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Abstract
Fetal resting-state functional magnetic resonance imaging (rs-fMRI) has emerged as a critical new approach for characterizing
brain development before birth. Despite the rapid and widespread growth of this approach, at present, we lack neuroimaging
processing pipelines suited to address the unique challenges inherent in this data type. Here, we solve the most challenging
processing step, rapid and accurate isolation of the fetal brain from surrounding tissue across thousands of non-stationary 3D
brain volumes. Leveraging our library of 1,241 manually traced fetal fMRI images from 207 fetuses, we trained a Convolutional
Neural Network (CNN) that achieved excellent performance across two held-out test sets from separate scanners and populations.
Furthermore, we unite the auto-masking model with additional fMRI preprocessing steps from existing software and provide
insight into our adaptation of each step. This work represents an initial advancement towards a fully comprehensive, open-source
workflow, with openly shared code and data, for fetal functional MRI data preprocessing.

Keywords Fetal . fMRI . Functional imaging .Brain segmentation .Deep learning .Convolutional neural network .Open-source
software

Introduction

Resting-state functional magnetic resonance imaging (rs-
fMRI) has emerged as a powerful tool for studying the brain’s
network architecture development. In recent years, this meth-
odology has been applied to the human brain in utero, opening
a window into a functional growth period that was otherwise
inaccessible. Studying fetal fMRI has the potential to illumi-
nate the nature and manner in which the brain’s network ar-
chitecture is initially assembled, affording powerful new

insights into neurodevelopmental origins (Jakab et al., 2014,
2015; Schöpf et al., 2012; Thomason et al., 2017; van den
Heuvel et al., 2018). Despite this potential, progress has been
slow due, in part, to the lack of image analysis tools tailored
for fetal imaging data. Though many tools and software pack-
ages exist for fMRI analyses, these tools were designed with
adult and child data in mind and encounter specific problems
when applied to fetal functional data.

Progress made towards improving fetal MRI methodology
can broadly be divided into image acquisition and image post-
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processing. Image acquisition improvements have occurred
mainly concerning fetal structural MRI, particularly in ana-
tomical (primarily T2 HASTE; Half-Fourier Acquisition
Single-shot Turbo spin Echo imaging) and diffusion tensor
imaging (DTI) (Benkarim et al., n.d.; Biegon & Hoffmann,
2014). Advances have been made in inter-slice motion correc-
tion and volume reconstruction (Fogtmann et al., 2014;
Gholipour et al., 2017; Studholme, 2011), mapping structural
connectivity (Huang et al., 2018; A. Ouyang et al., 2015; M.
Ouyang et al., 2018; Qiu et al., 2015; Song et al., 2017;
Takahashi et al., 2012), and comparing different MRI signals
(Seshamani et al., 2015). These strategies have made it possi-
ble to use sparse acquisition sequences, which alleviate move-
ment concerns (Serag et al., 2017; Seshamani et al., 2014),
and enable more sophisticated analytic approaches, such as
morphometric (Gholipour et al., 2017; Kuklisova-
Murgasova et al., 2011; Serag et al., 2012; Shi et al., 2010;
Studholme, 2011) cortical folding (Wright et al., 2014), and
cytoarchitectural examinations (Miller et al., 2014). In con-
trast, papers focusing on image post-processing improvements
are markedly few and primarily focused on structural imaging.
Articles suggesting possible solutions for fetal functionalMRI
data analysis are rare (Scheinost et al., 2018; Seshamani et al.,
2014). In this work, we focus on methods for improving im-
age post-processing for fetal functional MRI data.

Challenges associated with the analysis of fetal fMRI have
been discussed in a growing number of studies (Schuler et al.,
2018; Thomason, 2018; Thomason et al., 2014, 2015, 2017;
van den Heuvel et al., 2018) and reviews (Anderson &
Thomason, 2013; A. J. Robinson & Ederies, 2018; van den
Heuvel & Thomason, 2016; Vasung et al., 2018). These
works have focused on image characteristics: motion, size of
the fetal brain, susceptibility artifacts introduced by surround-
ing maternal tissues, and physiological noise of both mother
and fetus. Previous work has highlighted essential areas for
development, but to our knowledge, no one has proposed a
preprocessing pipeline for fetal functional MRI and released it
in the open science framework.

