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dInstituto de Investigaciones Fisicoqúımicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CCT La Plata,

Consejo Nacional de Investigaciones Cient́ıficas y Técnicas. Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La

Plata, Argentina
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ABSTRACT

High accuracy energies of low-lying excited states, in molecular systems, have been

determined by means of a procedure which combines the G-particle-hole Hypervirial

(GHV) equation method [Alcoba et al. Int. J. Quantum Chem. 109:3178 (2009)]

and the Hermitian Operator (HO) one [Bouten et al. Nucl. Phys. A 202:127 (1973)].

This paper reports a suitable strategy to introduce the point group symmetry within

the framework of the combined GHV-HO method, what leads to an improvement of

the computational efficiency. The resulting symmetry-adapted formulation has been

applied to illustrate the computer timings and the hardware requirements in selected

chemical systems of several geometries.
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1. Introduction

All the fundamental electronic properties, including the energy, can be expressed

as expectation values of one- and two-electron operators. Therefore, they can be de-

termined using only the 2-order reduced density matrix (2-RDM) without recourse to

the N -body wave function. Both variational and non-variational approaches have been

developed to the direct determination of the 2-RDM for electronic systems. There is a

large bibliography on this subject, which the interested reader may find in the books of

Davidson [1] and Coleman and Yukalov [2] as well as in many proceedings and reviews

[3–8]. In the last years our interest has been focused on a non-variational method based

on the iterative solution of the G-particle-hole hypervirial equation (GHV) [9], which

results from the contraction of a particular case of the quantum Liouville equation [10].

The accuracy of the results obtained with the GHV method when studying the ground

state of molecular systems at equilibrium geometry was excellent when compared with

the equivalent Full Configuration Interaction (FCI) quantities [9, 11–13]. However, the

study of the excited states is still a partially open question [14, 15].

Since the GHV method provides us with a good description of the ground states,

we have recently studied the suitability to combine this method with the Hermitian

Operator (HO) method of Bouten et al. [16, 17] for computing excited state energies

directly from the sole knowledge of the ground-state 2-RDM, or, equivalently, of the

G-particle-hole matrix, which is obtained by solving the GHV equation [18]. Applica-

tions to molecular systems have shown that this combined GHV-HO method can yield

accurate energy values not only for excited-states but also for some ground states in

which the GHV method presents difficulties [18–20].

The aim of this work is to enhance the efficiency of the combined GHV-HO

method by the exploitation of molecular point group symmetry. Following recent work

made within the framework of the GHV method [21], symmetry-related analysis of

the matrices and matrix operations involved in the HO method is carried out. This

analysis leads to a symmetry-adapted formulation of the combined GHV-HO algorithm

for Abelian groups which generates significant computational savings in both floating-
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point operations and memory storage.

The paper is organized as follows. In the next section the notation, definitions

and general theoretical background of the GHV and HO methods are given. In section 3

we describe the symmetry-adapted formulation of the GHV-HO method. A number of

statistics pertaining to the computational cost of GHV-HO calculations are presented

and analyzed for a set of molecules in section 4. Finally, the conclusions of this work

are given in the last section.

2. Basic theoretical background

2.1. Notation and basic definitions

In what follows we will consider pairwise-interacting systems composed of fixed

number N of electrons, whose Hamiltonian Ĥ may be written within second quantiza-

tion formalism [22] as

Ĥ =
1

2

∑

pq;rs

0Hpq
rs a

p† aq† as ar (1)

where ap† and ar are second quantization creation and annihilation operators, the

indices refer to members of a finite basis set of 2K orthonormal spin-orbitals, and

0H is a 2-order matrix which collects the 1- and 2-electron integrals, ǫqs and 〈pq|rs〉

respectively,

0Hpq
rs =

δpr ǫqs + δqs ǫ
p
r

N − 1
+ 〈pq|rs〉 (2)

In this formalism the 1- and 2-order reduced density matrices (1- and 2-RDM)

[22] and the 2-order G-particle-hole correlation matrix [23] may be expressed as

1Dt
v = 〈Φ| at†av |Φ〉, (3)

2Dij
kl =

1

2!
〈Φ| ai†aj†alak |Φ〉 (4)

and

2Gim
lj = 〈Φ| 2Ĝim

lj |Φ〉 =
∑

Φ′ 6=Φ

〈Φ| ai†am |Φ′〉〈Φ′| aj†al |Φ〉. (5)
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These three matrices, which may be related as follows [24]

2! 2Dij
ml = 1Di

m
1Dj

l − 1Di
l δ

j
m + 2Gim

lj (6)

are at the center of the GHV and HO methodologies.

