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A Bayesian Semi-
Parametric Approach for
Modeling Memory Decay
in Dynamic Social
Networks

Giuseppe Arena1 , Joris Mulder1,2 ,
and Roger Th. A.J. Leenders2,3

Abstract

In relational event networks, the tendency for actors to interact with each

other depends greatly on the past interactions between the actors in a social

network. Both the volume of past interactions and the time that has elapsed

since the past interactions affect the actors’ decision-making to interact with

other actors in the network. Recently occurred events may have a stronger

influence on current interaction behavior than past events that occurred a

long time ago–a phenomenon known as “memory decay”. Previous studies
either predefined a short-run and long-run memory or fixed a parametric

exponential memory decay using a predefined half-life period. In real-life

relational event networks, however, it is generally unknown how the

influence of past events fades as time goes by. For this reason, it is not
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recommendable to fix memory decay in an ad-hoc manner, but instead we

should learn the shape of memory decay from the observed data. In this

paper, a novel semi-parametric approach based on Bayesian Model

Averaging is proposed for learning the shape of the memory decay without

requiring any parametric assumptions. The method is applied to relational

event history data among socio-political actors in India and a comparison

with other relational event models based on predefined memory decays is

provided.

Keywords

Relational event model, social network analysis, event-history data, bayesian

Model Averaging, network dynamics, memory decay, memory retention

process

Introduction
As a result of the growing automated collection of information, fine-grained
longitudinal network data are increasingly available in many disciplines, such
as sociology, psychology, and biology. These data have the potential to revo-
lutionize our understanding about complex social network dynamics as we
can learn how the past affects the future, how interaction behavior changes
in continuous time, and how past social interactions lose their influence on
the future away as time progresses. This has inspired social network scientists
to develop network models that suit the inherent dynamic nature of these
so-called relational event data. A relational event is defined as an action
initiated by a sender and targeted to one or more receivers at a specific
point in time. The relational event modeling framework aims to model the
event rate: the speed at which relational events occur over a period of time
between the actors in the model. The event rate can be expressed as a function
of characteristics that quantify endogenous network patterns or exogenous
characteristics that (jointly) determine how the network unfolds at some
point in time (Butts, 2008). In sociological and psychological research, the
application of these relational event models aims to find behavioral patterns
and to shed light on the emergence of a global structure from network dynam-
ics occurring at a local (typically, dyadic) level (Leenders, Contractor, and
DeChurch et al., 2016; Schecter et al., 2018; Pilny et al., 2016).

Of particular interest is to understand what triggers actors to interact with
each other. Actors might decide which mutual recipient to target their actions
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to depending on various aspects such as homophily, norms of reciprocity, the
volume of past social interactions, triadic closure mechanisms, et cetera
(Rivera, Soderstrom, and Uzzi, 2010). Past relational events influence
future events in different ways. First, qualitative aspects of the past events
play a role, such as whether the interaction was positive or a negative or
who was the sender of the past event. For example, receiving a message
from the company’s president might have a greater effect than getting a
message from a regular colleague. Similarly, the valence of events may
play a role: events with a negative connotation have been argued to have a
greater effect than events with a positive connotation (Brass and Labianca,
1999; Labianca and Brass, 2006; Offer, 2021; Moerbeek and Need, 2003).
Second, recent past events are generally expected to have a greater influence
on the present than events that occurred a long time ago (Butts, 2008;
Quintane et al., 2013; Brandes, Lerner, and Snijders, 2009; Mulder and
Leenders, 2019). Having recently received praise from a colleague is likely
to affect current interaction more than if that praise dates back a year ago.

While studies using relational event data tend to focus on the effects of
endogenous statistics (e.g., to what extent actors repeat their past interactions,
do they reciprocate interactions aimed at them, or do they prefer to interact
with others with whom they share many other interaction partners with?) or
exogenous statistics (e.g., does information sharing tend to go from lower-
status actors to higher status actors, do friends share information at higher
rates than non-friends, how much does co-location matter for communication
in IT-enabled teams?), much less attention has been paid to exactly how long
past events retain their influence on the present and future. This is the very
subject of this paper. In particular, our aim is to derive a method that
allows a researcher to empirically derive the shape of the function by
which past events lose their influence on the future. This shape can be
linear, exponentially decaying, or have any other shape. To unify our termin-
ology, we will use the term “memory decay” for this phenomenon, even
though we do not aim to model cognitive functions of the actors in the
network. This terminology is not new. For example, Brandes, Lerner, and
Snijders (2009) specify a half-life function that governs the decaying influ-
ence of events “motivated by the assumption that actors forget (or
forgive)”. Similarly, Mulder and Leenders (2019) and Leenders,
Contractor, and DeChurch et al. (2016) explicitly refer to this phenomenon
as “memory decay.” Within the context of Temporal ERGM’s, Leifeld,
Cranmer, and Desmarais et al. (2018) and Leifeld and Cranmer (2019)
include so-called “memory terms” and allow the researcher to specify time-
based functions (“time trends”) of how the time since a past tie affects the
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occurrence of later ties. Our focus is on the way the influence of past events
on the future changes, that is akin to how long people “remember” (or care
about) the past actively enough to still make it count towards the present
and future. Because the effect of the past will almost always decrease as
time passes, we will use the term “memory decay” throughout this paper to
refer to the shape of the function that captures how the influence of a past
event on future events changes as the time since the event increases.

Already in Butts (2008) seminal paper and the accompanying software
(Butts, 2021), the importance of memory retention of past relational events
is highlighted. So-called “participation shifts” were introduced that capture
how the interaction dynamics shifts between dyads depending on the very
last event that happened. These statistics assume that actors respond to the
immediate past, regardless of what happened before that. In addition, a
“recency” statistic is considered where the potential receivers for each poten-
tial sender are ordered based on their recent activity and a power-law is used to
create a predictor variable (i.e., the reciprocal of the rank). This mechanism
captures the extent to which actors take into account the last events they had
with every other actor, discounting events from farther into the past. Finally,
other endogenous statistics (such as inertia and reciprocity) are computed as
the total volume of past interactions between actors and, hence, count all
past events as equally important to the future and assume that no past event,
however distant in the past, is ever forgotten. In sum, these statistics already
capture three distinct ways in which the past is (dis)counted towards the
present and the future and each reflect a different shape of memory decay.

More recently, other approaches have also been considered to better under-
stand how (long) past activity affects future events. One approach has been to
quantify a specific pattern of interactions according to specific predefined
time intervals, such as a short-run expression (calculated by considering
recently passed events) and a long-run expression (considering long-passed
events in the computation) (Quintane et al., 2013; Quintane and Carnabuci,
2016; Perry andWolfe, 2013; Kitts et al., 2017; Patison et al., 2015). The esti-
mated effects for these intervals describe how different the impact of the spe-
cific pattern is on the event rate according to different recency of events
constituting the pattern itself. Another approach consists of estimating the
model while using a moving time window with a predefined fixed memory
length with the result of a trend of the effects over the windows (Mulder
and Leenders, 2019). An alternative to time-intervals-based methods
weighs the influence of past events by an exponentially decreasing function
with a given half-life parameter that describes the elapsed time beyond
which the influence of an event in the calculation of the statistic is halved
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(Brandes, Lerner, and Snijders, 2009; Lerner, Bussman, Snijders, and
Brandes et al., 2013; Leenders, Contractor, and DeChurch et al., 2016).

In all of these approaches, a researcher needs to predefine the memory
lengths for the discretized model or predefine the steepness of the decay in
the case of the continuous half-life model. Typically, heuristic considerations
are used to specify this function. Notable exceptions include Brandenberger
(2018) and Brandes, Lerner, and Snijders (2009) who explored the fit and
robustness of the results by considering different choices for the half-life par-
ameter. The question is, however, whether a prespecified memory decay
appropriately captures the dependence between the time that has passed
since the event and the current event. Depending on the context, certain
decay shapes may be more suitable in terms of fit than other shapes. Model
misfit may result in poor predictions and unreliable inferences.

Considering the dearth of time-sensitive theory to draw from (cf. Leenders,
Contractor, and DeChurch et al. (2016); Ancona et al. (2001); Cronin,
Weingart, and Todorova et al. (2011)), there is little theory (if any) to truly
guide a researcher in the choice of an appropriate memory decay function for a
research project at hand. Researchers have dealt with this by specifying
choices for the decay function based on their experience with the empirical
context or based on their own assumptions regarding the influence of time.
Alternatively, an approach that we propose in this paper is to present a semi-
parametric method for learning the actual shape of memory decay in relational
event models. The method is semi-parametric in the sense that it does not
make assumptions about a specific functional form for memory decay. Indeed,
parameters that potentially govern the memory process and, in turn, determine
its shape over time are often unknown and our intent is to minimize the challenge
that is involved in prespecifying a memory function by a researcher. Our method
can be used for finding any functional form of memory decay which could be an
exponentially decreasing trend, a smoothed step-wise function, or other, possibly
more (or less) complex, functional trends.Our semi-parametricmethod combines
the relational eventmodeling framework (as inButts (2008))withBayesian infer-
ence in the context of a model selection problem (Bayesian Model Averaging)
(Volinsky et al., 1999). The idea is to consider a large “bag” of step-wise
models with different interval configurations. Next, the fit is computed for all
step-wise models, and subsequently, we model the shape as an average of
these models weighted according to their respective fit to the observed data.