The most time-consuming step in preprocessing fetal fMRI
is the differentiation of the fetal brain from the surrounding
maternal compartment at each acquisition time point.
Differentiation is achieved by the generation of an exemplar
mask that marks all in-brain voxels. This mask is critical for
the entire preprocessing pipeline and subsequent activation or
connectivity analyses. Tools developed to segment the adult
brain, such as the Brain Extraction Tool (BET) from FSL
(Jenkinson et al., 2002) and 3dSkullstrip (3dSS) from AFNI
(Cox, 1996), are not effective in generating exemplar masks in
fetal imaging for numerous reasons. There is surrounding ma-
ternal tissue in fetal images instead of the black background in
adult brain images. The fetal brain is not in a standard orien-
tation and shape assumptions do not hold making the atlas-
based extraction priors of adult brain segmentation tools

inapplicable. As a result, previous studies have relied on the
manual generation of brain masks (Thomason et al., 2013,
2014, 2015, 2017; van den Heuvel et al., 2018).While manual
methods are tedious and time-consuming, to date, they have
been the predominant approach to achieve acceptable
standards.

Here, we present an automated approach to the problem of
fetal brain segmentation from surrounding tissue. Leveraging
a large corpus of manually traced human fetal fMRI masks,
we trained a convolutional neural network (CNN) to replace
this labor-intensive preprocessing step. CNN’s are a powerful
tool for effectively identifying complex, non-linear patterns in
spatially structured high-dimensional datasets (Lecun et al.,
1998). They are increasingly utilized in image processing ap-
plications in both medical and non-medical settings (Egmont-
Petersen et al., 2002; Falk et al., 2018; Zeiler & Fergus, 2014).
In the context of fetal brain segmentation, prior work has
investigated the application of CNN’s to segment fetal struc-
tural T2-weighted volumes (Ebner et al., 2020; Ison et al.,
2012; Khalili et al., 2019; Klinder et al., 2015; Link et al.,
2017; Makropoulos et al., n.d.; Payette et al., 2021; Rajchl
et al., 2016; Salehi et al., 2017, 2018; Serag et al., 2017;
Tourbier et al., 2017). These models, however, were devel-
oped to segment the fetal brain from anatomical images and
do not translate to functional time series data. Compared to
structural data, functional data are typically lower resolution
and due to movement require a larger quantity of individual
segmentations. The majority of existing fetal MRI datasets
that have been utilized for deep learning brain segmentation
are collected in clinical settings where the focus is assessing
fetal brain anatomy. This study uses data from a scientific
research program to characterize the development of function-
al neural systems beginning in utero. The scanning protocol
employed in this study prioritized data collection of functional
MRI and most functional scanning sessions do not have an
anatomical scan. Therefore, the existing structural brain seg-
mentation models are not sufficient for the fetal functional
MRI data used in this work. Here, we extend prior work by
developing and validating a tool for automatically segmenting
the fetal brain from functional MRI data. Ultimately, we con-
nect our auto-masking model with an automated version of a
previously manual preprocessing workflow. An overview of
the entire suggested preprocessing stream is provided in
Fig. 1.

All code discussed in this paper, along with a protocol and
a tutorial python notebook, is available on GitHub (https://
github.com/saigerutherford/fetal-code). All raw volumes and
manually drawn brain masks used for training the
convolutional neural network are hosted on OpenNeuro.org
(https://openneuro.org/datasets/ds003090). This pipeline
addresses the challenges mentioned above and achieves
preprocessed fetal time-series data with significantly reduced
manual effort. Our work embodies an initial set of guidelines
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for fetal fMRI preprocessing. The associated protocols are
expected to evolve through improvements by the user com-
munity in response to new knowledge and innovations in the
field.

Methods

Participants and Data

Resting-state functional MRI was obtained from two cohorts,
Wayne State University (WSU) and Yale University. Eligible
participants were at least 18 years of age, assessed as having
uncomplicated, singleton pregnancies, and had no contraindi-
cations for MRI. WSU cohort consists of 197 fetuses (gesta-
tional age 24–39 weeks, M=30.9, SD=4.2). Twenty-one
of these fetuses were scanned at two-time points in utero.
Both time points are included in this study; however, they
are counted as a single subject. WSU fetal MR examina-
tions were performed on a Siemens Verio 3T scanner using
an abdominal 4-Channel Flex Coil. Scanning protocols
were acquired using echo-planar sequence (TR/TE: 2000/
30; 4mm slice thickness, axial, interleaved ascending slice
order, 360 volumes). Multi-echo resting-state sequences
were also collected in a portion of these subjects (TR/
TEs: 2000/18,34,50). The Yale University cohort contains
ten fetuses scanned twice longitudinally (gestational ages
30-36 weeks, M=32.7, SD=1.9). The Yale scanner was a
Siemens Skyra 3T using a 32-channel abdominal coil (TR/
TE:2000/30; 3mm slices, 32 slices parallel to the bi-
commissural plane, 150 volumes).