2.2. The G-particle-hole hypervirial equation method

By applying a matrix-contracting mapping involving the G-particle-hole operator

2Ĝ to the matrix representation of a particular case of the quantum Liouville equation

- the hypervirial of the N -electron density operator - one obtains the GHV equation

[9, 10], whose compact form is

〈

Φ
∣

∣

∣

[

Ĥ, 2Ĝim
lj

]
∣

∣

∣
Φ
〉

= 0 (∀ i, j, l,m) (7)

When developing this relation one obtains its explicit form, [9]

∑

p,q,r,s

0Hrs
pq

(3;2,1)Cpqj
rsl

1Di
m −

∑

p,q,r,s

0Hpq
rs

(3;2,1)Crsm
pqi

1Dl
j

+ 2
∑

p,r,s

0Hrs
pm

(3;2,1)Cipj
rsl + 2

∑

p,q,r

0Hpq
jr

(3;2,1)Clrm
pqi

+ 2
∑

p,q,r

0Hir
pq

(3;2,1)Cpqj
mrl + 2

∑

q,r,s

0Hql
rs

(3;2,1)Crsm
jqi = 0

(8)

where

(3;2,1)Cijm
pqt =

∑

Φ′ 6=Φ

〈Φ| ai† aj† aq ap |Φ′〉〈Φ′| am† at |Φ〉 (9)

are the elements of a 3-order correlation matrix [25].

Despite the GHV equation depends not only on 1- and 2-order matrices but also

on 3-order ones, these last matrices can be approximated in terms of the lower-order

ones [8, 12, 19, 26–29]. The approximation algorithm which is now being used is a

recently published modification of Nakatsuji-Yasuda’s one [12, 27]. Proceeding in this

way, the solution of the GHV equation may be obtained by iteratively solving a set of

differential equations to minimize the 2-order error matrix resulting from the deviation
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from exact fulfilment of the equation [11]. As a result, an approximated G-particle-hole

matrix corresponding to the eigenstate being considered is obtained [11].

2.3. The Hermitian operator method

In 1973, Bouten, Van Leuven, Mihailovich and Rosina studied the properties of

the particle-hole subspace of a state, and reported the so-called Hermitian Operator

method [16, 17], which allows one to compute the set of low-lying excited states of an

electronic system from the sole knowledge of the G-particle-hole matrix corresponding

to the ground state. The method is based on a relation connecting the ground state

Φ (reference) with an excited eigenstate Ψ of the Hamiltonian through an excitation

operator Ŝ:

Ĥ Ŝ |Φ 〉 = EΨ |Ψ〉 (10)

This relation implies the following equivalent equation

〈Φ | [ Ŝ, [ Ĥ , Ŝ ′ ]]|Φ 〉 = (EΦ − EΨ ) 〈Φ | Ŝ Ŝ ′ + Ŝ ′ Ŝ |Φ 〉 (11)

which has to be solved. To this aim, the authors proposed to approximate the excitation

operator as follows, [16]

Ŝ =
∑

t,v

{ c
(+)
t,v ( a

t†av −
1Dt

v + av† at−
1Dv

t )+ i c
(−)
t,v ( a

t† av − 1Dt
v − av† at +

1Dv
t )} (12)

where the c symbols represent real coefficients and i is the imaginary unit.

By replacing this definition into eq. (11), one obtains the following system of

decoupled equations for the excitation energies (EΦ − EΨ) and the expansion vectors

c(±)