The paper is structured as follows. In next Section, we introduce the rela-
tional modeling framework along with the concept of memory decay. In A
Step-Wise Memory Decay Model section, we formulate a step-wise
memory decay model. In The Gradual Nature of Memory Decay section,
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we present a continuous memory decay model and highlight the potential use
of step-wise models in approximating the continuous shape of the decay. In A
Semi-Parametric Approach to Estimate a Smooth Memory Decay section, we
present a semi-parametric method based on a Bayesian Model Averaging
along with two weighting systems for generating random draws from the pos-
terior memory decay. In Case Study: Investigating the Presence of Memory
Decay in the Sequence of Demands sent Among Indian Socio-Political
Actors section we apply the method to empirical data and we compare it to
other models that predefine parametric memory decays. Concluding the
paper, in Discussion section we discuss some considerations regarding the
methodology and potential further development.

Relational event models that capture memory decay
In the relational event framework (Butts, 2008), a relational event em is char-
acterized by the 3-tuple (sem , rem , tm), respectively sender, receiver, and time
of occurrence of the event. The joint probability of the realized ordered
sequence of M relational events, EtM = (e1, . . . , eM), can be modeled as

p(EtM ; β) =
∏M
m=1

⎡⎣λ(sem , rem , Xem , Etm−1 , β)
∏
e′∈R

exp −λ(se′ , re′ , Xe′ , Etm−1 , β) tm − tm−1
( ){ }⎤⎦

(1)

where t0 (at m = 1) is assumed to be equal to zero or to the starting time point
of the case study. Further, λ(sem , rem , Xem , Etm−1 , β) is the rate of the event em
occurred at time tm and λ(se′ , re′ , Xe′ , Etm−1 , β) represents the event rate of any
event e′ that could have happened at time tm (including em). Indeed, e′ belongs
to the risk set R consisting of all sender/receiver combinations S × R: where
S and R are, respectively, sets of all possible senders and receivers for the
entire event sequence. If all actors can be senders as well as receivers in an
interaction, then S ≡ R and the set of actors is simply referred to as S.
Equation (1) can be viewed as the well-known survival model with time-
varying covariates, where hazard and survival components form the likeli-
hood in the same way (Lawless, 2002).

The rate of the specific dyadic event e′ ∈ R at a generic time tm is modeled
as a log-linear function of statistics as follows

λ(se′ , re′ , Xe′ , Etm−1 , β) = exp
∑P
p=1

βpup(se′ , re′ , Xe′ , Etm−1 )

{ }
(2)
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where:

• βp with p = 1, . . . , P, are parameters describing the effects of statistics
on the logarithm of the event rate;

• Xe′ is the set of covariates (exogenous attributes, possibly time-varying)
associated with event e′;

• Etm−1 refers to the collection of all of those events that occurred before
tm;

• up(se′ , re′ , Xe′ , Etm−1 ) with p = 1, . . . , P, are the statistics of interest and
each one can depend either on transpired events (endogenous statistics
calculated for all the dyads at each time point and given Etm−1 ) or on
exogenous attributes (Xe′ ).

In the standard specification of the model, endogenous statistics describe pat-
terns of interactions occurring in the network that are quantified at each time
point by considering the whole history of events that happened from the
initial state of the network (i.e., the first observed relational event) until the
time point before the current one (i.e., tm−1 in (2)). For instance, consider
the standard formulation of the inertia statistic, which is a dyadic endogenous
statistic that quantifies the volume of interactions of a specific dyad that
occurred until the current time point. Inertia quantifies the extent to which
specific relational events keep repeating over time. The corresponding
formula at a generic time point tm with history Etm−1 is

inertia(i, j, tm) =
∑

e∈Etm−1

Ie(i, j) (3)

where Ie(i, j) is the indicator variable that assumes value 1 if the event e ∈
Etm−1 has se = i and re = j, 0 otherwise. The event rate for any possible
event e′ ∈ R at time tm with only the inertia in the linear predictor can be
written as

λ(se′ , re′ , Etm−1 , β) = exp βinertiainertia(se′ , re′ , Etm−1 )
{ }

(4)

A positive estimate for βinertia reflects that actors interact at higher rates with
those actors who were often receivers of their past interactions. This is a sign
of social routinization: what happened in the past is bound to be repeated over
and over into the future.

For instance, consider Figure 1 where a sequence of events from t1 to t14 is
represented on a time line. In order to calculate the inertia at time t15 for the
specific dyad (i, j) we need to count the number of past events in the history
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Et14 where i targeted an action to j, which is six in the example. Although this
approach would give insights into how previous interactions between actors
have influence on the event rate, we would be assuming long-passed events
(such as those that happened 14 and 11 events ago, over two hours ago) to
be equally influential as recent ones (such as the events that are only 1 or 4
events–or 45 minutes or so–old) in the computation of the statistics as well
as on the event rate itself. This assumption may not be realistic for relational
event data in practice as indicated earlier. Hence, our objective is to specify a
model that is capable of accounting for this mutable effect of past events on
the dyadic event rate.

A step-wise memory decay model

Step-wise decay for first-order endogenous effects

As a first step, we model the relative importance of past events as a function of
the transpired time since the event was observed using a discretized, step-wise
memory decay model (Perry and Wolfe, 2013). After the transpired time is
divided into fixed intervals, endogenous statistics are computed for each
interval and the corresponding endogenous effects are estimated. These
effects quantify the relative importance of past events in predicting future
events. For instance, considering the event sequence in Figure 1, we
observe that at t15 more than two hours have transpired since the starting

Figure 1. Example of the calculation of Inertia for the dyadic event (i, j), given the

history of events Et14 = {et1 , . . . , et14}.The event of interest in the calculation of the

statistic is written in black, others are gray. Without considering intervals, the value of

inertia at time t15 is 6: the total count of (i, j) events already occurred. When

considering intervals (time bounds of each interval of the event history are

highlighted by upwards arrows and labeled as Et14 ,1, Et14 ,2 and Et14 ,3), the value of

inertia across the three intervals becomes inertia1(i, j, t15) = 1, inertia2(i, j, t15) = 3,

and inertia3(i, j, t15) = 2, where each one corresponds to the number of times that

the event (i, j) is observed within each interval.
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time point and we divide the history of events Et14 into three sub-histories
according to a set γ of increasing time lengths, for example,
γ = (0secs, 30mins, 2hrs, ∞)

Et14,1 = e ∈ Et14 : (t15 − te) ∈ (0secs, 30mins]
{ }

Et14,2 = e ∈ Et14 : (t15 − te) ∈ (30mins, 2hrs]
{ }

Et14,3 = e ∈ Et14 : (t15 − te) ∈ (2hrs, ∞)
{ } (5)

Where the first sub-history Et14,1 contains all events transpired until 30
minutes before t15; the second, Et14,2, includes those events happened
between 30 minutes and 2 hours before t15; lastly, the third sub-history,
Et14,3, includes all events happened more than 2 hours before t15 (the right
bound is left undefined here). In Figure 1, the partition into sub-histories is
shown by the upwards arrows corresponding to the time lengths γ.

Therefore, three values of inertia can be calculated at any time point tm in
the observed sequence by considering the three different partitions of the
event history according to the increasing time lengths (γ).

inertiak(i, j, tm) =
∑

e∈Etm−1 ,k

Ie(i, j) with k = 1, 2, 3 (6)

Following the example in Figure 1, corresponding values of inertia according
to intervals at time point t15 are: inertia1(i, j, t15) = 1, inertia2(i, j, t15) = 3
and inertia3(i, j, t15) = 2. We may expect that events that occurred in Et14,1

have a larger impact on the event rate than those occurring in Et14,2 and
Et14,3. Although we do not make this assumption (as the goal is to learn
from the data), the estimated effects relative to the three statistics will gener-
ally decrease in actual data, making the regression coefficient for inertia based
on the most recent sub-history higher than that of inertia based on the most
distant events, that is βinertia1 > βinertia2 > βinertia3 .

In a more general case where K partitions of the current event history are
defined according to increasing time lengths, such as

γ = (γ0, γ1, . . . , γK) with 0 = γ0 < γ1 < . . . < γK = ∞ (7)

we can partition the event history Etm−1 at time tm into subsets as

Etm−1,1 = e ∈ Etm−1 : γe(tm) ∈ (0, γ1]
{ }

Etm−1,2 = e ∈ Etm−1 : γe(tm) ∈ (γ1, γ2]
{ }

..

.

Etm−1,K = e ∈ Etm−1 : γe(tm) ∈ (γK−1, ∞)
{ } (8)
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where γe(tm) = tm − te represents the elapsed time at tm since the past event
e ∈ Etm−1 . The general formula for inertia relative to the dyadic event e
with (se = i, re = j) in the k-th partition of the Etm−1 at time tm is

inertiak(i, j, tm) =
∑

e∈Etm−1 ,k

Ie(i, j) with k = 1, . . . , K (9)

The event rate for any possible event e′ ∈ R at time tm where inertia is defined
across K partitions is

λ(se′ , re′ , Etm−1 , β) = exp
∑K
k=1

βinertiak inertiak(se′ , re′ , tm)

{ }
(10)

Once statistics are calculated across the K partitions, their corresponding
parameters βinertia,k, with k = 1, . . . , K, can be estimated using the likelihood
function in (1). In the interval case for the inertia, parameters express how the
propensity of actors to target their actions to the same past receivers changes
as a function of the recency of past events.