Due to the lack of tools for automated segmentation of the
fetal brain, research personnel were trained to manually draw
fetal brain masks using BrainSuite software (Shattuck &

Leahy, 2002). In line with prior work, manually generated
brain masks are used to judge the accuracy of automated seg-
mentation methods in the present analysis.

Auto Masking

Experimental Pipeline

Due tomultiple manually drawnmasks per subject, WSU data
were randomly separated at the subject level into training,
validation, and test sets with 129, 20, and 48 subjects (855,
102, and 206 volumes), respectively. The training set was
used to optimize the model. The validation set was used to
gauge the network’s generalization performance during train-
ing and determine when to stop training. The test set is held
out and used after training was completed to evaluate the
model’s performance.

For those interested in using this model on unlabeled data
from potentially unseen MRI scanners, we wanted to further
demonstrate our model’s generalizability. We re-trained the
CNN a second time using the WSU data as training and val-
idation sets (training = 177 subjects/1,066; validation = 20
subjects/102 volumes) and an additional fetal functional
dataset (referred to as the Yale test set; 10 subjects/57 vol-
umes) collected in a separate population (Yale University,
New Haven, CT) on a different MRI scanner. An overview
of the data splitting into single scanner and multi-scanner test
sets is shown in Fig. 1A. Minimal preprocessing of the data
included resampling and zero-padding the images to consis-
tent voxel sizes (3mm3) and dimensions (96 × 96 × 37).
Functional time-series data are input to the auto-masking neu-
ral network as individual timepoints (i.e., a 3D NIFTI rather
than a 4D NIFTI).

Fig. 1 Overview of the experimental pipeline for training, validation, and
testing of the convolutional neural network (CNN) auto-mask model and
the proposed preprocessing pipeline. (A) Details of how data were sepa-
rated into training, validation, and test sets. Two iterations of the auto-
mask CNN model were run to compare single-site results (iteration 1)

with multi-site results (iteration 2). (B) All steps in the proposed prepro-
cessing stream are shown, with a red asterisk representing where visually
quality checking data is recommended. This workflow can be run as shell
scripts from the command line and allows for user flexibility
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Network Architecture

The U-Net style CNN network architecture (Falk et al., 2018)
implemented in this pipeline was adapted from Salehi et al.
(2017, 2018). The architecture features repeated blocks of 3 ×
3 convolutions followed by the ReLu activation function as-
sembled into a contracting path, followed by an expanding
path. In the contracting path, every second convolution is
followed by a 2 × 2 max pooling operation. In the expanding
path, every second convolution is followed by a 2 × 2
upsampling process using nearest-neighbor interpolation.
Every other feature map in the contracting path is concatenat-
ed along the depth dimension to the corresponding map in the
expanding path, helping the network learn the appropriate
location of the output mask. The final layer is convolved with
two 1 × 1 filters to produce an output mask with channels
equal to the number of output classes.

The network separates 3D image volumes into 2D axial
slices and operates on each slice independently. We chose to
implement a 2D rather than 3D network to reduce computa-
tional costs. This model includes steps for converting raw
NIFTI images into a format readable by the network and steps
for converting the network’s output into a NIFTI-formatted,
3D brain mask.

The model was implemented using Tensorflow (version
1.4.1). Training and testing of the network were performed
using a GPU, but CPU testing times were also evaluated to
provide an additional reference point.

Training Procedures

During training, the weights in a CNN are minimized with
respect to a loss function that determines how well the net-
work is learning from the training data. We optimized our
network via per-pixel cross-entropy, with weights determined
using the Adam Optimizer (Kingma & Ba, 2014). Adam is a
first-order gradient method that updates the weights adaptive-
ly based on previous and current gradients. Even using an
adaptive optimizer, we found that using a learning rate decay
improved performance. The initial learning rate was set to
0.0001 with an exponential decay rate of 0.9, applied every
10,000 batches. The model was trained until performance no
longer improved on the validation set. The 2D axial slices in
the training data were augmented through 90-degree rotations
and horizontal and vertical flips. While augmentations were
done on 2D slices, the same rotations and flips were applied to
all slices to preserve the 3D shape. These augmentations cap-
ture the non-standard orientation of the brain in fetal volumes.