H(±±) c(±) = 2 (EΨ − EΦ ) G(±±) c(±) (13)

where G(±±) are functionals of the G-particle-hole matrix corresponding to the reference

eigenstate
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Gij(±±)
pq = 2Gij

pq ± 2Gij
qp ± 2Gji

pq + 2Gji
qp (14)

and the matrices H(±±) have the following form

Hij(±±)
pq = 4

∑

r,s

{

H̃jr
ps

2Dqs
ir ± H̃ir

ps
2Dqs

jr ± H̃jr
qs

2Dps
ir + H̃ir

qs
2Dps

jr

}

− 2
∑

r,k,l

{

δqi H̃
pr
kl

2Dkl
jr ± δqj H̃

pr
kl

2Dkl
ir ± δpi H̃

qr
kl

2Dkl
jr + δpj H̃

qr
kl

2Dkl
ir

}

+ 2
∑

k,l

{

H̃pi
kl

2Djq
kl ± H̃pj

kl
2Diq

kl ± H̃qi
kl

2Djp
kl + H̃qj

kl
2Dip

kl

}

(15)

with

H̃ir
ps = 0Hir

ps − 0Hri
ps ≡ 0Hir

ps − 0Hir
sp (16)

As can be appreciated, the generalized eigenvalue system eq. (13) depends only on the

2-RDM, or equivalently on the G-particle-hole matrix, which happens to be the output

of solving the GHV equation. That is why we have recently proposed to combine

the GHV method with the HO method [18]. In the following section we outline an

algorithm for exploiting point group symmetry, by which the computational efficiency

of the combined GHV-HO method is highly improved.

3. Symmetry-adaptation of the GHV-HO method

It is well known that the operations in the symmetry group of a molecule, group

F , maintain the coefficients of the 2-order electron integral matrix 0H unchanged and

therefore, this matrix is an invariant (2,2)-tensor for the group F [30]. Analogously,

if the N -electron state Φ belongs to a 1-dimensional representation of F , then the 1-

and 2-RDM and the G-particle-hole matrix are invariant (1,1)- and (2,2)-tensors for

the symmetry group, the formers in the particle-particle metric while the latter in the

particle-hole metric [30]. Therefore, when the spin-orbitals are symmetry-adapted and

ordered according to their irreducible representations, these 1- and 2-order matrices

are sparse, and when F is Abelian they are also block diagonal. The structure of the
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symmetry forbidden coefficients in all these matrices is easier to analyze when the group

F is an Abelian D2h subgroup, and hence only this kind of groups will be considered

hereafter. When the studied electronic system has non-Abelian symmetry group, an

Abelian subgroup will be considered.

The sparsity of all the 1- and 2-order matrices have been recently exploited within

the framework of the GHV method by carrying out a detailed analysis of the matrix

operations involved in eq. (8). This analysis led to a symmetry-adapted formulation of

the GHV algorithm which generates significant computational savings in both floating-

point operations and memory storage [21]. Let us now reconsider the analysis for the

case of the HO decoupled equations, eq. (13). In this case, three different types of

terms need to be calculated,

∑

r,s

H̃jr
ps

2Dqs
ir ≡ 2Zqj

pi (17)

∑

k,l

H̃pi
kl

2Dkl
jq ≡ 2Wpi

jq (18)

and
∑

r,k,l

δqi H̃
pr
kl

2Dkl
jr = δqi

1Yp
j ≡ 2Xqp

ij (19)

with the auxiliary matrix 1Y defined as

1Yp
j ≡

∑

r,k,l

H̃pr
kl

2Dkl
jr (20)

A detailed analysis of the mathematical operations involved in the calculation of these

terms reveals that the corresponding auxiliary and final matrices are defined by co-

variant equations in particle-particle or particle-hole metric, as appropriate. Those

matrices can be expressed in terms of elementary tensorial operations as follows:

2Z =

((

(

H̃ ⊗ 2D
)(1,2,3,4)→(1,3,4,2)

(1,2,3,4)→(3,1,2,4)

)

con

)

con

(21)

2W =

((

(

H̃ ⊗ 2D
)(1,2,3,4)→(3,4,1,2)

(1,2,3,4)→(1,2,3,4)

)

con

)

con

(22)
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1Y =

(((

(

H̃ ⊗ 2D
)(1,2,3,4)→(1,2,3,4)

(1,2,3,4)→(3,4,1,2)

)

con

)

con

)

con

(23)

2X = δ ⊗ 1Y (24)

where

(V ⊗W)i1...iv+w

m1...mv+w
= Vi1...iv

m1...mv
×Wiv+1...iv+w

mv+1...mv+w
(25)

(

V
(1,...,v)→(τ(1),...,τ(v))
(1,...,v)→(σ(1),...,σ(v))

)i1...iv

m1...mv

= V
iτ(1)...iτ(v)
mσ(1)...mσ(v)