The use of interval statistics according to K partitions of the event history
directly relates to the dynamic of the estimated effects and their evolution will
follow a step function as in Figure 2 with a mathematical function as in (11),
that is based on the time lengths γ used to create the partitions:

βinertia(γ) =

βinertia1 ifγ ∈ (γ0, γ1]

..

.

βinertiaK ifγ ∈ (γK−1, γK]
0 otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (11)

Step-wise memory effects can also be modeled for other first-order endogen-
ous statistics such as reciprocity, sender/receiver-in/out-degree whose formu-
las can be found in Appendix A.1.

Step-wise decay for higher order endogenous effects

Besides statistics that are based only on past interactions within a given dyad,
the effects of higher order statistics involving more than two actors, can be
used as well within this approach. Higher order endogenous statistics are
characterized by more than one dyadic relational event in their formula. As
such, the behavioral pattern of interest is more complex substantively as
well as its computation. Indeed, in the case of triadic statistics, as with

10 Sociological Methods & Research 0(0)



transitivity, the computation consists in the quantification of the number of
times a dyad could potentially close a particular triangular structure if it
occurred as next interaction after a specific sequence of past events.

Figure 3 describes the pattern of the transitivity closure (Schecter et al.,
2018) in the context of relational event data where interactions are time-
ordered. The search for specific behavioral patterns can be improved by intro-
ducing such time-ordering in the calculation of the statistics. Specifically for
transitivity closure, the following formula computes the statistic for the dyad
(i, j) at time tm:

transitivityclosure(i, j, tm) =
∑

l∈S∖ i,j{ }

∑
e∈Etm−1

∑
e∗∈Etm−1 : te∗∈[te−γe(tm),te)

Ie(l, j)Ie∗ (i, l)

(12)

Figure 2. step-wise function for the effect of Inertia on the event rate. The function

defines three intervals of the elapsed time γ (on the x-axis): the first interval

γ ∈ (0secs, 30mins], the second interval γ ∈ (30mins, 2hrs] and the third interval

γ ∈ (2hrs, ∞). The y-axis shows the value of the effect βinertia for each interval.
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where:

• Ie(l, j) is the indicator variable that assumes value 1 if the event e ∈
Etm−1 has se = l and re = j, and value 0 otherwise (the same reasoning
applies to the other indicator variables in (12));

• e and e∗ are any pair of events belonging to the event history Etm−1 such
that te∗ < te;

• γe(tm) = tm − te is the time transpired at tm since the event e ∈ Etm−1 .

Figure 4 shows an example of the formula in (12) for just one l ∈ S ∖ {i, j}
at time tm, with a history of events Etm−1 . In the example, two dyadic events
(l, j), noted as e and a, occurred at te and ta before tm. For each of them we
seek backward for those events e∗ and a∗ that occurred within intervals
based on the transpired time of e (γe(tm) = tm − te) and a (γa(tm) = tm − ta)
that are respectively [te − γe(tm), te) and [ta(tm)− γa, ta). Hence, if any

Figure 3. Figures from left to right describe the pattern of the transitivity closure in

three time-framed steps. The time order of the three steps is described on the top of

each graph, and it goes from the left, where the event (i, l) opens the potential triad at
tm − δ1, to the right, where the last event (i, j) closes the triad at tm. Therefore, given the
event history Etm−1

, the possible event (i, j) occurring at tm (3c) can close a triad already

opened with a third actor (l in the example) who acts as a broker in the process of

information sharing/mediation. Events (i, l) (3a) and (l, j) (3b) occur by following the
time order in the example, with δ1 and δ2 at time tm being the transpired times since

the twoevents (i, l) and (l, j), such that tm − δ1 < tm − δ2 and 0 ≤ δ2 < δ1 < tm. Therefore,
in this formulation the time order of the occurrence of events characterizing the

triangular structure is taken into account. Gray nodes and dashed gray arrows

indicate, respectively, inactive actors and events already occurred, whereas active

actors and the occurring dyadic event are in black. (a) opening the triad: relational
event (i, l) ∈ Etm−1

observed at time tm − δ1.; (b) information mediation stage
operated by l: relational event (l, j) ∈ Etm−1

observed at time tm − δ2. and (c) closing
the triad: relational event (i, j) that can potentially happen at time tm closing the

triangular structure.

12 Sociological Methods & Research 0(0)



event e∗ or a∗ in these intervals has sender i and receiver l then the product of
the two indicator variables in (12) will be one and so will be contribute to the
sum, and is zero otherwise. In the specific example, as to event a we observe
two dyadic events (i, l) that happened in [ta − γa(tm), ta), whereas for e we
find just one event (i, l) that occurred in [te − γe(tm), te). Therefore, if the
dyad (i, j) is going to occur at tm it would close at least three potential triangu-
lar structures (of the type described in Figure 3) where the actor l is the infor-
mation mediator. The quantification in Figure 4 is just a simple example
where the calculation of the transitivity is performed only in the case where
the specific actor l is the mediator (with l being a different actor from i and
j). To quantify the transitivity closure for the dyad (i, j), which describes
the total number of triangular structures closed by the occurrence of (i, j) at
tm, we have to sum all the potential triads that could be closed considering
all the possible N − 2 information mediators. This is described in formula
(12) by the outer sum across all the actors in the network excluding i and j
(S ∖ {i, j}) and indexed by l. The new formula for transitivity closure accounts
for the time order of events in the triadic behavioral pattern and assumes that
those events (i, l) happened earlier than an event (l, j) and will count in the

Figure 4. Example of the calculation of transitivity at tm for the dyad (i, j) and
information mediator l: the event history Etm−1

counts only two events (l, j), at time te
and ta. In order to quantify the contribute of l to the transitivity(i, j, tm) we : (i) find

the second-last event in the pattern, that is (l, j), two in the example at te and ta (in
black); (ii) consider the backward intervals [ta − γa(tm), ta) and [te − γe(tm), te)] (black
squares in the figure); (iii) for each interval quantify the number of (i, l) observed (in

red). In the example, the contribution of events a and e to the statistic is, respectively,

2 (because two events (i, l) are observed in the backward interval of ta) and 1

(because one event (i, l) is observed in the backward interval of te). Thus, the value of
transitivity for (i, j) at tm with mediator l is given by their sum, that is 3: if (i, j) is the
next event to occur it is going to close three potential triads where the information

mediator was l.
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formula if and only if they transpired within the same time span of the specific
(l, j).

The event rate for any possible event e′ ∈ R at time tm with only the tran-
sitivity in the linear predictor is written as

λ(se′ , re′ , Etm−1 , β) = exp βtransitivitytransitivity(se′ , re′ , Etm−1 )
{ }

(13)

A positive βtransitivity means that the more partners se′ and re′ had in common in
the past the more likely se′ will choose re′ as receiver of its next interaction.
Vice versa, when βtransitivity < 0, the rate of the event e′ lowers, meaning that
there is a tendency by actors to discourage closure and thus to engage in fewer
interactions with those actors they had shared a partner with. The statistic in
(12) refers to the event history Etm−1 , that is the entire sequence of events since
the onset until tm−1 (including etm−1 ). The βtransitivity may depend on how
recently the event (l, j) occurred. Thus, transitivity can be redefined across
intervals in the same way as inertia in previous section.

Consider the more general case of K partitions of the current event history
(as in (8)) according to K + 1 increasing time lengths γ (as in (7)). The tran-
sitivity as regards the k−th interval, for the dyad (i, j) at time tm will be,

transitivityk(i, j, tm) =
∑

l∈S∖ i,j{ }

∑
e∈Etm−1 ,k

∑
e∗∈Etm−1 : te∗∈[te−γe(tm),te)

Ie(l, j)Ie∗ (i, l)

(14)

where the quantification of potential triads is divided through the K intervals
of the history Etm−1 = {Etm−1,1, . . . , Etm−1,K} according to the time transpired at
tm since the event e, that is γe(tm). However, the seeking of the event e∗ still
considers the time interval as in (12). By using the interval formulation we are
interested in understanding whether there exists an evolution of the transitiv-
ity effect on the event rate that depends on the recency of events constituting
the triadic pattern. According to the step-wise formulation of transitivity, we
can rewrite the rate in (13) as follows:

λ(se′ , re′ , Etm−1 , β) = exp
∑K
k=1

βtransitivityk transitivityk(se′ , re′ , tm)

{ }
(15)

The effect of transitivity across intervals conveys more information than in
the case without intervals. Although, the interpretation of positive and nega-
tive effects remains the same (i.e. positive effects still promote the closure of
triads as well as negative effects keep discouraging it), the intensity of such
behaviors that promote/discourage triadic closure can change over time and
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this is the additional information we are after. For instance, if the effects from
the first to the last interval are positive and decreasing, that is
βtransitivity1 > . . . > βtransitivityK , this means that the closer in time the events in
the triad are to each other the faster the third event in the pattern is likely
to happen.

The function in (11) can be written also in the case of triadic statistics:

βtransitivity(γ) =

βtransitivity1 ifγ ∈ (γ0, γ1]

..

.

βtransitivityK ifγ ∈ (γK−1, γK]
0 otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (16)

A simple example of step-wise effects for transitivity closure is shown in
Figure 5: if we only consider transitivity closure in the model we can con-
clude that the more triadic events occurred recently, the sooner the third
event in the triadic pattern is likely to happen. Formulas of further
second-order statistics can be found in Appendix A.1.