Evaluation

The evaluation process was performed over multiple
steps. First, we evaluated our network’s ability to mask

the fetal brain using the Dice coefficient. The Dice coef-
ficient measures the percent overlap between two regions:
the predicted brain region and the actual brain region. It is
defined between zero and one, where zero means there is
no overlap between the two areas, and one means the two
regions are identical. We also report the Jaccard index,
Hausdorff surface distance (Karimi & Salcudean, 2019),
sensitivity (true positive rate: brain voxels are correctly
identified as brain), and specificity (true negative rate:
nonbrain voxels are correctly identified as nonbrain) of
our network on the WSU and Yale held-out test sets.
Detailed mathematical definitions of these metrics can
be found in Taha and Hanbury (2015).

After training, we calculated Dice coefficients for all auto-
masks that have a manually drawn counterpart, though we
report values only for volumes in the test data, as performance
within the train and validation datasets does not reflect model
performance on new data and CNNs are known to achieve
near perfect performance within the training set.

Comparison to Other Methods

Also, to aid in interpretation and benchmarking obtained eval-
uation metrics, we performed a secondary analysis to demon-
strate that current methods for brain extraction perform poorly
when applied to fetal data. We used the Brain Extraction Tool
(BET) implemented in FSL, 3dSkullstrip from AFNI, and the
fetal anatomical U-Net from Salehi et al. (2018), to benchmark
our model. Of note, evaluation metrics can be improved by
separating testing data into challenging versus non-
challenging images (Salehi et al., 2017). This splitting ap-
proach is not used here as this diminishes the representative-
ness of estimates when applied across complex and varied
data sets.

Failure Analysis

After the model performance was evaluated, we conduct-
ed a failure analysis to discover patterns of intrinsic image
characteristics that may influence auto-masking perfor-
mance. First, we examined the relationship between the
evaluation metrics and gestational age. Next, we evaluat-
ed whether image artifacts, brain size ratio (brain volume
relative to the entire image volume), or brain position in
the center of imaging space influence model performance
by qualitatively examining images with dice coefficients
falling below 0.9.

Application of Auto-masks

Auto-masks are output as spatial probability estimates, where-
in voxel values equal to one correspond to the highest proba-
bility of being brain. Probability map brain masks were then
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clustered, thresholded, and binarized. These steps are taken to
discard small, non-brain clusters that may have been included
in the probability map brain mask. Binarized masks were then
resampled back into the subject’s native space and applied to
the native image using an image multiplier, resulting in seg-
mented brain volumes corresponding to each fetal fMRI data
timepoint.

Other Preprocessing Steps

In addition to segmentation of the fetal brain from surrounding
maternal tissue, fetal imaging preprocessing requires several
additional steps: motion denoising, realignment of volumes
within a time series, and group-level normalization to a fetal
template. These steps are challenging because frame-to-frame
displacement is elevated in fetal studies, and the fetal brain is
typically not in a single standard orientation.

In prior studies by our group, a reference frame from each
quiescent period was chosen to be masked. The mask would
then be applied to every volume within the low movement
period, not only the volume it was drawn on. Due to the
time-consuming nature of manual masking, it was not feasible
to mask every volume. Auto-masking’s central goal is to mask
an entire time-series in a fraction of the time it takes to man-
ually draw amask for a single volume. Realigning all volumes
within a time series creates parameters (mean framewise dis-
placement) that are used to identify low movement periods
that are usable for further activation or connectivity analyses.

Typical realignment of fMRI data is done on full time se-
ries using the middle volume (in time) as a reference volume.
Due to notably highmovement across a fetal time series, using
a single reference volume for realignment may not be optimal.
In this pipeline, instead of using a 4DNIFTI file in the realign-
ment step, we realign 3D volumes such that a new reference
volume is always selected at each iteration. We selected the
FLIRT FSL realignment tool (Jenkinson et al., 2002). FLIRT
first estimates a linear transformation between volume n and
the reference volume (n + 1). This step is repeated across all
3D volumes in the time-series and each of these n to (n + 1)
transformationmatrices are applied to each volume of the time
series to produce a new data set comprised of realigned vol-
umes. This step also creates a text file and plot that summa-
rizes the six rigid-body realignment parameters across time,
which can be subsequently used to identify motion outliers
and perform motion censoring in later processing stages.
Here, we applied the fsl_motion_outliers routine as a data-
driven means of defining high and low fetal movement
periods.

After masking and realignment, the individual time point
3D volumes are merged back into a 4D NIFTI, moved into
group template space using linear warping, and spatially
smoothed. Flexibility is built into the pipeline such that the
user can define whether data are normalized to a standard

reference template or age-specific fetal templates, see Serag
et al. (2012). A linear normalization is implemented via
FLIRT (Jenkinson et al., 2002). After normalization, all vol-
umes are spatially smoothed with a user-specified Gaussian
kernel.