(26)

(Vcon)
i1...iv−1

m1...mv−1
=

∑

x

Vi1...iv−1x
m1...mv−1x

(27)

The covariance of these equations implies that all the intermediate and final

matrices involved in HO method are invariant tensors for the group F , which retain

symmetry properties of the input density and electron integral matrices. The block

structure of these tensors can be applied to efficiently perform the evaluation of the

HO operations for each of the auxiliary operations resulting from eq. (13). Thus, for

instance, the auxiliary matrix 2Z defined in eq. (17) is a (2,2)-tensor for the group F

whose non-vanishing blocks are associated with irreducible representations πi, πj , πp, πq

of F such that πi ⊗ πj ⊗ πp ⊗ πq=A. Hence, one could avoid the evaluation of the

symmetry forbidden elements, and calculate the remaining elements as follows:

2Zqj
pi =

∑

πr,πs

πj⊗πr⊗πp⊗πs=A
πi⊗πr⊗πq⊗πs=A

∑

r∈πr,s∈πs

H̃jr
ps

2Dqs
ir (∀ p ∈ πp, q ∈ πq, i ∈ πi, j ∈ πj) (28)

In a similar way, the auxiliary matrix 2W defined in eq. (18) can be evaluated as follows:

2Wpi
jq =

∑

πk,πl
πp⊗πi⊗πk⊗πl=A
πk⊗πl⊗πj⊗πq=A

∑

k∈πk,l∈πl

H̃pi
kl

2Dkl
jq (∀ p ∈ πp, q ∈ πq, i ∈ πi, j ∈ πj) (29)
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On the other hand, the non-vanishing blocks of elements 1Yj
p in eq. (20) are associated

with irreducible representations πp, πj of F such that πp⊗πj = A, and for each of these

blocks one calculates

1Yj
p =

∑

πr ,πk,πl
πp⊗πr⊗πk⊗πl=A
πk⊗πl⊗πj⊗πr=A

∑

r∈πr,k∈πk,l∈πl

H̃pr
kl

2Dkl
jr (∀ p ∈ πp, j ∈ πj) (30)

The remaining matrix operations involved in the calculation and solution of the

symmetry-blocked HO generalized eigenvalue equations can be analyzed and evaluated

in a similar way. Therefore, it is possible to exploit the block structure of the ordi-

nary density and electron integral matrices entering in the HO equations to improve

the efficiency of the HO computations and reduce the memory requirements. In the

next Section the computational advantages of a symmetry-adapted formulation of the

GHV-HO (sa-GHV-HO) method, which results from combining the symmetry-adapted

formulations of the GHV (sa-GHV) and HO (sa-HO) algorithms, will be discussed and

analyzed.

4. Results and discussion

To illustrate the computational advantages of the sa-GHV-HO method, we have

carried out a number of calculations on small to medium sized molecular systems in

their ground states at equilibrium experimental geometries [31] in minimal STO-3G

and non-minimal 6-31G and 6-31G(d) basis sets. These systems have been chosen in

order to explore the computational improvements implemented by the algorithms in

different point groups. The electron integrals for the sa-GHV and sa-HO methods as

well as the initial values, at a mean-field level of approximation, of all the matrices

required for initiating the iterative GHV process have been computed with PSI3 [32].

In order to fairly assess the performance improvement due to symmetry, two sets of

calculations have been carried out using the same algorithms. Thus, in one set of

calculations we have assumed a C1 symmetry group, and in another set the group

assumed corresponds to the largest Abelian subgroup of the point group describing
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the full symmetry of the system determined by PSI3. Consequently, the gains due to

symmetry directly reflect the savings inherent in the symmetry-adapted method.

Table 1 reports the statistics pertaining to the computational cost and hardware

requirements of HO calculations. Due to strong dependence on hardware facilities, the

tables document the ratios of the computer time and memory requirements between the

calculations performed in the largest Abelian subgroup of the point group describing the

full symmetry of the system determined by PSI3 and those performed in C1 symmetry.

