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Abstract: The functioning of complex systems relies on subsystems (modules) that in turn are
composed of multiple units. In this paper, we focus on modular systems that might fail due to wear
on their units or environmental conditions (shocks). The lifetimes of the units follow a phase-type
distribution, while shocks follow a Markovian Arrival Process. The use of Matrix-Analytic methods
and a bottom-up approach for constructing the system generator is proposed. The use of modular
structures, as well as its implementation by the Modular Matrix-Analytic (MoMA) algorithm, make
our methodology flexible in adapting to physical changes in the system, e.g., incorporation of new
modules into the current model. After the model for the system is built, the modules are seen as a
‘black box’, i.e., only the contribution of the module as a whole to system performance is considered.
However, if required, our method is able to keep track of the events within the module, making
it possible to identify the state of individual units. Compact expressions for different reliability
measures are obtained with the proposed description, optimal maintenance strategies based on
critical operative states are suggested, and a numerical application based on a k-out-of-n structure
is developed.

Keywords: modular systems; Markovian arrival process; phase-type distributions; shock models;
reliability analysis; maintenance; Matrix-Analytic methods

MSC: 62M05; 90B25

1. Introduction

In practice, a large number of systems require the availability of different subsystems
to function. For instance, in an artificial satellite, two major subsystems are distinguished:
one concerns the life of the vehicle and its position in orbit, and includes batteries, solar
panels, the set of sensors, etc., and the other is responsible for radio communications
and comprises antennas, central stations, and such [1]. In the same way, the electronic
control system of a car consists of a group of sensors (S), a control unit (ECU), and a
group of actuators (A). The sensors collect measurements related to the operation of the
engine, which are sent to the control unit, which processes the received information and
consequently instructs the actuators to execute their functions [2]. Likewise, modern power
energy systems are made up of generation, transmission, and distribution subsystems;
the generation subsystem includes turbines and generators, which are usually arranged
in redundant structures and distributed in separated areas [3]. A floating offshore wind
turbine, for example, is comprised of several subsystems; in [4,5], the authors distinguish
four functionally divided subsystems, namely, the wind turbine, tower and transition piece,
floating foundation, and mooring system.

Under these considerations, practical applications show that several features can be
integrated into the system design: the components can be grouped attending to specific
goals, e.g., performing a task or mission within the system, for redundancy purposes,
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spacial location-based strategies, and more. For instance, as discussed in [6], in certain
systems it might be of interest to encapsulate elements with protective casings or spatially
separate them into groups in order to avoid simultaneous failures. This action can lead
to groups of units or subsystems being differently and independently exposed to random
shocks. For other reasons, devices may contain many very small parts that are considered
as a block for maintenance purposes, e.g., multi-chips.

In this paper, we focus on these types of systems, that is, complex systems with
multiple subsystems that in turn are composed of multiple components or units. We refer
to a K modular system (KMS), meaning that the operation of the system is carried out
by means of K independent modules, where K ≥ 1, and a module is a multicomponent
subsystem. When the failure of any module leads to system failure, this is equivalent to
a series connection among the modules of the system. If the failure of the system only
occurs when all the modules fail, this is equivalent to parallel connection of the modules
of the system. These are the two extreme cases of a k-out-of-n configuration. Studies
on the reliability k-out-of-n subsystems have been conducted by many researchers under
different scenarios, approaches, and methodologies. Common objectives are the evaluation
of system reliability and finding solutions to cost optimization problems, both of which
are often solved by numerical methods. Various authors have worked on phased mission
systems ([3,7]), allocation problems ([8–10]), multi-state systems ([11,12]), reliability growth
models [13], and Markov models [14], among others.