Importantly, all software tools used within this preprocess-
ing pipeline (TensorFlow, Python, AFNI, FSL) are free and
open source. All commands can be implemented in a shell
script, which can be run from the command line.

Quality Control

While this methodology employs fully automated techniques
for preprocessing fetal resting-state fMRI data, manual quality
assurance processes are necessary at crucial transition points
throughout the pipeline. Specifically, our standard process
includes an initial review of raw time-series data, screened
as a movie. Initial inclusion criteria are that the brain is in
the field of view and unobstructed by artifacts and that within
the time series, there are periods of minimal fetal movement.
We exclude data not meeting these criteria. However, most
Wayne State University data passes this stage because long
scan durations are used, and fetuses rapidly cycle through
quiescent states.

Additional steps in the quality control protocol are imple-
mented after auto-masking, realignment, and normalization.
At these stages, time-series data are again visually inspected
to assure that no errors were introduced during these stages of
preprocessing. Several parameters that are automatically gen-
erated during the pipeline should be used in complement to
manual quality checking. These parameters include realign-
ment parameters, motion plots, and metrics from the
fsl_motion_outliers command.

Results

Auto-masking Performance

Our CNN auto-mask model achieved high accuracy when
delineating fetal brain from surrounding structures in fetal
brain fMRI images. We evaluated the model on two held-
out test sets. Applied to the Wayne State University (WSU –
206 volumes from 48 unique subjects) and Yale (57 volumes
from 10 subjects) test cohorts, the models achieved a per-
volume average dice coefficient of 0.94 and 0.89, respective-
ly. The CNN’s performance in terms of Dice coefficient,
Jaccard coefficient, Hausdorff surface distance, sensitivity,
and specificity across both test sets is summarized in
Table 1. Figure 2 provides examples of high fidelity between
manual and auto-masks in both test sets.
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Comparison to Adult Auto-masking Tools

As a point of reference for the Dice coefficient achieved by
our method, we performed an additional analysis using several
existing auto-masking tools: Brain Extraction Tool (BET),
3dSkullstrip (3dSS), and the fetal anatomical U-Net from
Salehi et al. (2017, 2018). As expected, when applied to
the same test set data, these tools performed significantly
worse. Evaluation metrics are reported in Table 1, and ex-
amples of the masks generated using these tools are shown
in Fig. 3. The fetal anatomical U-Net masks were empty in
most cases, and therefore the evaluation metrics failed and
are not reported in Table 1. In Fig. 2D, functional and
structural fetal MRI data are shown side by side to demon-
strate the substantial differences in image characteristics
between modalities. These results highlight that in fetal
functional data, areas of the maternal compartment have
high contrast boundaries and varied image intensity creat-
ing challenges for standard adult masking routines and se-
verely compromising performance. A network that has

been adapted for and trained on fetal functional data is
necessary to achieve high-quality functional brain masks.

Age & Data Quality Failure Analysis

Examination of the effect of fetal age on the algorithm’s perfor-
mance revealed a significant positive association between Dice
coefficient and gestational age (Fig. 4). This relationship is likely
due to older fetuses having larger brain volumes (Crum et al.,
2006). The correlation between gestational age and brain mask
volume is highly significant and the correlation between Dice
coefficient and brain mask volume is also highly significant.
Auto-masks that had “low” Dice coefficients (< 0.9) were visu-
ally inspected to further understand reasons for suboptimal per-
formance. Two out of 48 subjects in the WSU test set (4 out of
206 volumes) and two out of ten subjects (6 out of 57 volumes)
in the Yale test set had dice coefficients less than 0.9. Examples
of the raw and brain mask data from these low Dice subjects
are shown in Fig. 3. In this study’s GitHub (https://
github.com/saigerutherford/fetal-code), there are video

Fig. 2 Comparison of manual and automated masks. (A) Raw volume;
(B) Hand-drawn mask; (C) Auto mask; (D) Conjunction of hand drawn
(yellow) and auto (blue) masks, overlap between hand and auto masks

shown in green. WSU data collected in Detroit, MI, at Wayne State
University. Yale data collected in New Haven, CT at Yale University

Table 1 Performance of auto-mask model and existing masking software evaluated in two independent test sets fromWayne State University (WSU)
and Yale University. Values reported are the mean (s.d.) within the test sets