As can be appreciated from the documented data presented in Table 1, the improvement

increases not only with the order of the group but also with the size of the basis set

considered. The results show that computational efficiency ranges from 3.11 to 52.52

in floating-points operations rates and from 1.88 to 7.30 in memory allocation. These

computed factors of reduction due to symmetry are indeed close to the theoretical

estimates in most of the cases. Thus, considering that the group F has f irreducible

representations, and assuming that the partitioning of molecular spin-orbitals according

to irreducible representation is strictly regular, then a straightforward calculation shows

that (2, 2)-tensors have f blocks of size K2/f×K2/f , so they have K4/f non-vanishing

coefficients, and the operations involved in calculation and solution of the generalized

eigenvalue equations eq. (13) have a time proportional to f × (K2/f)
3
= K6/f 2. As

in the GHV method [21], these estimates show that the computational costs of the

HO method can be reduced by as much as a factor of f in storage and f 2 in floating-

point operations. The asymptotic f and f 2 value are only actually achieved when

the symmetry blocking of the orbitals is optimum as can be appreciated from the

documented data presented in Table 1 for the methane molecule. Note that in cases

where the dimension of irreducible representation is far from regular, values of ∼ 0.3 f 2

in computer times and ∼ 0.7 f in memory are achieved. Such is the case of STO-3G

acetylene which has 4, 0, 1, 1, 0, 4, 1 and 1 orbitals of ag, b1g, b2g, b3g, au, b1u, b2u and

b3u symmetries respectively.
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5. Concluding remarks

In this paper, we have outlined a scheme for including the point group symmetry

in GHV-HO calculations. The algorithm provides a means for exploiting sparsity in the

matrices involved in the calculations due to symmetry and is amenable to an efficient

computational implementation. The cpu and memory requirements for calculations us-

ing this approach are not limited by the total number of spin-orbitals forming the basis

set but rather by the maximum number of spin-orbitals belonging to the irreducible

representations of the point group describing the full symmetry of the system. Hence,

highly symmetric large molecules no longer represent a formidable computational ob-

stacle. When our implementation of the sa-GHV-HO method is completed, we plan

to apply this technique to studies of challenging examples such as torsional ground-

and excited-state potentials in ethylene. Finally, let us remark that the reported strat-

egy for exploiting symmetry within the GHV-HO method may also greatly accelerate

other RDM-oriented approaches such as the contracted Schrödinger equation method

[7, 8, 27, 33–36] and the equation-of-motion techniques [18–20, 37–42].
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[30] L. M. Tel, E. Pérez-Romero, F. J. Casquero, C. Valdemoro, Phys. Rev. A 67, 052504

(2003).

[31] NIST Computational Chemistry Comparison and Benchmark Database, edited by R.D.

Johnson III. NIST Standard Reference Database No. 101, National Institute of Standard

and Technology, 2006. http://srdata.nist.gov/cccbdb.

[32] T. D. Crawford, C. D. Sherrill, E. F. Valeev, J. T. Fermann, R. A. King, M. L. Leininger,

S. T. Brown, C. L. Janssen, E. T. Seidl, J. P. Kenny, W. D. Allen, J. Comput. Chem.

28, 1610 (2007).

[33] F. Colmenero, C. Valdemoro, Int. J. Quantum Chem. 51, 369 (1994).

http://srdata.nist.gov/cccbdb


14

[34] D. A. Mazziotti, Phys. Rev. A 57, 4219 (1998).
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TABLE 1: Comparison of floating-point operations and memory (in brackets) requirements

of the HO computational algorithms: ratios of the non-symmetry-adapted to the symmetry-

adapted formulations.

System Subgroup Irr. Rep. Basis Set

STO-3G 6-31G 6-31G(d)

NH3 Cs 2 3.11 3.29 3.75

[1.88] [1.91] [1.93]

H2O2 C2 2 4.05 4.27 3.92

[2.00] [2.00] [2.00]

FH C2v 4 4.78 6.80 9.36

[2.84] [3.00] [3.43]

H2O C2v 4 6.05 8.32 11.78

[3.09] [3.20] [3.54]

CH4 D2 4 10.74 14.34 15.61

[4.00] [4.00] [4.00]

C2H6 C2h 4 13.72 20.70 18.41

[3.76] [3.82] [3.87]

Li2 D2h 8 17.17 30.86 47.97

[6.35] [6.72] [7.30]

C2H2 D2h 8 17.55 24.38 46.21

[5.68] [6.00] [6.87]

C2H4 D2h 8 21.61 38.52 52.52

[6.18] [6.39] [7.07]
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