Estimation of a relational event model with a step-wise
memory decay

The relational event model with step-wise memory decay of endogenous
effects has the advantage that it can be easily estimated using existing soft-
ware as relevent (Butts, 2008), goldfish (Stadtfeld and Hollway, 2020), rem
(Brandenberger, 2018), or remverse (Mulder et al., 2020). This can be
done as follows. First, the transpired time needs to be divided into disjoint
intervals with bounds γ0, . . . , γK . The bounds should be determined such
that the step-wise function will be able to capture the expected memory;
for periods where a fast (slow) decay is expected narrow (wide) intervals
should be chosen. Next, each endogenous statistic (e.g., inertia, transitivity)
is split in K separate statistics that capture the volume of past interactions
in the K intervals of transpired time. The resulting set of relational event sta-
tistics can then be plugged into existing functions for fitting relational event
models.

Despite the computational advantage, the step-wise memory decay in (11)
and in (16) has two potential challenges: a substantive challenge is that may
not always be realistic that memory decay occurs in a step-wise fashion in real
life; a methodological challenge is that it may be unclear how many intervals
(K) should be chosen and where the boundaries γ = (γ0, . . . , γK) should be
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placed. When a researcher aims to learn a more fine-grained, potentially
smoother continuous decay, it is of course possible to increase the number
of intervals. However, we would still be constraining results to prespecified
boundaries (the choice for which may not be obvious) and estimates could
lose accuracy as this would greatly increase the number of free parameters
in the model to be estimated and reduce the number of events per interval.
Therefore, we now take the following two steps. First, we develop a continu-
ous memory decay approach that solves these issues. Next, we show how the
step-wise model can be used as a building block for an approximation of this
continuous decay model.

Figure 5. step-wise function for the effect of Transitivity on the event rate. The

function defines three intervals of elapsed time γ (on the x-axis): the first interval

γ ∈ (0secs, 30mins], the second interval γ ∈ (30mins, 2hrs] and the third interval

γ ∈ (2hrs, ∞). The y-axis shows the value of the effect βtransitivity for each interval.
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The gradual nature of memory decay
Since past events often lose their effect gradually over time (rather than step-
wise), we propose an often more realistic form of the memory decay in (11)
and (16) where, instead of constraining effects to be constant within intervals
of γ, their change can be continuous over it and depends on a vector of para-
meters θ that define the resulting shape of the decay. The continuous effect for
statistic u can be written as

βu(γ, θ) (17)

where βu is a continuous function on γ, describing the trend of the effect of u
such that βu :D → R and D = R+ ∖ {γ > γK}, with γK being a time length
limit either due to the empirical data or simply justified by the researcher.
The set of parameters θ ∈ S(θ) defines the shape of the decay, where S(θ)
is their support.

We propose several monotonously decreasing functions βu(γ, θ) that
might reflect the actual underlying memory decay.

The continuous trends in Figure 6 assume effects to be positive and
decreasing towards zero as the time transpired since the event increases.

• linear decrease (Figure 6a):

βu(γ, θ1, θ2) = θ2 − θ2
θ1
γ forγ < θ1

0 otherwise

{
(18)

where θ = {θ1, θ2}, θ2 > 0 is the maximum value assumed by the func-
tion and − θ2

θ1
(with θ1 > 0) is the slope of the line that describes the

steepness of the decrease;
• exponential and one-smooth-step decrease (Figure 6b and Figure 6c):

βu(γ, θ1, θ2, θ3) = θ3 exp − γ

θ1

( )θ2
{ }

(19)

where the set of parameters θ = {θ1, θ2, θ3} consists of: θ1 > 0 and θ3 >
0 that are scale parameters (θ3 corresponds to the maximum value
assumed by the function), θ2 > 0 is a shape parameter. The survival
function of a Weibull distribution is a specific case of the function
(19) where the maximum value is θ3 = 1. Moreover, where θ2 = 1,
θ3 = 1

θ1
, the (19) reduces to the exponential decreasing weight in

Brandes, Lerner, and Snijders (2009) and the half-life parameter is
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then calculated as T1/2 = θ1 log 2. In most cases (except for the expo-
nential one) the trend starts evolving at an initial constant value
(one-smooth-step trend) that is the maximum value θ3 and then
decreases to zero as γ increases;

Figure 6. Possible trends of the effect β for any endogenous statistics. All four

trends develop over γ (x-axis), which is the elapsed time of the event characterizing

the statistic. In these specific examples, trends decrease towards zero with different

shapes depending on a set of memory parameters θ: (a) linear decay; (b) exponential
decay; (c) one-smooth-step decay and (d) two-smooth-steps decay.
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• smoothed multiple steps (Figure 6d): this is a combination of two or
more smoothed one-step trends.

The relative influence of past events on the dyadic event rate can follow other
more complex shapes than those presented in Figure 6. As a result of this con-
tinuous definition of effects, inertia as well as other endogenous statistics are
no longer computed as the accumulated number of past events but now
consist of a sum of weights, where each weight changes according to the tran-
spired time γ of each event; this reflects the relative importance of past events
updated at tm. Therefore, the event rate in (10) where only inertia effect is con-
sidered and inertia is divided in K intervals becomes:

λ(se′ , re′ , Etm−1 , θ) = exp
∑

e∈Etm−1

Ie(i, j)βinertia(γe(tm), θ)

⎧⎨⎩
⎫⎬⎭ (20)

where β(γe(tm), θ) is a continuous function that returns the relative effect as to
the event e contributing to the inertia statistics, γe(tm) = tm − te is the time
transpired at tm since te (and increases over time), and θ is the set of para-
meters that describe the shape of the decay. A formal mathematical procedure
about moving from a step-wise effect function to a continuous effect function
can be found in the Appendix A.2.

However, the process of estimation of the set of parameters θ governing
the memory evolution results in a computationally complex maximization
of the likelihood in (1). The more realistic scenario that the influence of
past events changes as a continuous function of their elapsed time since the
current time comes at the expense of constantly changing values of the
network statistics; this increases the complexity of their estimation. Hence,
in the next subsection we revalue the step-wise approach and present a
Bayesian approach to approximate continuous memory decay with it.

A semi-parametric approach to estimate a smooth
memory decay
In this section we propose a methodology that (i) builds on the computa-
tional advantage of the step-wise model introduced in Step-Wise Decay
for Higher order Endogenous Effects section, (ii) avoids the issue of arbi-
trarily choosing intervals, and (iii) results in an approximate continuous
estimate for memory decay. This is achieved by applying Bayesian
Model Averaging (BMA) (Volinsky et al., 1999) to model memory
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decay in endogenous REM statistics. The idea is to randomly generate a
bag of many step-wise models with different interval configurations for
the transpired time. Next, the fit of all these models is evaluated and a
weighted average of all step-wise models (weighted according to their
relative fit) is achieved. This results in that approximate smooth trend
for the memory decay that best fits the data.

We start with a simple example where we look at inertia. If we consider Q
step-wise models and denote a single step-wise model by Mq, then the
Bayesian model average of the posterior distribution of the decay of the
inertia effect βinertia as a function of the transpired time γ is defined by

p(βinertia(γ)|EtM ) =
∑Q
q=1

p(βinertia(γ)|EtM , Mq)p(Mq|EtM ). (21)

Bayesianmodel averaging is, in fact, a direct application of the law of total prob-
ability where we marginalize over the discrete model space {M1, . . . , MQ}.
Note that the law of total probability can be applied because a Bayesian frame-
work allows us to quantify the uncertainty about a statistical model using prob-
abilities. For other endogenous effects or other quantities of interest, Bayesian
model averaging can be used in a similar manner. The posterior probabilities,
p(Mq|EtM ), serve as relative weights in the Bayesian model average. Below,
we consider two approaches to quantify these probabilities: BIC and WAIC.
Before discussing these we explain how we can generate a bag of step-wise
models to approximate different memory decay functions.

Generating a bag of step-wise relational event models

First, we define a bag of Q step-wise relational event models where the tran-
spired time is divided into interval configurations:

Mq : γq, with γq = (γq0, . . . , γqKq
),

where Kq denotes the number of intervals in model Mq. In order for the bag
of models to approximate a variety of possible shapes, we vary both the
number of intervals (K) and the widths of the intervals. The sequences of
time widths may be generated according to three features reflecting three pos-
sible changes of the decay over time:

(i) when memory change is likely to be stronger for the more recent events
and to change less for events that already are in the farther past (where it
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is approximately constant) (e.g., an exponential decay), then intervals
with increasing size will better catch this behavior and their
widths will follow the inequality: γk − γk−1 < γk+1 − γk for
k = 1, . . . , K − 1. In other words, memory is short such that events
are “forgotten” fairly fast and the most recent events carry a much
higher weight than less recent events, and fairly distant events have as
little effect on the future as events from the far past. The increasing
size intervals (i) are generated by means of an algorithm based on the
Dirichlet distribution and its pseudocode can be found inAppendixA.3.

(ii) if the decay is expected to occur in the long term (close to γK) whereas
it is steady during the more recent past (e.g., a one-smoothed step
decay), then intervals with decreasing size will be best capable of
catching this behavior and their widths will satisfy the inequality:
γk − γk−1 > γk+1 − γk for k = 1, . . . , K − 1. These widths can be
generated by simply inverting the increasing widths in (i). This repre-
sents the situation where the effect of events decays only slowly for a
while until they are far enough back in time, which is when they lose
their effect fast (e.g., where events from the past week matter, but
anything beyond that is quickly forgotten). The decreasing size inter-
vals (ii) are generated by first drawing random intervals using increas-
ing intervals according to (i), and subsequently, the order of the
widths is inverted.