WSU Auto-mask WSU BET WSU 3dSS Yale Auto-mask Yale BET Yale 3dSS

Dice 0.94 (+/- 0.067) 0.22 (+/- 0.13) 0.24 (+/- 0.10) 0.89 (+/- 0.13) 0.22 (+/- 0.06) 0.25 (+/- 0.08)

Jaccard 0.89 (+/- 0.069) 0.13 (+/- 0.086) 0.14 (+/- 0.07) 0.82(+/- 0.13) 0.13 (+/- 0.03) 0.15 (+/- 0.05)

Hausdorff Distance (mm) 12.11 (+/- 22.4) 112.6 (+/- 36.7) 103.3 (+/- 26.0) 19.25 (+/- 14.5) 95.2 (+/- 30.1) 92.8 (+/- 24.2)

Sensitivity 0.90 (+/- 0.04) 0.13 (+/- 0.08) 0.14 (+/- 0.07) 0.84 (+/- 0.12) 0.12 (+/- 0.03) 0.15 (+/- 0.05)

Specificity 0.99 (+/- 0.0007) 0.99 (+/- 0.003) 0.99 (+/- 0.002) 0.99 (+/- 0.002) 0.99 (+/- 0.004) 0.99 (+/- 0.002)

Auto-mask is our proposed model. BET is Brain Extraction tool from FSL, 3dSS is 3dSkullStrip tool from AFNI
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examples of successful and failed auto-masks which better
explore the 3-dimensional space. We found that aliasing
negatively impacted auto-mask performance (example
shown in Fig. 3C) and that the algorithm also performed
more poorly for images in which the brain had a large dis-
placement from the image origin.

Computational Time and Hardware

An often-noted property of deep learning models is their abil-
ity to surpass human speed in completing complex tasks sub-
stantially. Our auto-masking model illustrates this accelera-
tion. The training time refers to the wall-clock time it took
our CNN model to converge to a set of weights that minimize
the Dice coefficient on the validation set. The training was
stopped after signs of overfitting were observed, that is, per-
formance on the validation set was no longer increasing. The
model’s total training time was 3 h and 46 min on a GeForce
GTX 1080 Ti GPU. Testing time refers to the time it takes to
run the CreateMask.py script to load the raw input volume
(NIFTI to NumPy array conversion) and output a predicted
auto-mask (as a NIFTI file). The testing time to generate a new

auto brain mask is approximately 0.2 s if using a GPU, and
2.5 s if using CPU.

Other Preprocessing

An additional benefit of our approach for auto-masking all
individual volumes is that multiple realignment strategies are
now possible. After the fetal brain has been extracted, the time
series data can enter more typical preprocessing steps for
which child/adult tools have been developed. The main dif-
ference when applying these tools is that the fetal brain can
have any orientation (meaning image origins may be very far
apart), and fetal data exhibits substantially increased head
motion.

Concerning the problem of elevated head motion, errors
introduced by movement cannot, at present, be fully corrected
in the fMRI time series. This fact necessitates the application
of stringent criteria for retaining only low-motion volumes to
ensure data integrity, which is the approach taken by most
studies to date (Jakab et al., 2014, 2015; Schöpf et al., 2012;
Thomason et al., 2017; van den Heuvel et al., 2018). The
correct framewise displacement threshold to censor high

Fig. 3 Failure analysis and comparison of functional with structural fetal
MRI data. (A) All data of the WSU test set subject with the lowest Dice
coefficient (0.87). (B) All data of the Yale test set subject with the lowest
Dice coefficient (0.84). The BET, 3dSkullStrip, and Anatomical U-Net
masks do not adequately capture the fetal brain’s boundary in both the
WSU and Yale case. (C) Extreme failure of the auto-mask model, due to

very poor quality of the raw data. (D) Comparison of data quality between
fetal functional and structural MRI data to understand why models de-
signed for brain segmentation of anatomical data do not necessarily trans-
late to functional data. Structural fetal MRI image used with permission
from Payette et al. (2021)
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motion volumes from a BOLD time-series is an active discus-
sion topic. The answer to the framewise displacement thresh-
old debate is complex, and a concrete solution is outside the
scope of this work. However, we tested many different cen-
soring thresholds, and the resulting amounts of data preserved
at each censoring threshold are shown in Fig. 5.