To the best of our knowledge, shock models have been little addressed in the context of
modular systems (KMS), and have been mainly developed on single or n-systems (i.e., KMS
with K = 1). Traditionally, shock models have mainly been classified into cumulative shock
models and extreme shock models (see [15]), with subsequent generalizations, as in [16–18].
In recent years, many scholars have focused on different types of shocks, magnitudes,
sizes, functions, or effects, including the number of components in the system affected by
successive shocks ([6,19–21]). Several models incorporate phase-type distributions (PH)
for inter-arrival times ([22–25]) or Markovian arrival processes (MAPs), extending the
usual Poisson process. In [26], a batch Markovian arrival process (BMAP) was used for the
arrival of shocks presenting different sizes. The system fails when the cumulative number
of shocks reaches a previously fixed threshold. In [27], the system withstands several
types of shocks that can cause deterioration or failure. These shocks can be repairable
or not, and are as well modeled by a MAP. Works studying shock and wear n-systems
under MAPs include [28,29]; in the latter work, the authors consider an n-component
system withstanding shocks that arrive following an exponential distribution that can
cause damage or failure of several components simultaneously. The Poisson processes
assumed for the system are extended in [30], focusing on systems in a k-out-of-N structure.
In [31], the authors performed a reliability and cost analysis of an N warm standby system
under both, shocks and inspections, by MAPs; such inspections detect the number of
downed units, and their replacement is carried out if there is a minimum of K failed units
according to the (K, N) policy.

When K modular designs (KMS) are considered, the modules take part in the system
according to a specific configuration and role, as mentioned before. It is clear that the entire
system reliability is a function of the reliabilities of its modules. In turn, it seems reasonable
that the reliability of an individual module depends on both, the lifetime of its components
and the environmental conditions. In many real systems, particular designs entail that each
module is made of components that share common causes of failure, which can be due to
either internal or external factors, or both; for example, see ([4,5]). For instance, components
inside a module performing a common function in the system are exposed to the same
working conditions. Moreover, when each module performs a specific function in the
system, or when modules are located in separate/distinct areas, they can be independently
exposed to external conditions. Consider the following examples. (1) Sensors comprising
the engine control unit of a car can be classified as mechanical, electrical, or electronic; the
occurrence of an overvoltage shock may damage the resistors in electrical sensors. (2) In
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a railway control system, the arrival of an earthquake may cause the failure of sensors
installed on the tracks in the impact area, while sensors installed on tracks in other locations
are not affected by the incident.

This paper studies a modular system comprising K independent modules (KMS).
Each module is composed of units that are independent and not necessarily equal, with
lifetimes following phase-type distributions. As modules can be independently exposed to
environmental conditions, different random shock processes are considered to be governed
by MAPs. When a shock reaches a module, it may affect the module, either causing its
failure or not with a certain probability. The evolution of the system is described by a
multidimensional process in which states are provided by vectors of a very large size. A
bottom-up procedure is presented for the construction of the infinitesimal generator, from
which probabilities and reliability measures of interest can be obtained. As the system
evolves over time, it may fail, and even when operational, it may be in unsatisfactory
operating conditions. System maintenance then becomes essential to avoid its failure and
the associated costs. For this system, we propose a maintenance strategy where preventive
and/or corrective actions are performed when required at inspection times. The optimal
inspection interval is determined based on the probability (q) that the system reaches a
critical operating state, that is, a state in which the system, though operational, is not
performing at optimal conditions.

The contributions of this work are highlighted throughout the paper. The model
we present is general, and many multi-state complex systems can be derived from it,
even those with a non-modular structure. Modular systems have been little treated in
reliability modeling or in shock modeling. Nevertheless, the use of this type of design is
growing. Many engineering and industrial systems, such as computers, automobiles, and
others, have a modular architecture. Apart from the possible economic advantages, the
application of the modular principle can be useful in extending, upgrading, or replacing
system functions by means of separate modules. Failure analysis and bulk maintenance
can be more cost-effective than component-by-component actions. Moreover, for reliability
reasons, the lifetime of the system can be extended, e.g., by incorporating redundancy
through the use of modular structures.

