
computational time by ∼80 per cent compared to the original code.

Our new RB+MCMC approach makes 3-D MT probabilistic inversions a practical option and opens up new exciting opportunities for
both stand-alone MT studies and integrated geophysical imaging of the Earth’s interior via joint inversions (e.g Khan et al. 2008; Afonso
et al. 2013a,b, 2016a). We explore the latter possibility in a forthcoming publication (Part II).

9 S U P P L E M E N TA RY M AT E R I A L

The online Supporting Information contains benchmarks of the optimized version (Max3D-G) of the original MT FE forward code developed
by Zyserman & Santos (2000) and an application of our RB+MCMC approach to a heat transfer problem. We also present additional results
of the numerical examples showed in Sections 6.2 and 6.3.
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Supplementary data are available at GJI online.
Figure S1 Plan view of DTM1 model. The symbol × indicates the origin of coordinates.
Figure S2 Different side views of the DTM1 model illustrating the three anomalies embedded in a 100 �m background.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/223/3/1837/5900140 by guest on 02 M

arch 2022

http://dx.doi.org/10.1137/S0036139995289234
http://dx.doi.org/10.1007/s00190-012-0542-y
http://dx.doi.org/10.1007/s10712-011-9122-6
http://dx.doi.org/10.1016/j.pepi.2009.01.013
http://dx.doi.org/10.1016/j.pepi.2004.08.023
http://dx.doi.org/10.1186/BF03351724
http://dx.doi.org/10.1029/2004JB003462
http://dx.doi.org/10.1093/gji/ggt234
http://dx.doi.org/10.1134/S1069351313030178
http://dx.doi.org/10.1002/2014GC005365
http://dx.doi.org/10.1038/nature05256
http://dx.doi.org/10.1126/science.1010580
http://dx.doi.org/10.1016/j.jcp.2018.12.025
http://dx.doi.org/10.1016/j.epsl.2015.04.006
http://dx.doi.org/10.1016/j.epsl.2009.09.032
http://dx.doi.org/10.1029/2011JB008774
http://dx.doi.org/10.1190/1.1444839
http://dx.doi.org/10.1016/S0926-9851(00)00012-4
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggaa415#supplementary-data