Discussion

Fetal functional MRI is an emerging field with great potential
to improve understanding of human brain development. The
number of papers published in this area has seen a 5-fold
increase since 2010. However, methodologies for processing
these complex data sets have not kept pace, and the absence of
a standard publicly available processing pipeline for these data
has been especially notable. Here we address this gap and

present a solution to the most cumbersome processing step,
localization, and extraction of the fetal brain from surrounding
tissue for each volume of a functional time series. This is a
necessary step in processing human fetal fMRI data. Until
now, it has been a rate-limiting factor in accurate, automated
processing of fetal fMRI BOLD time-series data. This model
was built by pairing a set of 1,241 hand-drawn fetal 3D brain
masks with a deep learning algorithm, a U-Net convolutional
neural network. Pipeline code and documentation are made
available through GitHub (https://github.com/saigerutherford/
fetal-code). Training, validation, and test data sets (raw
volumes, hand-drawn masks, and auto-masks) are available
in BIDS format on OpenNeuro.org (https://openneuro.org/
datasets/ds003090). It is hoped that the release of an easy-to-
use, efficient, validated auto-masking pipeline will reduce bar-
riers for new labs to enter this area while also providing ex-
perienced labs opportunities for further optimization of their

Fig. 4 Evaluation of auto-masking model. The relationships between
fetal gestational age (in days) at scan are shown on the x-axes and auto-
masking performance in the WSU test sets (blue) and Yale test set

(orange) on the y-axes. We calculated the evaluation metrics on a per-
volume basis, however, the values shown here are on a per-subject basis
to examine the relationships with age
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independently developed approaches. Future integration of
this auto-masking model will be incorporated into BioImage
Suite (https://bioimagesuiteweb.github.io/webapp/), a web-
based image analysis tool that will make use of this model
even more accessible to the field.

Recent pioneering work has established that deep learning
approaches are effective in fetal structural brain segmentation
(Ebner et al., 2020; Ison et al., 2012; Khalili et al., 2019;
Klinder et al., 2015; Link et al., 2017; Makropoulos et al.,
n.d.; Payette et al., 2021; Rajchl et al., 2016; Salehi et al.,
2017, 2018; Serag et al., 2017; Tourbier et al., 2017).
However, fetal functional imaging presents a distinct set of
constraints and therefore requires a different solution. In par-
ticular, the inherently lower resolution and contrast of func-
tional time-series data, and the 4-dimensional nature of the
data (~ 360 3D volumes per subject), make this a more chal-
lenging problem. Here we applied CNN methods to the most
extensive fetal fMRI data set reported to date, 207 fetuses, and
derived a novel method for accurate and reliable segmentation
of the fetal brain from surrounding maternal tissues within a
fraction of a second, 94% accuracy in 0.2 s. These encourag-
ing results are partially attributable to the large set of manually
traced human fetal fMRI masks used to train the CNN, con-
sistent with studies showing the correlation between CNN

performance and the training data size (Cho et al., 2015;
Verghese et al., 2018).

The auto-masking model exhibited strong generalizability,
which is particularly important given known biases in CNN
models trained on imaging datasets from a single site/
population (Tommasi et al., 2015; Zech et al., 2018). First,
the trained CNN correctly classified data at two held out sets
with 94 and 89%, very similar to the training data. This find-
ing suggests that the CNN is robust to variations in experi-
mental procedures, scanner settings, and populations studied.
Also, the training images were drawn from a wide fetal age-
range, which should also enhance generalizability across fetal
samples encompassing different ages.

Our aim in this project goes beyond brain segmentation; we
sought to construct an automated version of a previously man-
ual preprocessing pipeline that is standardized but flexible and
readily deployable across multiple data sources. Thus, our
pipeline begins with an auto-masking step, leverages existing
algorithms (FSL, AFNI) that assist with applying the auto-
masks, performs frame-to-frame alignment, normalization to
a user-defined template, and finally smoothing. The user is
referred to publicly available multi-age fetal brain templates
(Serag et al., 2012) and can easily configure the tool to modify
or eliminate steps. Our code’s flexibility allows for potential

Fig. 5 Motion summary.
Framewise displacement (FD)
censoring thresholds from 0.5mm
– 3.8mm were tested, and the
amount of data remaining for each
subject is shown at each thresh-
old. Each subplot represents a
different FD threshold (bolded
above the subplot). Each subject
represents a point on the x-axis,
and the y-axis shows the time, in
minutes, remaining after remov-
ing high movement volumes
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users to mix and match the portions of this pipeline they wish
to use. For example, a user could choose an alternative re-
alignment algorithm as the first step then apply the auto-
masking step. The tool’s open construction will allow the
incorporation of future processing advances, such as surface-
based registration and additive motion correction strategies.

Our work has several limitations. First, deep learning
methods perform classification in high dimensional space,
and consequently, results can be a “black box” with little
opportunity for interpretation of axes (Cabitza et al., 2017).
However, this limitation should be viewed in the context of
our goal: to automatically perform a task that can take trained
individuals many hours to perform manually. We are less
interested in understanding computer-based brain masking
mechanisms and instead focus on algorithm performance in
out of sample data sets.