When using the Markovian methodology and the Matrix-Analytic Method (MAM)
a high-dimensional complex system is mathematically tractable, allowing for compact
expressions. The use of MAPs in the model generalizes the shock processes most frequently
used, such as the Poisson process and the non-homogeneous Poisson process; in addition,
shocks modeled by MAPs involve non-independent inter-arrival times. For each of the
modules, the external source of failure is modeled by a different and independent MAP,
which adds to the probability of internal failure due to unit wear. A considerable number
of complex systems can be studied using the proposed model. An algorithmic procedure is
provided to facilitate and foster practical implementation.

The remainder of this paper is organized as follows. In Section 2, we define the
fundamental concepts that play an important role in this work. In Section 3, the description
of the model and notation are presented. Section 4 describes the maintenance strategy
proposed for the system. Section 5 displays a numerical application. Finally, Section 6
provides our conclusions and future research prospects.

2. Preliminaries

Phase-type distributions (PH-distributions), Markovian arrival processes (MAPs), and
Kronecker operations play an important role in this paper. They are the basic elements
in the application of Matrix-Analytic Methods (MAMs), and are formally defined below
to provide a better understanding of this work. For further details, readers are referred
to ([32–34]).

Definition 1. PH-distribution
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Consider a finite Markov chain with m transient states and one absorbing state with the
infinitesimal generator Q partitioned as

Q =

(
T T0

0 0

)
where T is a matrix of order m and T0 is a column vector such that Te + T0. The vector e is a
column of ones. For eventual absortion into the absorbing state, starting from the initial state it is
necessary and sufficient that T be nonsingular. Suppose that the initial state of the Markov chain is
chosen according to the probability vector (α, am+1). Let X denote the time until absorption; then,
X is a random variable taking non-negative values, with the probability distribution function F(x)
provided by F(x) = 1− αeTxe, for x ≥ 0.

We can then denote X as following a PH(α, T)-distribution of order m.

Definition 2. Markovian arrival process (MAP)
Suppose that D =

(
dij
)

is the generator of an irreducible Markov chain with m states. At the end of
a sojourn time in state i that is exponentially distributed with parameter λi, one of the following two
events could occur: with probability p(1)ij , the transition corresponds to an arrival and the underlying

Markov chain is in state j with 1 ≤ i, j ≤ m, while with probability p(0)ij the transition corresponds

to no arrival and the state of the Markov chain is j, j 6= i. We can define matrices D0 =
(

d(0)ij

)
and D1 =

(
d(1)ij

)
such that d(0)ii = −λi, d(0)ij = λi p

(0)
ij , for j 6= i and d(1)ij = λi p

(1)
ij , 1 ≤ i, j ≤ m.

By assuming D0 to be a nonsingular matrix, the inter-arrival times are finite with a probability
of one, and the arrival process does not terminate. Hence, it can be seen that D0 is a stable matrix.
The generator D is then provided by D = D0 + D1. Let α be the initial probability vector of the
underlying Markov chain.

Then, D0 governs the transitions corresponding to no arrival and D1 governs those corre-
sponding to an arrival. It can be shown that MAP is equivalent to Neuts’ versatile Markovian point
process. The point process described by the MAP is a special class of semi-Markov processes with
their transition probability matrix provided by∫ x

0
eD0tdtD1 =

[
I − eD0x

]
(−D0)

−1D1, x ≥ 0

This MAP is represented by the MAP (D0, D1) of order m.

Definition 3. Kronecker product of matrices
If A and B are rectangular matrices with dimensions m1 × m2 and n1 × n2, respectively, their
Kronecker product A⊗ B is a matrix with the dimensions m1n1 ×m2n2, which can be written in
compact form as (aijB).

Definition 4. Kronecker sum of matrices
If A and B are square matrices with dimensions m1 and n1, respectively, their Kronecker sum,
denoted by A⊕ B, is a matrix defined by A⊗ In1 + Im1 ⊗ B, where Im1 , In1 are identity matrices
with dimensions m1 and n1, respectively.