(iii) if the decay is likely to decrease at a constant pace (e.g., a linear
decreasing function), intervals of the same size will most easily
emulate this behavior.

Figure 7 illustrates how different interval configurations can approximate dif-
ferent possible shapes. The figure also shows that a single step-wise model
cannot approximate these smooth shapes accurately. Rather, an appropriate
approximation can be achieved by taking a weighted average of many step-
wise models. We discuss the computation of these weights next.

Evaluating the fit of the step-wise relational event models

In this section, we describe two weighting systems for the Q step-wise models
that were generated in the previous section. The first weighting system is
based on the BIC (capturing the probability of the observed data under each step-
wise model (Schwarz, 1978; Raftery, 1995)). The second weighting system is
based on the WAIC (which quantifies the predictive performance of each step-
wise model (Watanabe, 2013; Vehtari, Gelman, and Gabry, 2017)).
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BIC weights. In a Bayesian analysis, the posterior probability of a model is
obtained using Bayes’ theorem:

p(Mq|EtM ) =
p(EtM |Mq)p(Mq)

p(EtM )
,

where p(EtM |Mq) denotes the probability of the observed data under a given
model (also referred to as the marginal likelihood), p(Mq) is the prior prob-
ability of the model, and p(EtM ) is the marginal probability of the data. We

Figure 7. Examples of approximation of three different decays (red lines) by means

of three types of step-wise functions (black lines) defined according to three different

types of interval widths. The type of decay differs row-wise, from the top to the

bottom: exponential decay, one-smooth-step decay and linear decay. The type of

interval widths differs column-wise, from left to the right: increasing size, decreasing

size and equal size intervals. The maximum time width is fixed to γK = 7.5.
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assume that all step-wise models are equally likely a priori, i.e., p(Mq) = 1
Q.

The computation of the marginal likelihood can be expensive (Kass &
Raftery, 1995). For this reason the Bayesian information criterion is used
as an approximation (Schwarz, 1978; Raftery, 1995):

p(EtM |Mq) ≈ exp {− BICq/2},

where the BIC of model Mq is computed as

BICq = dq log (n)− 2p(EtM |β̂q),

where dq is the number of parameters under model Mq and p(EtM |β̂q) is the
maximized log likelihood under Mq.

Thus, the normalized BIC weight for the q−th model is

wBIC
q = exp −BICq/2

{ }∑Q
r=1 exp −BICr/2

{ } (22)

Despite its theoretical and computational appeal, it has been shown that the
marginal likelihood, and its approximation via the BIC, may not perform
well in Bayesian model averaging problems when the “true model” is not
part of the bag of models that is considered. This is also called a M-open
model selection problem (Yao et al., 2018). In the current setting this
would be the case when the true decay function is smooth, that is not part
of the bag of models but it could very well be the true shape of the decay
in real-life networks. In this case, the relative weight in (22) converges to 1
for the step-wise model that is closest to the truth as the sample size grows.
However, a smooth function can better be approximated by averaging over
multiple step-wise models than by placing all its weight on one step-wise
model. In such M-open problems it is preferable to use weights that are
based on the WAIC.

WAIC weights. WAIC weights build upon the Expected Log-pointwise
Predictive Density (ELPD) (Watanabe, 2013; Vehtari, Gelman, and Gabry,
2017; Yao et al., 2018). In each step-wise model, the ELPD quantifies the
quality of the posterior predictions given the estimated posterior distribution
of the model parameters. Therefore, if the model performs well in predicting
new observations, then the predictive power quantified by the ELPD will
assume a high value on a log-density scale as well as on a density scale.
The calculation of the Watanabe-Akaike Information Criterion (WAIC) is
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based on an approximation of the ELPD as follows:

êlpdwaicq = l̂pdq − p̂waicq for q = 1, . . . , Q (23)

where the Log-pointwise Predictive Density (l̂pdq) represents the predictive
log-density calculated on in-sample observations and typically overestimates
the actual ELPD. This can be corrected by subtracting p̂waicq , which quantifies
the uncertainty introduced by the posterior distribution of the model para-
meters (βq) in predicting the in-sample observations and can be seen as a
form of penalization.

Hence, WAIC weights are computed as

wWAIC
q =

exp êlpdwaicq

{ }
∑Q

q=1 exp êlpdwaicq

{ } , q = 1, . . . , Q (24)

Thus, the higher the estimated predictive power of a model (êlpdwaicq ), the
higher its WAIC-based weight (wWAIC

q ).

Bayesian model averaging for approximating smooth decay functions

By means of BMA one can elicit a posterior estimate of a quantity of interest
as well as its average posterior predictive distribution by finding the optimal
linear combination of a set of models, and accounting, in turn, for their uncer-
tainty. A crucial aspect of BMA is the use of model weights that quantify the
relative importance of the models according to their posterior probability. In
subsection BIC weights and WAIC weights we considered two weighting
systems that can be employed in the estimation of the memory decay trend.
Here we explain how to get posterior draws of the decay function of an
endogenous effect from the Bayesian model averaged posterior.

In BMA, the posterior estimate of any parameter of interest can be calcu-
lated as the weighted mean of the posterior estimates provided by each model
in the averaging. Considering (21), we can generate a posterior draw by first
randomly selecting a model from the bag of models according to their relative
weights, and then generate a trend from the posterior distribution of the
selected model. We achieve this last step by approximating the posterior of
β using a multivariate normal distribution where the mean is equal to the
maximum likelihood estimates and the posterior covariance matrix is set
equal to the error covariance matrix. This is an application of large sample
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theory in a Bayesian framework (Gelman et al., 2013). We consider the fol-
lowing steps to get posterior draws:

1. Draw a model from Mq|EtM ∼ Multinomial(w), where the vector of
normalized weights w = (w1, . . . , wQ) quantifies the relative fit of
the respective step-wise models;

2. Generate a vector of posterior effects from β|Mq, EtM ∼ MVN(β̂q, Σ̂q).
The posterior distribution for the step-wise modelMq (the model drawn
at the first step) is approximated by a multivariate normal distribution
with parameters given by maximum likelihood estimates under
model Mq and corresponding error covariance matrix;

3. Repeat steps 1 and 2 a sufficient number of times.

After these three steps, the resulting posterior distribution of each endogenous
effect β over γ resembles Figure 8a. Then, we estimate the posterior decay of
the effect over γ as follows: (i) define a (dense) grid with evenly spaced
γ ∈ [0, γK], where γK is usually based on the data (Figure 8b, first step);
(ii) for each γ select the corresponding interval effect in each posterior
draw (as shown by the step-wise functions in (11) and (16)), this selection
results in a posterior density at a given γ (Figure 8c, second step); (iii) calcu-
late the posterior mode of these densities as well as their highest posterior
density intervals at each γ, resulting in a semi-continuous effect decay
(Figure 8d). As a consequence of this, the posterior estimate of those statistics
that are not defined in intervals (e.g, a baseline effect) is simply obtained with
the draws generated after the three initial steps.

Computational details of the BMA

The most expensive step before estimating the posterior decay with the BMA
is the estimation of all the Q step-wise models in the bag. This subsection
focuses on computational complexity of step-wise models compared to para-
metric decay models (e.g., exponential decay). We describe two stages where
such models show differences in terms of their computational complexity: (1)
the computation of endogenous statistics and (2) the estimation stage.

Calculation of endogenous statistics: A comparison on the number of operations
performed in a single model. The computation of endogenous statistics is a
time-consuming stage as it must be carried out across all the observed time
points (M) and for all the dyads that can occur over time. Without loss of gen-
erality we assume that at each time point all dyads are at risk of occurring,
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thus we consider the complete risk set as it is assumed in (1) where
D = |R| = N × (N − 1), with N being the number of actors and D the
number of dyads in the risk set R. When a parametric weight decay is
used (e.g., exponential decay), the computation of the endogenous statistics
requires more operations than what is required in a step-wise model: the
weight of past events has to be updated at each time point where an event
is observed and according to the weight decay function. Such update requires

Figure 8. The estimate of the posterior decay is explained here in four plots: (a)

Result of the Bayesian Model Averaging: posterior draws of (step-wise) β generated by

repeating step 1. and 2; (b) Estimating the posterior trend (first step): defining a dense
grid of evenly spaced γ’s (vertical dashed red lines); (c) Estimating the posterior trend
(second step): for each γ the corresponding interval effect in each posterior step-wise

draw is selected. The resulting density characterizes the posterior density at the

specific γ and (d) Posterior trend of β: for each γ and given the corresponding estimated

posterior density (estimated in (c)), the posterior mode (solid black line) as well as

the highest posterior density interval (shaded area) are estimated.
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the numerical evaluation of the decay function and this eventually increases
the needed computational time.

The continuous update of the event weights is not required for the
step-wise decay model where past events are assumed to have a
unitary weight in each interval. Therefore, for a step-wise model the
main steps for computing each endogenous statistic consist of: (i) at
each time point defining the partitions of the event history according
to the K intervals describing the step-wise model, (ii) computing each
endogenous statistic within such intervals. We optimize these two
steps by minimizing the number of times that the algorithm has to
compute the endogenous statistics according to each specific interval.
Some time intervals might appear more than once along the event
sequence. Therefore, we first find the time boundaries of the K intervals
across all the time points, then we consider the reduced set of intervals
and calculate the endogenous statistics according to this reduced set.
Finally, for each interval of the reduced set, the value of the endogenous
statistics for all dyads is assigned to the correspondent interval in the
original data-structure for the statistics, which is used in the estimation
stage. This improvement makes the computation of the statistics faster
since we avoid to compute the same statistic more than once. This opti-
mization only works for endogenous statistics such as inertia, reci-
procity, in-/out-degree, and other first-order endogenous statistics as
well as for second- or higher-order endogenous statistics where the
time order of the events doesn’t affect the value of the statistic.