Another limitation is that we use direct warping, or normal-
ization, of functional data to a group-averaged anatomical
template. It is not clear that alternatives would improve regis-
tration significantly, but one might expect registration to
subject-specific anatomy, then to template space, to be a pre-
ferred approach. This approach’s challenge is that obtaining
high-quality subject-specific high-resolution anatomical im-
ages presents a different set of challenges that have been ad-
dressed elsewhere (Studholme, 2015). Prior studies of fetal
anatomical development (Nunes et al., 2018) demonstrate that
even when trained experts apply the most advanced tech-
niques to these data, there is still significant data loss and
image blurring where motion effects, image artifacts, or lack
of tissue contrast compromise data quality. This example ex-
tends to other parts of the pipeline, where alternative opti-
mized preprocessing strategies could be used. However, this
work’s objective is not to serve as a final fetal functional MRI
preprocessing endpoint but as a backbone upon which further
development can follow.

A final limitation is that ours is not a fully automated pipe-
line. It requires human supervision and quality checking at
several stages, which requires a certain quantity of time and
level of expertise from the human supervisor. Fortunately,
however, the level of involvement and associated expertise
required is limited and includes looking for overt errors when
viewing processed images as a continuous movie, which takes
approximately 1–5 min per functional run. Assuming the en-
tire time for running this pipeline is 15–30 min, including
human effort, this is a 60-fold time reduction over prior
methods, with manual tracing in particular requiring extensive
time and substantial expertise (Thomason et al., 2017; van den
Heuvel et al., 2018).

There are many future directions to continue improving
fetal functional MRI preprocessing and data analysis.
Regarding the auto-masking portion of the pipeline, future
contributors to this pipeline should consider using 3-D instead
of 2-D convolutions and directly using the probability masks

(instead of binarizing them) to utilize the model’s uncertainty
estimates. Regarding the realignment and quality checking
portions, it may be useful to calculate the Dice coefficient
between consecutive volumes (after realignment) as a metric
of data quality – a dice coefficient equal to one represents two
perfectly images. Other advanced alignment algorithms to
register the data to template space should also be investigated
and adapted for fetal data (Bozek et al., 2018; Robinson et al.,
2014, 2018). It is important to benchmark new brain segmen-
tation models against existing solutions. In order for
benchmarking to become common practice, pre-trained
models must be shared along with the code. There are expen-
sive computational costs to re-training a model every time a
new user wants to use it, and these costs can be eliminated by
sharing pre-trained model weights. Furthermore, the code to
test existing brain segmentation models must be accompanied
by clear directions for setup and testing, and ideally a tutorial
showing step-by-step how to successfully run the code. We
encourage users who test the auto-mask pipeline introduced in
this paper in their fetal data sets to report performance metrics
back to the study’s GitHub page. Also, if new users re-train
the auto-mask model by adding additional labeled data from
their site, it would be beneficial to the fetal imaging commu-
nity to share these pre-trained models on our study’s GitHub
(via a pull request to our repository). A contributing guide on
the GitHub page provides instructions for sharing additional
pre-trained models. This will ensure that new users are able to
access the most current, best performing auto-masking model
and will lower the barriers to entry for fetal functional imag-
ing. Finally, it would be beneficial to follow in the footsteps of
an extremely successful adult MRI preprocessing pipeline,
fMRIPrep (Esteban et al., 2018), and package the code into
a container, either Docker (Merkel, 2014) or Singularity
(Kurtzer, 2016). A container is a standard unit of software that
packages up code and all its dependencies, so the application
runs quickly and reliably from one computing environment to
another (What Is a Container?, n.d.).

Large-scale, often multi-center, projects are becoming the
new norm, and these require validated, standardized process-
ing pipelines of the kind that we have developed in this work.
The Developing Human Connectome Project provides just
one example of a large-scale study that includes a fetal func-
tional MRI component (Bozek et al., 2018; Fitzgibbon et al.,
2020; Harms et al., 2018; Makropoulos et al., n.d.) and many
more large-scale fetal fMRI initiatives will likely emerge in
the coming years.

In sum, in this work, we leverage deep learning methods in
the most significant sample of fetal fMRI data published to date
to address the challenging brain segmentation problem in fetal
fMRI. We unite our novel auto-masking tool with other prepro-
cessing steps to initialize the first complete open-source solution
to preprocessing raw fetal functional MRI time-series data.
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