3. The Model

A system formed by N units grouped in K modules is considered here. The failure
of each module can be due to wear on its units or to a shock that affects the module.
The lifetime of each unit follows a PH-distribution. Shocks arrive at the module (system)
following an MAP.

A bottom-up approach is adopted to build the system-structure model, starting with
the description of a unit within a module, then the internal functioning of a module, and
finally a description of the full functioning of the system.
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The description of the system is generic in the sense that different types of modular
and non-modular systems can be studied considering the proposed model. Additionally,
the PH-distributions are dense on the positive real halfline and can approximate known
probability distributions as well as failure data. Furthermore, MAPs are used to model the
arrival of shocks that are not independent.

3.1. Model Assumptions

1. The ith module is formed by ni units. The lifetime of a unit j in the module follows a
PH-distribution PH(αj,i, Tj,i) with mj,i phases, where i = 1, 2, · · · , K, j = 1, 2, · · · , ni,
and N = ∑K

i=1 ni. The units within a module are considered independent.
2. Shocks arrive to module i following an MAP (D0,i, D1,i) of order bi, where Di =

D0,i + D1,i is the infinitesimal generator. Matrix D0,i governs the inter-arrival times
between shocks that affect the module. The entries of matrix D1,i contain the transition
rates between the phases of the MAP when a shock arrives.

3. The MAP process affecting module i is independent of the other MAP processes
affecting the rest of the modules.

4. A shock may or may not cause the failure of a module. Let p1,i, i = 1, · · · , K be the
probability that a shock causes the failure of module i, and p0,i be the probability that
the module does not fail when the shock arrives. Furthermore, p0,i + p1,i = 1.

5. The system might fail even though individual modules remain operational.

3.2. Module Description: Internal Operation

This section describes the internal operation of a given module in terms of how the
module might fail. For this purpose, we define the states of the module taking into account
the units that are operational or failed, i.e., we consider the ni units in module i and establish
an order among them. If all of them are operational, the state of the module is described
by 〈1, 2, 3, · · · , ni〉. If unit h has failed, this is be described by 〈1, 2, 3, · · · , h̄, · · · , ni〉, that is,
the specific unit appears with a bar over it to indicate that it has failed.

Considering this definition and the fact that no simultaneous changes can occur in the
units, i.e., if a unit changes its state, then the rest of the units remain unchanged, we now
describe the transitions between all the possible module states.

• From 〈1, 2, 3, · · · , ni〉 to 〈1, 2, 3, · · · , ni〉: all units are operational and remain this way.
While any unit might change its operational phase, none of them fails. This transition
is described by

T1,i ⊕ T2,i ⊕ · · · ⊕ Tni ,i. (1)

• From 〈1, 2, 3, · · · , h, · · · , ni〉 to 〈1, 2, 3, · · · , h̄, · · · , ni〉: all units are operational, then
unit h fails. This transition is described by

Im1,i ⊗ Im2,i ⊗ · · · Imh−1,i ⊗ T0
h,i ⊗ Imh+1,i · · · Imni ,i , (2)

where Imj,i represents the identity matrix of order mj,i for j = 1, · · · , ni and i =
1, · · · , K.
The rest of the transitions from this state are not possible because two units cannot fail
at the same time.
In fact, from any state it is only possible to transition to a state where a failure occurs
or to the same state, given that at present we are not considering maintenance in the
system. That is, from a state where s out of ni units have failed, the module can either
stay in this state or change to a state where s + 1 units have failed. These units do not
have to be consecutive.
Let us describe the transitions in this case. For simplicity, we consider s = 2, i.e., two
units of the module have failed. Let us say that the failed units are h1 and h2, where h1
and h2 can refer to any two units in {1, · · · , ni} and h1 < h2.
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• From 〈1, · · · , h̄1, · · · , h̄2, · · · , ni〉 to 〈1, · · · , h̄1, · · · , h̄2, · · · , ni〉: in this case, after tran-
sition the same two units are failed, the rest of the units continue functioning, and one
of them changes phase:

T1,i ⊕ · · · ⊕ Th1−1,i ⊕ Th1+1,i ⊕ · · · ⊕ Th2−1,i ⊕ Th2+1,i ⊕ · · · ⊕ Tni ,i. (3)

• The second possibility is that a unit fails due to wear; let us say that this is unit
l. In this case, l is in the set of units that were operational before transition, i.e.,
{1, · · · , h1 − 1, h1 + 1, · · · , h2 − 1, h2 + 1, · · · , ni}. Therefore, unit l can be placed
before, after, or in between h1 and h2.