RB approach for MCMC inversions of 3-D MT data 1861

Figure S3 Apparent resistivity and phase derived from the off-diagonal elements of the impedance tensor at profiles x = 0 and y = 0 for
1000 s. We use Max3D-DDC and other codes referred to as: HL (Nam et al. 2007), Mackie (Mackie et al. 1994), winGLink (Mackie et al.
1994), wsinv3dmt (Siripunvaraporn et al. 2002) and mt3dinv (Farquharson et al. 2002).
Figure S4 Apparent resistivity and phase derived from all elements of the impedance tensor at profile x = 15 km and period of 1000 s. We use
Max3D-DDC and other codes referred to as: HL (Nam et al. 2007), Mackie (Mackie et al. 1994), winGLink (Mackie et al. 1994), wsinv3dmt
(Siripunvaraporn et al. 2002) and mt3dinv (Farquharson et al. 2002).
Figure S5 Apparent resistivity and phase derived from the off-diagonal elements of the impedance tensor at profiles x = 0 and y = 0 for
1000 s. We use Max3D-G and other codes referred to as: HL (Nam et al. 2007), Mackie (Mackie et al. 1994), winGLink (Mackie et al. 1994),
wsinv3dmt (Siripunvaraporn et al. 2002) and mt3dinv (Farquharson et al. 2002).
Figure S6 Apparent resistivity and phase derived from all elements of the impedance tensor at profile x = 15 km for 1000 s. We use Max3D-G
and other codes referred to as: HL(Nam et al. 2007), Mackie (Mackie et al. 1994), winGLink (Mackie et al. 1994), wsinv3dmt (Siripunvaraporn
et al. 2002) and mt3dinv (Farquharson et al. 2002).
Figure S7 List of DTM1 forward results extracted from Miensopust et al. (2013) and modified to include our results. The table specifies:
code and its type (FD, FE or IE), user, mesh and in parentheses (if available) the lateral width of the cells at the centre of the model, required
CPU time (and target tolerance TT or achieved tolerance AT) and computer used.
Figure S8 Plan view Model 2. The symbol × indicates the origin of coordinates.
Figure S9 Side view Model 2 showing three anomalies embedded in a 100 �m background.
Figure S10 Apparent resistivity derived from the off-diagonals components of the impedance tensor computed with (a) and (b) Max3D-DDC
and (c) and (d) ModEM. (a)–(d) Plots for 50 cells between −125 to 125 km at x = 0 and for 29 frequencies (vertical axes) between 1 and
104 s.
Figure S11 Apparent phase derived from the off-diagonal components of the impedance tensor computed with (a) and (b) Max3D-DDC and
(c) and (d) ModEM. (a)–(d) Plots for 50 cells between −125 to 125 km at x = 0 and for 29 frequencies (vertical axes) between 1 and 104 s.
Figure S12 Apparent resistivity derived from the off-diagonal components of the impedance tensor computed with (a) and (b) Max3D-G and
(c) and (d) ModEM. (a)–(d) Plots for 50 cells between −125 to 125 km at x = 0 and for 29 frequencies (vertical axes) between 1 and 104 s.
Figure S13 Apparent phase derived from the off-diagonals components of the impedance tensor computed with (a) and (b) Max3D-G and
(c) and (d) ModEM. (a)–(d) Plots for 50 cells between −125 to 125 km at x = 0 and for 29 frequencies (vertical axes) between 1 and 104 s.
Figure S14 Difference (ModEM - Max3D-G) for (a) and (b) apparent resistivity and (c) and (d) phase derived from the off-diagonals
components of the impedance tensor.
Figure S15 Results for a two-parameter MCMC inversion. The panels (a)–(f) show the joint and marginal (black solid lines) PDFs. The
initial and true models are indicated by red and black stars, respectively. Panel (a) shows the PDFs obtained with full FE (high-fidelity)
solutions. Panels (b)–(f) show the PDFs obtained with our RB+MCMC algorithm for RB tolerances of β = 1e−6, 1e−5, 6e−5, 1e−4 and
1e−3, respectively. The total number of bases computed in each case was 40, 29, 3, 2 and 1. In all cases, the total number of simulations was
4000 000.
Figure S16 Posterior PDFs of data for station 69. Synthetic data and error bars are plotted in green. (a) and (b) Posterior PDFs of the
off-diagonal apparent resistivity. (c) and (d) Posterior PDFs of the off-diagonal apparent phases.
Figure S17 Posterior PDFs of data for station 264. Synthetic data and error bars are plotted in green. (a) and (b) Posterior PDFs of the
off-diagonal apparent resistivity. (c) and (d) Posterior PDFs of the off-diagonal apparent phases.
Figure S18 Marginal posterior PDFs (blue bars) and best fitting distributions (black lines) of 49 of the 196 model parameters obtained after
2500 000 RB+MCMC simulations. The real value, starting value and prior bounds of each parameter are shown in green, red and light blue
vertical lines, respectively. The position of each PDF in the figure corresponds with the location of the 49 columns at the south-west corner
of the model (Fig. 1b in main text).
Figure S19 Marginal posterior PDFs (blue bars) and best-fitting distributions (black line) of 49 of the 196 model parameters obtained after
2500 000 RB+MCMC simulations. The real value, starting value and prior bounds of each parameter are shown in green, red and light blue
vertical lines, respectively. The position of each PDF in the figure corresponds with the location of the 49 columns at the north-west corner
of the model (Fig. 1b in main text).
Figure S20 Marginal posterior PDFs (blue bars) and best-fitting distributions (black lines) of 49 of the 196 model parameters obtained after
2500 000 RB+MCMC simulations. The real value, starting value and prior bounds of each parameter are shown in green, red and light blue
vertical lines, respectively. The position of each PDF in the figure corresponds with the location of the 49 columns at the south-east corner of
the model (Fig. 1b in main text).
Figure S21 Marginal posterior PDFs (blue bars) and best-fitting distributions (black lines) of 49 of the 196 model parameters obtained after
2500 000 RB+MCMC simulations. The real value, starting value and prior bounds of each parameter are shown in green, red and light blue
vertical lines, respectively. The position of each PDF in the figure corresponds with the location of the 49 columns at the north-east corner of
the model (Fig. 1b in main text).
Figure S22 Posterior PDFs of data for station 334. Synthetic data and error bars are plotted in green. (a) and (b) Posterior PDFs of the
off-diagonal apparent resistivity. (c) and (d) Posterior PDFs of the off-diagonal apparent phases.
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Figure S23 Posterior PDFs of data for station 279. Synthetic data and error bars are plotted in green. (a) and (b) Posterior PDFs of the
off-diagonal apparent resistivity. (c) and (d) Posterior PDFs of the off-diagonal apparent phases.
Figure S24 Posterior PDFs of data for station 102. Synthetic data and error bars are plotted in green. (a) and (b) Posterior PDFs of the
off-diagonal apparent resistivity. (c) and (d) Posterior PDFs of the off-diagonal apparent phases.
Figure S25 Marginal posterior PDFs (blue bars) and best-fitting distributions (black lines) of 50 of the 1782 node parameters obtained after
2500 000 RB+MCMC simulations. The real value, starting value and prior bounds of each parameter are shown in green, red and light blue
vertical lines, respectively.
Figure S26 Marginal posterior PDFs (blue bars) and best-fitting distributions (black lines) of 50 of the 1782 node-parameters obtained after
2500 000 RB+MCMC simulations. The real value, starting value and prior bounds of each parameter are shown in green, red and light blue
vertical lines, respectively.
Table S1 Control parameters used for the ModEM inversion.
Table S2 Constant values assumed during the 1-D heat transfer inversion.
Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the corresponding author for the paper.