The number of operations required in the computation of a single endogen-
ous statistic can be quantified as follows:

• In a step-wise decay model without our optimization, the number of
operations is (M − 1) × D × K + (M − 1) × (K + 1), where (M − 1) ×
D × K consists of the number of times the statistic is computed, which
is at each time point for each interval and for all dyads. We consider
M − 1 because at time t1 all endogenous statistics assume value zero
for all dyads. Furthermore, (M − 1) × (K + 1) is the total number of
updates of the time boundaries characterizing the K intervals through-
out the event sequence. This step runs fast because it only requires
simple subtractions between numbers;

• In a step-wise decay model where our optimization is performed the
number of operations is Ψ(t, γ) × D+ (M − 1) × (K + 1), where
Ψ(t, γ) is the size of the reduced set of intervals; this is Ψ < (M − 1) ×
K and it depends both on the vector of observed time points t =
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(t1, . . . , tM) and on the vector of K + 1 increasing widths γ =
(γ0, γ1, . . . , γK) that define the K intervals over time. Furthermore,
(M − 1) × (K + 1) again is the number of times we have to update
the time boundaries before finding the reduced risk set;

• In a parametric decay model (e.g., exponential, linear, or other decays)
the number of operations is (M − 1) × D+ M×(M−1)

2 , where (M − 1) ×
D is the number of times the statistic is computed and M×(M−1)

2 is the
number of total updates for the weights of the already-occurred dyads.

Let us compare the optimized step-wise decay with the parametric decay
model. For this effort, we assume that: (i) K is set to a low number around
3, 4 or 5 intervals; and (ii) the update of one single event weight requires
as much computational time as the update of one time bound. Then, the
number of updates in a parametric decay increases faster than in a step-wise
decay. Indeed, the (M − 1) × (K + 1) operations for the computation of the
time boundaries in the optimized step-wise model follow a linear function
of the number of events (M), whereas the M×(M−1)

2 operations for the update
of the weights in the parametric model follow a quadratic function of the
number of events. Unfortunately, the optimized approach for the step-wise
model cannot be performed on the transitivity closure introduced in Step-
Wise Decay for Higher Order Endogenous Effects subsection, because the
order of events in the triadic pattern matters. However, the optimization for
the first-order statistics already saves much computational time, because in
the estimation of more endogenous statistics the reduced set of intervals
will be shared and calculated only once.

In Figure 9, we compare the running times for estimating inertia using four
models: the optimized step-wise model with K = {3, 4, 5} and the parametric
decay model with exponential decay. Per each model, a set of intervals or
half-life values were chosen, and their running times for computing inertia
were repeatedly measured (each run of the algorithm was parallelized on 8
threads). Finally, every model has a total number of 1000 samples of
running times. We performed such analysis on the empirical data used in
Case Study: Investigating the Presence of Memory Decay in the Sequence
of Demands sent Among Indian Socio-Political Actors section where the
number of actors is N = 10, the number of dyads is D = 90 and the
number of events is M = 7567.

Estimation stage: Comparison on the number of parameters to be estimated.
Considering Uexo exogenous statistics (including the intercept) and Uendo
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endogenous statistics, in the estimation stage the total number of parameters
to be estimated is

• Uexo + Uendo in REMs where endogenous statistics follow any paramet-
ric weight decay (e.g., exponential, linear, one-step decay);

• Uexo + (Uendo × K) in step-wise REMswhereK is the number of intervals
(steps) and all the endogenous statistics follow the same step-wise model.

Therefore, a step-wise model has always more parameters than a model with
any parametric decay. However, this disadvantage at the estimation stage is
not really an issue because it is not recommended to consider many intervals
as the uncertainty around estimates increases when intervals become nar-
rower and only a few events fall inside them.

Case study: Investigating the presence of memory
decay in the sequence of demands sent among Indian
socio-political actors
We have now introduced our modeling approach, starting from a purely step-
wise decay model to a continuous decay model based on model averaging of a
set of step-wise models. In this section, we illustrate the method by applying it

Figure 9. Distributions of running times for the endogenous statistic Inertia (in seconds).

3-steps, 4-steps and 5-steps models are compared to the parametric model with

exponential decay. For each type of model, the running time was measured 1000 times.
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to empirical data. First, we describe the empirical application and dataset.
Next, we present analyses using different prespecified step-wise decay func-
tions, followed by an application of the Bayesian model averaging estimated
to obtain approximate smooth decay functions. Finally, we compare the semi-
parametric model (that results from the Bayesian Model Averaging) with
other relational event models where the memory decay is fixed either to a
step-wise or exponential decay. In this comparison we focus on the predictive
performance of the models as well as their resulting fit.

Relational events between socio-political actors

We retrieved data from the ICEWS (Integrated Crisis Early Warning System)
(Boschee et al., 2015) repository, which is hosted in the Harvard Dataverse
repository. ICEWS consists of relational events interactions between socio-
political actors that were extracted from news articles. Information about the
source actor, the target actor, and the event type is recorded along with geograph-
ical and temporal data that are available within the same news article. Event types
are coded according to the CAMEO (Conflict and Mediation Event
Observations) ontology. In this example analysis, we focus on the sequence of
relational events within the country of India. Each event represents a request
from an actor targeted to another actor. These requests range from humanitarian
to military or economic in nature and in this analysis this distinction is not made.

The event sequence includes M = 7567 dyadic events between June 2012
and April 2020 among the ten most active actor types: citizens, government,
police, member of the Judiciary, India, Indian National Congress Party,
Bharatiya Janata Party, ministry, education sector, and “other authorities.”
Since the time variable is recorded at a daily level, we consider events that
occurred on the same day as evenly spaced throughout that day.

The network dynamics of interest are inertia, reciprocity, and transitivity
closure. Given a generic step-wise model with K steps, the log-rate at any
time t ∈ [t1, tM] and for any request e′ is:

logλ(se′ , re′ ,Et, β) = β0+
∑K
k=1

βinertiak inertiak(se′ , re′ , t)

+
∑K
k=1

βreciprocityk reciprocityk(se′ , re′ , t)

+
∑K
k=1

βtransitivityclosurek transitivityclosurek(se′ , re′ , t)

(25)
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where β0 represents the logarithm of the baseline rate of requests and the
remaining effects describe the estimated step-wise trends for the three
network statistics. Inertia quantifies the persistence of the sender in target-
ing its requests to the same receiver, for instance because the receiver is an
actor with some socio-political relevance like a legal figure or authority.
Reciprocity describes the level of reciprocation of the sender towards
the receiver based on the past volume of interactions that the receiver
addressed to the sender. Transitivity closure quantifies the level of infor-
mation mediation by means of the volume of triads that can be potentially
closed by the occurrence of event e′. We assume that at every point in time,
every possible dyad is at risk of occurring, hence the risk set consists of
|R| =N× (N−1)= 90 dyads.

Predefined step-wise decay models

As the maximum time (γK) that past events may affect current relational
events we consider 180 days (roughly half an year). Furthermore, we con-
sider three different predefined step-wise memory decay functions by div-
iding the past in K = 4 intervals with either increasing widths, equal
widths, or decreasing widths (as described in Generating a Bag of Step-
Wise Relational Event Models subsection).

Figure 10 shows the estimated step-wise decay functions for inertia, reciprocity,
and transitivity given the three different interval configurations.

As is to be expected, the three models result in different estimated (discre-
tized) shapes of memory decay. For instance, for Transitivity Closure we see
that decreasing intervals and increasing intervals produce contrasting decays
where the decays not only follow different shapes, but the magnitudes of the
effect are different as well. The magnitudes of the effects are similar for the
“equal” and “decreasing” intervals, whereas for “increasing” interval widths
the magnitudes are quite different from the models with “equal” and “decreas-
ing” widths.

In sum, step-wise models with predefined interval configurations provide
us with a very rough idea of how fast memory decays in a given relational
event network. However, predefined step-wise memory decay models
provide only limited insight into the full shape of memory decay along tran-
spired time, or, for example, whether an (approximated) exponential decay is
more likely than a (approximated) smooth one-step decrease. To learn this
from an observed relational event network, we need the proposed weighting
system for a bag of step-wise models together with a Bayesian model aver-
aging approach. We consider this next.
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Approximately smooth memory decay models

For our bag of step-wise models, three sets of 501 intervals were generated for
K = {3, 4, 5} steps (250 intervals with increasing size, 250 intervals with
decreasing size, 1 with equal size). Thus in total, 1503 step-wise models
were considered. We chose to use around 500 models per K since we
noticed that the overall number of random intervals (1503) already provides
stable final results. The estimation of the whole bag of models required about
6.5 hours: for each step-wise model the computation of the endogenous sta-
tistics as well as the estimation of parameters was parallelized on 8 threads1.