Im1,i ⊗ · · · ⊗ Iml−1,i ⊗ T0
l,i ⊗ Iml+1,i ⊗ · · · ⊗ Imni ,i . (4)

Remark 1. Given that unit l is non-consecutive to any of the previously failed units.

We now describe the generator of a module while considering the transitions between
the given states. For this purpose, we denote as Qni−s the matrix that describes the transi-
tions when ni − s units are functioning and none of them fails, while Q̃ni−s is the matrix
that describes the transitions from ni − s operational units to ni − (s + 1) operational units.

• Transitions in matrix Qni−s have to consider all possible combinations of s units out of
ni that have failed. For example, if a module has ni = 2 units and s = 1, i.e., one unit
has already failed, the transitions that are described in matrix Qni−s are the transitions
among the states (1, 2̄) and (1̄, 2).
To describe these transitions, the matrix Qni−s is comprised of (ni

s )× (ni
s ) blocks of

matrices. In the diagonal, we have the transitions within the same state, i.e., from the
state where s specific units have failed to the state where exactly the same units have
failed. The matrices in the diagonal blocks are akin to the following one:

T1,i ⊕ · · · ⊕ Th1−1,i ⊕ Th1+1,i ⊕ · · · ⊕ Ths−1,i ⊕ Ths+1,i ⊕ · · · ⊕ Tni ,i. (5)

Out of the matrix diagonal we have matrices of zeros of appropriate dimensions, as
these transitions mean that a different set of s units have failed and that is not possible.
For example, if module i is formed by three units ni = 3, and one of them has failed,
that is, s = 1, matrix Qni−s is provided as follows:

Qni−s =

 T1,i ⊕ T2,i 0 0
0 T1,i ⊕ T3,i 0
0 0 T2,i ⊕ T3,i

.

Remark 2. Considering that the transitions are between the states (1, 2, 3̄), (1, 2̄, 3) and
(1̄, 2, 3), in this order.

• On the other hand, Q̃ni−s is a matrix that has to consider all the possibilities of a
unit failing out of ni − s. This matrix is formed by (ni

s ) × ( ni
s+1) blocks of matrices

that describe the transitions when the unit fails out of all the remaining ones. The
transitions when we consider s failed units to s + 1, where the previously failed s units
remain fixed, are provided by matrices such as the one described in Equation (4). The
rest of the transitions are provided by matrices of zeros of appropriate dimensions.
Following the previous example, if module i is formed by three units ni = 3, and one
of the units has failed, s = 1, we can consider the transitions from the states (1, 2, 3̄),
(1, 2̄, 3) and (1̄, 2, 3) to the states (1, 2̄, 3̄), (1̄, 2, 3̄), and (1̄, 2̄, 3). Then,

Q̃ni−s =

 Im1,i ⊗ T0
2,i T0

1,i ⊗ Im2,i 0
Im1,i ⊗ T0

3,i 0 T0
1,i ⊗ Im3,i

0 Im2,i ⊗ T0
3,i T0

2,i ⊗ Im3,i

.
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In summary, we have[
Qni−s Q̃ni−s

]
=

=

 T1,i ⊕ T2,i 0 0 Im1,i ⊗ T0
2,i T0

1,i ⊗ Im2,i 0
0 T1,i ⊕ T3,i 0 Im1,i ⊗ T0

3,i 0 T0
1,i ⊗ Im3,i

0 0 T2,i ⊕ T3,i 0 Im2,i ⊗ T0
3,i T0

2,i ⊗ Im3,i

.