A P P E N D I X A : M A P P I N G T H E R M O C H E M I C A L PA R A M E T E R S T O E L E C T R I C A L
C O N D U C T I V I T Y

The electrical conductivity of mantle rocks is primarily controlled by their thermophysical state (temperature, pressure, composition, fluid,
iron and melt content). The temperature dependence of electrical conductivity can be described with an Arrhenius-type Equation:

σ = σ0 exp

(−�H

kB T

)
, (A1)

Table A1. Parameters used to compute the conductivity of the mantle.

Phase σ 0 σ 0i a b c d e f �V �Hi XFe

Olivine 2.70 4.73 1.64 0.246 − 4.85 3.26 0.68 2.31 0.10
Opx 3.0 1.90 − 2.77 2.61 − 1.09 0.107
Cpx 3.25 2.07 − 2.77 2.61 − 1.09 5.84e−2

Garnet 4.96 2.60 − 15.33 80.40 − 194.6 202.6 −75.0 0.168

where σ 0 is the so-called pre-exponential factor, T [K] is absolute temperature and kB [eV K−1] the Boltzmann’s constant. �H [eV] is the
activation enthalpy, which can be defined as a function of pressure P [GPa] in the following way:

�H = �E + P�V, (A2)

where �E and �V are the activation energy and activation volume, respectively.
The main bulk conduction mechanisms in mantle minerals are ionic conduction, small polaron (hopping) conduction and proton

conduction. Each mechanism follows an Arrhenius-type equation with particular activation energies depending on their charge mobility.
These three conduction mechanisms can be integrated in a model for the electrical conductivity of mantle rocks as a function of pressure,
temperature, water content, and composition (via Fe content) for each mineral phase (see also Yoshino et al. 2009; Fullea et al. 2011):

σ = σ0 exp

(−�H (X Fe, P)

kB T

)
+ σ0i exp

(−�Hi

kB T

)
+ σp, (A3a)

σp = f (Cw) exp

(−�Hwet (Cw)

kB T

)
, (A3b)

− �H (X Fe, P) = a + bX Fe + cX 2
Fe + d X 3

Fe + eX 4
Fe + f X 5

Fe + P�V, (A3c)

where σ 0, σ 0i [S m−1] and f(Cw) are the so-called small polaron, ionic and proton pre-exponential factors, respectively; �V [cm3 mol−1] is
activation volume; �H, �Hi [eV] and �Hwet are activation enthalpies; XFe is the bulk Fe content in wt%; T [K] is absolute temperature;
P [GPa] is pressure and kB [eV K−1] the Boltzmann’s constant.