Figure 10. MLE estimates of β̂ = {β̂inertia1 , . . . , β̂inertia4 , β̂reciprocity1 , . . . , β̂reciprocity4 ,
β̂transitivity1 , . . . , β̂transitivity4 } according to three different step-wise models (with

K = 4) that are randomly chosen from the bag of the estimated models and each

following one of the three interval types (by column: increasing, equal and decreasing

intervals). The bold black line represents the step-wise function for each endogenous

effect in the model and the vertical dashed lines indicate the time bounds

characterizing the intervals.
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Figure 11 shows the posterior trends resulting from two Bayesian Model
Averaging approaches: one with BIC weights (left panels) and one with
WAIC weights (right panels). Because most of the decay occurs in the first
twenty days, only this period is plotted in the figure. The intercept β0 is the
only parameter without a decay by definition and the posterior point estimate
of the baseline event rate is exp {β̂0} ≈ 0.0129 (similar for both BIC and
WAIC weights; upper panels).

Since the network consists of nodes that represent collectives of indivi-
duals, it is important to interpret the estimated memory decay functions as
referring to the memory of groups, rather than of individuals. Focusing on
the results for the WAIC weights in Figure 11 (right panels), all the three
trends show a clear approximately exponential memory decay. The drastic
decrease near zero suggests that recent requests have a much higher impact
on the event rate than less recent ones. Therefore, the trend observed for
inertia indicates a tendency of actors to keep sending requests to the same
recipient of their most recent requests. This reflects “short-lived inertia”
(driven by the requests that happened in a fairly recent past) rather than “long-
lived inertia” (where requests that have occurred over a much longer time
span continue to be repeated).

For reciprocity, we see that memory drops a bit faster than for inertia and
stabilizes around a low value that decreases further, indicating that actors
reciprocate on requests received in the very recent past, but requests that
were not responded to quickly are soon “forgotten” and are unlikely to be
responded to. Norms of reciprocity are clearly not enduring and non-
reciprocated requests disappear from social memory very quickly. Finally,
transitivity is similarly driven by very recent interactions. Considering that
dyadic requests only briefly trigger the tendency to respond, it makes sense
that having common past communication partners also mainly matters if
those joint interactions date back to only recent history rather than to a
period somewhat longer ago.

Together, the results paint a picture of a “delusion of the day” kind of pol-
itics. Interactions between these institutional actors appears to be driven by
current events in the country, where response to actuality appears more pre-
dictive of future interactions than long-term governed interaction. While this
may be typical of governmental interactions, the effect may be strengthened
by the fact that the data come from news paper articles. News paper articles
will generally only report publicly visible interaction (hence, journalists may
miss interaction that occurs behind closed doors or interactions that are not
made public) and will tend to focus mainly on what is of interest “today.”
That said, it does make a lot of sense to find that governmental parties
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Figure 11. Posterior estimates resulting from the BMA with BIC (left) and WAIC

(right) weights, from the top to the bottom: posterior distribution for the intercept

(β0), posterior trends for inertia, reciprocity and transitivity closure. The gray area

(dashed lines for the intercept) is generated by the highest posterior density intervals

calculated until 20 days (maximum value plotted on the x-axis).
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seem to base their interactions mainly (but not exclusively) on what is going
on in the present and the very recent past, and focus less on what happened
longer ago and may be less salient in the public’s eye.

The resulting trends obtained from the BIC weights approximately follow
the same decays as the WAIC. However, we see that the BIC weights show an
approximate step-wise trend because the BIC becomes increasingly large for
that step-wise model that is the closest to the true (smooth) model (in terms of
Kullback-Leibler distance (Grünwald and Ommen, 2017)). Thus, the weight
of that step-wise model dominates the weights of all other step-wise models.
This illustrates that the BIC is useful for finding the best fitting step-wise
model, which, in this case, has increasing interval widths over the transpired
time, forming roughly an exponential decay. On the other hand, the BIC is
less useful for finding an approximate smooth decay trend. For this
purpose we recommend the WAIC.

Assessing the predictive performance: A comparison with parametric
memory decays

The results show that memory decays approximately exponentially in this
dataset. Next, we compare the performance of the fitted semi-parametric
model with other relational event models that either do not contemplate a
memory decay (REM without memory) or fix it to some predefined paramet-
ric trend (step-wise or exponential):

• REM without memory: this is a basic relational event model where
endogenous statistics such as inertia, reciprocity, and transitivity
closure are embedded in the linear predictor as a function of the total
volume of past events without any memory decay. For the REM
model without memory, the log-rate at any time t ∈ [t1, tM] and for
any request e′ in the risk set R is:

logλ(se′ ,re′ ,Et,β)= β0+βinertiainertia(se′ ,re′ ,t)

+βreciprocityreciprocity(se′ ,re′ , t)

+βtransitivityclosuretransitivityclosure(se′ ,re′ , t) (26)

• REMwith exponential decay: We specify three models with endogen-
ous statistics such that events follow an exponential weight decay. The
weight decay at tm for any event occurred at te′ < tm is
ln (2)

θhalf−life
exp {−(tm − te′ )

ln (2)
θhalf−life

} (Brandes, Lerner, and Snijders, 2009),
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where θhalf−life is fixed, respectively, to 7 days, 30 days, and 90 days.
For these models, the log-rate at any time t ∈ [t1, tM] and for any
request e′ in the risk set R is:

log λ(se′ , re′ , Et, β) = β0 + βinertiaweighted− inertia(se′ , re′ , t, θhalf−life)+
βreciprocityweighted− reciprocity(se′ , re′ , t, θhalf−life)+

+βtransitivityclosureweighted− transitivityclosure(se′ , re′ , t, θhalf−life)

(27)

These models are named Exp 7, Exp 30 and Exp 90 in Appendix A.4.
The idea is similar to the approach of Brandenberger (2018) who also
considers exponential decay models and uses different predefined
values for the half-life parameter.

• REM with step-wise decay: We specify three step-wise models with
the following widths:
γdays = {0, 90, 180} (two intervals with equal size);
γdays = {0, 7, 30, 90, 180} (four intervals with increasing size);
γdays = {0, 1.32, 14, 46.2, 180} (four intervals, using the widths of the

model with the best WAIC found with the semi-parametric approach).
The step-wise models above are named respectively StepEqual,
StepIncr and bestWAIC in Appendix A.4. The three models have
γmax = 180days. The log-rate at any time t ∈ [t1, tM] and for any
request e′ in the risk set R is:

logλ(se′ ,re′ ,Et,β)= β0+
∑K
k=1

βinertiak inertiak(se′ ,re′ , t)

+
∑K
k=1

βreciprocityk reciprocityk(se′ ,re′ , t)

+
∑K
k=1

βtransitivityclosurek transitivityclosurek(se′ ,re′ , t)

(28)

where K is the number of intervals in the model. Endogenous statistics
in step-wise models are calculated as explained in A Step-Wise
Memory Decay Model section.

In Appendix A.4, we include a table with the maximum likelihood estimates
and standard errors for each model.
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In Figures 12 and 13, we examine two plots that assess the predictive per-
formance of the models.

Figure 12 displays the probability of the observed dyads having rank less
or equal than five, calculated as

∑Z
m=1

I(rank(em) ≤ 5)/Z with Z = 2, . . . , M

where rank(em) returns the rank of the predicted probability for event em and
M = 7567 is the number of events in the sequence. Thus, at each time point,
given the sequence of already occurred events (including the occurring event
at tm), the count of predicted ranks being less or equal than five (out of the 90
dyads that were at risk at each time point) is divided by the number of events
in the partial event sequence. We calculate this probability for all models
under comparison. We consider a moving average with 100 events to
better visualize the overall predictive trends. We excluded models Exp 7
and Exp 30 from the figure because they performed clearly worse than the
rest of the models (this keeps the figure more readable).

The plotted trends show how well the models perform over time. The solid
line represents the performance of the BMA model resulting from the semi-

Figure 12. Probability of observing the rank of the occurring dyads being among the

first five most likely dyads (moving average with 100 terms, Exp 7 and Exp 30
performed worse than the rest of the models and were removed from the plot).
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parametric approach introduced in this paper. In comparison to the other decay
models, its performancemaintains a level that is, on average, higher thanmost of
themodels in the comparison. This illustrates that amodelwhere the shape of the
decay is learned from the data on average results in better predictions and better
modelfit than competingmodels where the decay is prespecified based on rough
heuristic arguments. Finally it is interesting to observe that the REM without
memory also performs quite competitively.

We note that the aim of our approach is not to generate a model that neces-
sarily outperforms other models in predictive accuracy. Although the model is
expected to generally do equally well or better than most competing models,
an important aspect of the approach is that it allows a researcher to get a good
idea of how long past events maintain their influence. This allows a researcher
to then specify better further inferential models (informed by the decay shape
that is found from the semi-parametric model). Perhaps more importantly,
empirical results of exactly how the past keeps influencing the present and
the future are essential for theory development. Considering the dearth of
time-sensitive social theory, approaches that can uncover the empirical
pattern of time can be highly informative for theorists to develop truly time-
sensitive social theories upon. Of course, this requires the application of the
model to a wider set of data than just our illustrative data set.

We plot the ROC curves in Figure 13; again we see that the BMA model
on average performs best. Here, the REM without memory performs

Figure 13. ROC curve of each model in the comparison.
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relatively poorly. The no-memory REM under-predicts actually occurring
events and can only achieve high accuracy by predicting a relatively large
number of events that actually do not occur. The memory-based models
have a better overall trade-off between incorrectly and correctly predicted
events, even considering the simplicity (the models are fully based on only
inertia, reciprocity, transitivity closure, and an intercept) of the model for
such complex interaction patterns among governmental actors in India.