Now, the generator of the module can be provided in terms of the failed units, as follows:

Q∗i =



Qni Q̃ni 0 0 · · · 0
0 Qni−1 Q̃ni−1 0 · · · 0

0 0
. . . . . . · · · 0

...
...

. . . . . .
...

0 0 0 0 Qni−(ni−1) Q̃ni−(ni−1)
0 0 0 0 0 0


. (6)

Depending on how the units are organized within the module, the operational and
failure states of the module are different. For example, if the module is a series module, as
soon as one of the units fails, the whole module fails. If it is a parallel module, all the units
must fail for the module to fail. If it is a ki-out-of-ni module, then ni − ki units must fail for
the module to fail.

3.3. System Description: Independent MAPs Affecting the Modules

The system is formed by K modules with operational and failure states given in terms
of the number of failed units while taking into account how these units are arranged. The
system states are described by the number of operational modules.

For the system, we need to consider both the failure of the module due to wear on its
units as well as failure due to the arrival of shocks. Shocks represent external conditions
that can affect the system operation and make it fail. Here, shocks arrive to a module i
following an MAP (D0,i, D1,i) for i = 1, 2, · · · , K.

To simplify, we describe the generator that depicts the internal operation of module
i, Q∗i in terms of the macro-state U when the module is operational and the macrostate D
when the module has failed due to wear. We define matrix Qi, the matrix that represents
the internal changes in the module that do not cause its failure, and Q̃i, the matrix that
represents the transitions to a failure state in the module. Matrices Qi and Q̃i depend on
whether the module is a series, parallel, or ki-out-of-ni module. For example, for the two
extreme cases, i.e., series and parallel, the corresponding expressions are provided below.

• If the module is a series module:

Qi = Qni and Q̃i = Q̃ni

where the rest of the blocks in matrix Q∗i are given by matrices of 0s of apropriate
dimensions.

• If the module is a parallel module:

Qi =



Qni Q̃ni 0 · · · 0
0 Qni−1 Q̃ni−1 · · · 0

0 0
. . . . . . · · ·

...
...

. . . Q̃ni−(ni−2)
0 0 0 0 Qni−(ni−1)


,

and
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Q̃i =


0
0
...
0

Q̃ni−(ni−1)

.

In any case, matrix Q∗i can be described as follows:

Q∗i =

[
Qi Q̃i
0 0

]
. (7)

However, as module i can fail due to the arrival of a shock, matrix Q∗i needs to incorporate
this as well. Therefore, we call Qs∗

i the generator of module i that takes into account the
arrival of shocks. In this case,

Qs∗
i =

[
Qi ⊕ (D0,i + p0,iD1,i) Q̃i ⊗ I I ⊗ p1,iD1,i

0 0 0

]
, (8)

where I denotes an identity matrix of convenient dimension.
From this, we define the matrices

Qs
i = Qi ⊕ (D0,i + p0,iD1,i), (9)

and
Q̃s

i =
[

Q̃i ⊗ I I ⊗ p1,iD1,i

]
. (10)

Therefore,

Qs∗
i =

[
Qs

i Q̃s
i

0 0

]
. (11)

Now, we can describe the generator of the system in the same way we did with the
module, i.e., in terms of the number of modules that have failed:

Qsys =



Q′K Q̃′K 0 0 · · · 0
0 Q′K−1 Q̃′K−1 0 · · · 0

0 0
. . . . . . · · · 0

...
...

. . . . . .
...