The first term of the right-hand side of eq. (A3a) describes the contribution from small polaron conduction. As mentioned above, the
activation enthalpy for this process depends on the iron content and pressure. This dependence is represented by a polynomial on XFe (eq.
A3c) plus a term that depends on pressure (the coefficients a, b, c, d, e, f are determined experimentally). The second term of eq. (A3a)
represents ionic conduction at high temperature and the third term (σ p) represents the proton conduction due to the presence of ‘water’
(hydrogen diffusion). f(Cw) and �Hwet are functions of the water content Cw [wt%] and they are estimated from laboratory experiments. The
reader is referred to Fullea et al. (2011) and Pommier (2014) for a summary of results from different laboratories.
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A P P E N D I X B : P RO P O S A L A N D P R I O R D I S T R I B U T I O N S

In the particular case of uncorrelated parameters, the proposal PDF for a sample mt = [m1
t , . . . , mN

t ] is

q(mt |mt−1) =
N∏

i=1

q(mi
t |mi

t−1), (B1)

where N is the number of parameters and q(mi |mi
t−1) is the probability of the proposed move mi

t for the ith parameter conditional on its
current state mi

t−1 . In the particular case of a symmetric proposal, such as Gaussian or uniform PDFs, it satisfies q(mi
t |mi

t−1) = q(mi
t−1|mi

t )
for all mi

t and mi
t−1.

In the same way, assuming uncorrelated parameters as prior information, the prior probability of a sample mt is

P(mt ) =
N∏

i=1

P(mi
t ), (B2)

where P(mi
t ) corresponds to the prior for the ith parameter. In the case of uniform prior PDFs we have that P(mi

t ) = 1, and in the case of a
Gaussian PDF:

P(mi
t ) = 1

s
√

2π
exp

(
− (mi

t − μ)

2s2

2
)

, (B3)

where μ and s are the mean and standard deviation, respectively.
In situations where the values of the model parameters span several orders of magnitude, it is useful to define prior and proposal

distributions in logarithmic scale such as the Jeffreys’ PDF (uniform in log-scale ) with associated probability y(mi
t ) = 1/mi

t (Gregory 2005).
Another common choice is to use lognormal distributions (Gaussian in log-scale):

y(mi
t ) = 1√

2πmi
t s

exp

(
− ln(mi

t ) − μ

2s2

2
)

, (B4)

where μ and s are the mean and standard deviation in log-scale.

B1 Implementation of the Adaptive Metropolis algorithm

In order to enhance the efficiency of the MCMC algorithm and ease the problem of choosing an optimal proposal before the start of the
MCMC simulation, we have implemented an AM algorithm (Haario et al. 2001) where a Gaussian proposal distribution is updated according
to the statistics of the chain. Specifically, the covariance and mean of a multivariate Gaussian is re-computed at regular intervals.

In Section 6.3, we have chosen to define a multivariate Gaussian proposal per layer l. Each layerwise proposal is updated independently
according to the history and correlation of the nodes within that layer. Since the nodal conductivity values can span several orders of magnitude,
the Gaussian proposal is defined in log-scale and we evaluate its probability q( · | · ) in linear scale, that is, a multivariate lognormal PDF
centred at the current state ml

t−1 with covariance �:

q(ml
t |ml

t−1) = 1

(2π )
nlay

2 (det �)
1
2
∏nlay

j=1 m j
t

exp

(
−1

2
(ln(ml

t ) − ln(ml
t−1))t�−1(ln(mlay

t ) − ln(ml
t−1))

)
, (B5)

where nlay is the number of nodes per layer and ml is the proposed vector of nodes for layer l, that is, conductivity values for all the nodes in
layer l.
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