Discussion
In this paper, we presented differentmethods for learning how past interactions
between social actors affect future interactions in the network.We first consid-
ered a K-step-wise model that approximated memory decay with a discrete
step-wise trend. This model can be estimated using existing software functions
for relational event analysis. The proposed Bayesian model averaged memory
decay estimator will be made available in a new R package.

The next key contribution is a novel Bayesian model averaging approach to
estimating memory decay in a relational modeling framework where events are
assumed to continuously change in importance as the time since the event
increases. The promising aspect of this semi-parametric approach lies in its
ability to learn the shape of the memory decay without making any parametric
assumption about it. Furthermore, by building on the step-wise model, the pro-
posed method is computationally feasible. We considered two weighting
systems for Bayesian model averaging of a bag of step-wise models: the BIC
and the WAIC. As was illustrated, the BIC is useful for finding the one best
fitting step-wise model for a given empirical relational event history. The BIC,
however, is not suitable for finding an approximate smooth trend of the
memory decay, as all weight is placed on the single step-wise model that is
closest to the true smooth decay model. This issue does not occur for the
WAIC as the Bayesian model average of many step-wise models results in a
smooth trend.

The semi-parametric approach on average provided better predictive per-
formance than other approaches where the weight decay was set using prede-
fined parameters. This illustrates the usefulness of relaxing the assumption of
predefined decay functions when making predictions and doing inferences.
Moreover, the semi-parametric approach can uncover exactly how and for
how long past events matter and can show if this is perhaps different
between reciprocity and transitivity (or other statistics). A researcher can
use the semi-parametric approach to first run several relatively simple
models that can inform the researcher about the memory decay shapes that
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are present in the data at hand. Following that, the researcher can then specify
further, more complex, models that utilize some predefined memory structure
that is based on the shape found by the semi-parametric approach. This allows
a researcher to run quite complex relational event models, without the com-
putational burden of repeating the memory decay model several times for
each new model that is specified, while, at the same time, taking into
account the empirically extracted memory decay function for the dataset at
hand.

In addition, researchers can use the methodology to uncover empirical
trends of how past events matter as time passes by. Once this has been
applied to enough datasets, these findings can inform solid theory development
on how the past matters for the future. There is barely any social theory that is
able to systematically explain and predict how present social interaction affect
future social interactions and for how long exactly, whether the effects are
linear or non-linear (and, in which case: following which shape?), and which
conditions have an effect on that. Although social scientists acknowledge
that time and timing matters for social reality (e.g., Leenders, Contractor,
and DeChurch et al. (2016); Ancona et al. (2001); Monge (1990); Mitchell
and James (2001); Kozlowski et al. (2016)), the empirical means to uncover
actual memory shapes or the empirical means to test potential theoretical expec-
tations about the course of time has lacked. We believe that our approach has
the ability to support these efforts.

In this paper, we assume that all events are random, in the sense of
having some probability of occurrence at any time. Some events,
however, are not random and follow a fixed deterministic pattern.
Marcum and Butts (2015) refer to these events as “clock events”.
Examples include standardized lunch times (“every day we eat together
in the cafeteria between 1200h and 1230h”), fixed office hours, the end
of the workday at 1700h, et cetera. These deterministic events can affect
interaction rates directly, but can also affect memory decay. For
example, consider a workplace where work ends strictly at 1700h. If it
happens to be the norm to follow up on a request from a colleague
within half an hour (and older requests “drop from the radar”), requests
that come in at 1645h should be handled within fifteen minutes and may
be forgotten as the clock turns 1700h. In this case, the deterministic
end-of-workday event directly affects the memory decay. In situations
where clock events occur, it would be interesting to incorporate them
into the modeling approach. At the very least, the researcher should be
aware of them, so as to not have the memory shapes be affected by the
clock events without the researcher realizing it.
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The empirical example presented in this paper involves a relatively small
network. It is important to note however that the methodology can be used for
larger networks as well, even though the computation can be expensive in that
case. We leave computational optimization of the approach for larger net-
works for future work.

Another important direction for future research would be to apply the
method to different event types or sentiments. For instance, one expects nega-
tive events (e.g., a country threatening another country, a pupil insulting a
peer, a teacher rebuking a student) to have a memory decay that is slower
and more persistent than for positive events (e.g., a teacher praising a
student, a country cooperating with another country) (Brass and Labianca
(1999); Labianca and Brass (2006)). This difference may apply as well to
other event types from which possible different memory shapes might
emerge. For example, it might be that email interaction is more fleeting
than face-to-face interaction. This is especially relevant in the understanding
of projects where some project members may be co-located and have ample
face-to-face interaction, while other members of the project team may reside
in different locations which makes technology-enabled communication with
them more pertinent. The team leader may give a similar message to a
co-located project member (using face-to-face interaction) as to a physically-
distant project member (sending an email), where the two communication
media may have differential memory effects. Having a modeling approach
like the semi-parametric model from this paper allows researchers to study
conditions that affect memory decay patterns differently.

Furthermore, in the case of more dynamic situations, e.g., when the
network switches between different states or regimes, memory decay may
also change accordingly. For example, in emergency situations, recently
past events may play an even larger role on interaction dynamics than long
past events compared to the period of time before the emergency happened.
Consequently, we would want to learn the change of the shape (and length) of
memory decay across different states in dynamic environments.

In our approach, we do not prespecify the shape of the memory decay.
However, with the choice for BIC or WAIC and with the choice for increas-
ing/decreasing/equal intervals, some shapes are more likely to be found than
others. We have illustrated how a researcher can compare these various
choices against each other and pick that specification that fits the data best
(according to predictive fit or some other criterion). However, a substantively
very meaningful next step would be to examine when it is more plausible for
memory decay to follow a step-wise or a continuous shape. It is worth it to
systematically examine which social mechanisms are likely to lead to step-
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wise temporal effects and which mechanisms are not. This would both assist
further model building and the further development of time-sensitive social
theory.

We expect that the acquired ability of both estimating social memory
decay processes and testing for the various conditions that might shape
them can be a crucial step towards a more accurate understanding of
network dynamics developing at a local as well as at a global level.
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A Appendix

A.1 Endogenous statistics

In Table 1 the indicator variable for any event e where (se = i, re = j) follows
the short notation Ie(i, j) and the same applies to any other dyad. Given each
statistic, the formula in the first row shows the interval definition of the statistic
as regards dyad (i, j) in the k−th interval; whereas, the formula in the second
row shows the continuous definition where β(γ, θ) is the trend function that
follows one of the decays discussed in The Gradual Nature of Memory
Decay section or another more complex evolution. Note how in the continuous
formulas the event history at tm, that is Etm−1 , doesn’t depend on any interval.

A.2 From step-wise to continuous effects

Consider an increasing sequence of K + 1 time widths γ = (γ0, γ1, . . . , γK),
such that γk − γk−1 = Δ for k = 1, . . . , K (i.e., evenly spaced intervals). A
graphical representation of intervals at tm is presented below in Figure 14.

In the context of endogenous statistics that are defined on intervals (see
Step-Wise Decay for Higher order Endogenous Effects subsection), one
could already apply the formulas in Appendix A.1 and then estimate the step-
wise trend for each network statistic of interest. In general, when intervals are
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evenly spaced, we could write γk = k · γKK for k = 0, . . . , K, where γK is the
largest observable width (it can be the length of the study itself). If the number
of intervals (K) increases, their size (Δ), in turn, shrinks. Indeed, considering
the size of an interval that is calculated as the difference between two adjacent
widths, Δ = (γk − γk−1).

lim
K→∞

γk − γk−1

( ) = lim
K→∞

k · γmax
K

− (k − 1) · γmax
K

[ ]
= lim

K→∞

γmax
K

= 0

This result holds for k = 1, . . . , K. Therefore, an extreme scenario consists in
a large number of intervals whose sizes are so small that at tm each of them
contains only one or no relational event. As a consequence of this, one
would estimate a step-wise trend where each step is defined approximately
on a value of the transpired time and it represents the relative effect based
on those events that assumed that specific value throughout the event histories
(Et, with t = t1, . . . , tM). Indeed, any event since its occurrence assumes a
value reflecting its recency that is updated at every time point onward and,
thus, it increases over time (from t1 to tM if considering the time points
where events were observed). Every value of transpired time calculated at
each time point can be observed at least once in the network and when it is
observed multiple times this happens at different time points. For instance,
two different events could both occur 33 minutes earlier than the present
time point but with the condition that the present time point they refer to is
different for both of them (because events are assumed not to occur at the
same time point). Finally, the estimation of the effects over such a large
number of intervals is impractical and it serves only to convey insights
about the possibility of continuously changing effects in contrast to step-wise
decays.

Figure 14. K evenly spaced intervals, with time widths γ = (γ0, γ1, . . . , γK) such
that γk − γk−1 = Δ for k = 1, . . . , K.
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A.3 Interval generator (the algorithm)

Algorithm 1: Generating S intervals with K steps (having either increasing or
decreasing size).

A.4 Maximum likelihood estimates for the models specified in the
model comparison

In Table 2 the maximum likelihood estimates for the models specified in
Assessing the Predictive Performance: A Comparison with Parametric
Memory Decays subsection. In the calculation of the BIC, the penalization
accounts for the number of parameters in each model (# parameters). In the
step-wise models (StepEqual, StepIncr and bestWAIC) the effect of each stat-
istic in each interval is reported (e.g., in model StepEqual, inertia has two
effects βinertia1 = 0.05 and βinertia1 = 0.03, and so the other statistics).
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