0 0 0 0 Q′K−(K−1) Q̃′K−(K−1)
0 0 0 0 0 0


. (12)

• Q′K−l is a matrix describing the transitions when l out of K modules have failed.
Similarly to the previous section, this matrix is composed of (K

l ) × (K
l ) blocks of

matrices. Its diagonal contains the transitions to the same state, i.e., the same l
modules are failed and there are no changes in the rest. The off-diagonal matrices are
matrices of zeros of appropriate dimensions.
The matrices in the diagonal blocks are akin to the following one:

Qs
1 ⊕ · · · ⊕Qs

h1−1 ⊕Qs
h1+1 ⊕ · · · ⊕Qs

hl−1 ⊕Qs
hl+1 ⊕ · · · ⊕Qs

K. (13)

with hr in (1, 2, · · · , K) and r = 1, · · · , l.
• Q̃′K−l is a transition matrix that contains blocks of matrices describing all the possibili-

ties of a module failing out of K− l modules. In an equivalent way to a module, this
matrix is formed by (K

l )× ( K
l+1) blocks of matrices that describe the transitions when a

module fails out of the remaining operational ones. The transitions from K− l specific
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operational modules to K− (l + 1), where l of the modules are the previously failed
ones, can be described by matrices such as the one below:

I
∑

n1
j=1 mj,1

⊗ · · · ⊗ I
∑

np−1
j=1 mj,p−1

⊗ (Q̃s
pe)⊗ I

∑
np+1
j=1 mj,p+1

⊗ · · · ⊗ I
∑

nK
j=1 mj,K

, (14)

where e is a column vector of ones with the appropriate dimension. The rest of the
transitions in matrix Q̃′K−l are given by matrices of zeros of appropriate dimension.

Remark 3. In this case, module p fails out of the remaining operational modules, being
non-consecutive to any of the previously failed ones.

Finally, depending on how the modules are arranged in the system, the macro-states
that represent the failure of the system in matrix Qsys (provided in Equation (12)) are
different, i.e., if the system is a series system, when one of the modules fails the whole
system fails. If it is a parallel system, the system fails only when all the modules fail.
If it is a k-out-of-K system, then K− k modules must fail for the system to fail.

3.4. System Description: An MAP Affecting the System as a Whole

Another scenario considered in the paper is the arrival of shocks that affect the system
as a whole and can make it fail. Again, a system formed by K modules is considered,
except that the modules can now only fail due to wear. The system might fail due to
the failure of modules or due to a shock. Shocks arrive to the system following an MAP.
Therefore, Assumptions 2–4 in Section 3.1 are replaced by the following ones, while the
rest of Assumptions are the same.

(2bis)Shocks arrive to the system following an MAP (D0, D1), of order b where D = D0 +D1.
Matrix D0 governs the inter-arrival time between shocks. The entries of matrix D1
contain the transition rates between the phases of the MAP when a shock arrives.

(3bis)A shock may or may not cause the failure of the system. Let p1 be the probability that
a shock causes the failure of the system and p0 = 1− p1 be the probability that the
shock does not make the system fail.

We need to consider, on the one hand, the aforementioned matrix that describes the
operational and failure states of module i when the module fails due to wear, i.e., the matrix
provided by Q∗i in Equation (7), and on the other hand, the shocks that arrive to the system,
as both can cause system failure.

Let us first describe the generator of the system in terms of the number of operational
modules, i.e., the generator that depicts the internal operation of the system, Q∗sys. This
generator is similar to the one provided in Equation (12); however, in this case the failure
of the modules is only due to wear.

• Q′K−l is a matrix that represents the transitions when l modules out of K modules have
failed due to internal failure. This matrix is composed of (K

l )× (K
l ) blocks of matrices.

Its diagonal contains the transitions to the same state and the same l failed modules.
The off-diagonal matrices are matrices of zeros of appropriate dimensions.
The matrices in the diagonal blocks are akin to the following one:

Q1 ⊕ · · · ⊕Qh1−1 ⊕Qh1+1 ⊕ · · · ⊕Qhl−1 ⊕Qhl+1 ⊕ · · · ⊕QK. (15)

• Q̃′K−l is a matrix made up of (K
l )× ( K

l+1) blocks of matrices that describe the transitions
when a module fails due to an internal failure. Here, l module has failed, and after
the transition the system has l + 1 failed modules. Only one module changes in this
transition from operational to failed; the rest of the modules are unchanged and remain
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in the state they were before the transition. This transition is described by a matrix
such as the one below:

