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We compute one- and two-nucleon kinetic-energy spectra and opening-angle distribu-
tions for the nonmesonic weak decay of several hypernuclei, and compare our results
with some recent data. The decay dynamics is described by transition potentials of
the one-meson-exchange type, and the nuclear structure aspects by two versions of the
independent-particle shell model (IPSM). In version IPSM-a, the hole states are treated
as stationary, while in version IPSM-b the deep-hole ones are considered to be quasi-
stationary and are described by Breit-Wigner distributions.

The mesonic mode, Λ → Nπ, with a rather small Q-value, QM = MΛ −MN −mπ ≈ 37
MeV, is heavily inhibited for Λ-hypernuclei, except for the very lightest, due to Pauli
blocking. With increasing mass number, A, a new mode quickly becomes dominant,
namely the nonmesonic weak decay (NMWD), ΛN → nN , whose Q-value, QNM = MΛ −
MN + εΛ + εN ≈ 120 – 135 MeV, is sufficiently large to render this Pauli blocking less
and less effective. NMWD can be seen as one of the most radical transmutations of an
elementary particle inside the nuclear medium: the strangeness is changed by ΔS = −1
and the mass by ΔM = MΛ − MN = 176 Mev. From a practical point of view, the
main interest in NMWD is that it is, at present, the only way available to probe the
strangeness-changing interaction between baryons.

Lately, the quality of experimental data on NMWD has improved considerably, and
today one has available, not only one-nucleon kinetic energy spectra, but also two-
nucleon coincidence spectra and opening-angle distributions obtained in several labo-
ratories around the world, such as, KEK, FINUDA, and BNL. Here we briefly discuss a
simple but fully quantum-mechanical formalism for the theoretical investigation of these
observables. For more details see Refs. [1] and [2].
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We start from Fermi’s golden rule for the NMWD transition rate, ΓN ≡ Γ(ΛN → nN),
with the states of the emitted nucleons approximated by plane waves and initial and
final short-range correlations implemented at a simple Jastrow-like level. The initial
hypernuclear state is taken as a Λ in single-particle state jΛ = 1s1/2 weakly coupled to
an (A − 1) nuclear core of spin JC , i.e., |JI〉 = |(JCjΛ)JI〉. For the description of nuclear
states we adopt the independent particle shell model (IPSM).

Let us consider first the simplest version of this model, IPSM-a, in which all the relevant
particle and hole states are assumed to be stationary. Thus, if the nucleon inducing the
decay is in state jN , then the possible states of the residual nucleus are |JF 〉 = |(JCj−1

N )JF 〉
and the liberated energy is ΔjN

= MΛ − M + εjΛ + εjN
, where the ε’s are single-particle

energies. Within this scheme, we get

ΓN = 2π
∑

SjNJF

∫ ∫
|〈pnpNS; JF |V |JI〉|

2δ(En + EN + Er − ΔjN
)

dpn

(2π)3

dpN

(2π)3
(1)

=
4M3(A − 2)

π

∑
jN

∫
dEN

∫
dEn FjN

(p, P ), (2)

where En,N = p2
n,N/(2M) are the kinetic energies of the emitted nucleons, Er = |pn +

pN |
2/[2(A−2)M ] accounts for the recoil, and V is the transition potential. It is understood

that all integrations on kinematical variables run over the allowed phase space. In Eq. (2),

FjN
(p, P ) =

jN+1/2∑
J=|jN−1/2|

F J
jN

∑
SlLλJ

|〈plPLλSJ |V |jΛjNJ〉|2, (3)

where F J
jN

are spectroscopic factors, p and P are the relative and total momenta of
the emitted nucleons, l and L are the corresponding orbital angular momenta, and the
couplings l + L = λ, λ + S = J and jΛ + jN = J are performed. The one-nucleon
transition probability density SN(EN) is obtained by taking the derivative of ΓN , i. e.,

SN(EN) =
dΓN

dEN

=
4M3(A − 2)

π

∑
jN

∫
dEn FjN

(p, P ). (4)

The proton and neutron spectra are then given by ΔNp(E) ∝ Sp(E) and ΔNn(E) ∝
Sp(E) + 2Sn(E). Similar developments, with the appropriate choice of kinematical in-
tegration variables, yield the coincidence energy spectra ΔNnN(E) ∝ SnN(E) and the
opening-angle distributions ΔNnN(cos θ) ∝ SnN(cos θ), with N = n, p. More details, in-
cluding the way to fix the normalization of these spectra and distributions, are given in
Ref. [2].

For p-shell and heavier hypernuclei, some of the |j−1
N 〉 are deep-hole states, having

considerable spreading widths, γjN
, as revealed for instance in quasifree (p, 2p) reactions.

It is, therefore, unreasonable to treat such cases as stationary, zero-width, states. Rather,
they are better approximated as Breit-Wigner distributions in the liberated energy ε,
PjN

(ε) =
2γjN

π
1

γ2

jN
+4(ε−ΔjN

)2
. This leads to a slightly more sophisticated version of the

IPSM, which we call IPSM-b. It turns out that the final expressions we need can be
obtained from those of IPSM-a through the replacements: ΔjN

�→ ε, and
∑

jN
· · · �→∑

jN

∫ +∞
−∞ dεPjN

(ε) · · · . This is explained in more detail, for the case of SnN(E), in Ref. [1].
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The full one-meson exchange potential (OMEP), that comprises the (π, η,K, ρ, ω,K∗)
mesons, has been employed for V in numerical evaluations. In Fig. 1 we confront the two
IPSM approaches for the spectra Snp(E). One sees that, except for the ground states,
the narrow peaks engendered by the recoil effect within the IPSM-a become pretty wide
bumps within the IPSM-b.

On the other hand, preliminary calculations indicate that the two IPSM versions yield
similar results for SN(E) and SnN(cos θ). In Fig. 2 are compared the experimental [3]
and theoretical kinetic energy spectra ΔNp(E) for 12

Λ C, using the just mentioned OMEP.
The theoretical spectrum is peaked around 85 MeV, and reproduces quite well the data
for energies larger than 50 MeV. Yet, it differs quite a lot at smaller energies, where the
effect of final state interactions (FSI) is likely to be quite important.
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Figure 1. Normalized energy spectra
Snp(E)/Γp for 4

ΛHe, 5
ΛHe, 12

Λ C, 16
Λ O, and 28

Λ Si
hypernuclei, taken from Ref. [1].
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Figure 2. Comparison between the exper-
imental [3] and theoretical kinetic energy
spectra for protons from 12

Λ C decay.

The IPSM reproduces well [2] the BNL experiment for 4
ΛHe [4], but it does not reproduce

well the FINUDA experiment for the SN(E) spectra in 5
ΛHe, 7

ΛLi, and 12
Λ C [3]. Once

normalized to the transition rate, all the spectra are tailored basically by the kinematics
of the corresponding phase space, depending very weakly on the dynamics governing the
ΛN → nN transition proper. The IPSM is the appropriate lowest-order approximation
for the theoretical description of the NMWD of hypernuclei. It is in comparison to this
picture that one should appraise the effects of the FSI and of the two-nucleon-induced
decay mode.
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