I
∑

n1
j=1 mj,1

⊗ · · · ⊗ I
∑

np−1
j=1 mj,p−1

⊗ (Q̃pe)⊗ I
∑

np+1
j=1 mj,p+1

⊗ · · · ⊗ I
∑

nK
j=1 mj,K

. (16)

The rest of the transitions are given by matrices of zeros of appropriate dimension. As
in Section 3.3, the operational and failure states of the system in terms of the number of
failed modules is different depending on whether it is a series system, a parallel system, or
a k-out-of-K system. For example, if the system is a k-out-of-K system,

Q′sys =



Q′K Q̃′K 0 · · · 0
0 Q′K−1 Q̃′K−1 · · · 0

0 0
. . . . . . · · ·

...
...

. . . Q̃′k+1
0 0 0 0 Q′k


,

and

Q̃′sys =


0
0
...
0

Q̃′k

.

Therefore, we can describe matrix Q∗sys in a compact way as follows:

Q∗sys =

[
Q′sys Q̃′sys

0 0

]
. (17)

If we now introduce the failure of the system due to an MAP, then the generator of the
system that also considers possible failure due to shocks is provided by

Qsys =

[
Q′sys ⊕ (D0 + p0D1) Q̃′sys ⊗ I I ⊗ p1D1

0 0 0

]
. (18)

3.5. MoMA Algorithm

Figure 1 displays the description of the algorithm that we have developed to construct
the generator matrix governing the system behavior, called the Modular Matrix-Analytic
(MoMA) algorithm. We use the following notation: Mj represents the jth module in the

system and uj
i represents the unit i inside the module j for j = 1, . . . , K, and i = 1, . . . , nj. We

have taken into account the two cases explained above for shocks acting both independently
on the modules and on the whole system. We describe a general situation where several
of the modules in the system might be isolated from environmental conditions. In that
case, for these modules no MAP is defined, and we represent them with Dk = NA and
denote the number of modules in the system that are affected by external shocks as R;
thus, Dk 6= NA. Then, R = K indicates the case of shocks arriving independently and
individually to each module regardless of the number of modules with Dk = NA, which
in fact could be 1 or K− 1. On the other hand, R = 1 is the case of a single MAP affecting
the whole system and R = 0 is the case in which no shocks arrive.

Functions Psij, where j = 1, 2, 3, represent different operators that are applied over a
set of arguments that can be either a sequence of module generators and/or the elements
of the corresponding MAPs of shocks. More specifically, an operator of type Ψ1 combines
the generators of the PH-distributions that define the units, as detailed in Section 3.2. An
operator of type Ψ2 returns the combination of the module generators in order to describe
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the behavior of the system, as described in Section 3.3, where the MAP is not considered,
and in Section 3.4, where the MAP is already taken into account. An operator of type
Ψ3 returns the generator matrix of the process that combines the processes of wear and
external shocks at the module level, as in Section 3.3), as well as at the system level, as in
Section 3.4).

START

Matrix-Blocks: Q1 Q2 … QK

Shocks Processes: D1 D2 … DK

Put k=1
Build Block Qk

Units: 

k=K

NO

R1

NO

YESCombine 
Q1 , Q2 ,…, QK

,

R=1

Combine
QSys ; D

YES

R=0










→

→

K
K

Kn
K

n

Muu

Muu

......

.............

......

1

1
1

1

1
1

)......( 11
k

kn
k

k uuQ =

( )KSys QQ ,...,12=Q

( )D;3 SysQ=SysQ SysQ=SysQ

Put k=1 
Re-build Block Qk

k=k+1

( )





=
=

otherwiseDQ

DifQ

kk

kk

,;

  ,ˆ

3

NA
kQ k=k+1

k=K

Combine

KQQ ˆ,....,ˆ
1

( )KQQ ˆ,....,ˆ
12=SysQ

NO

YES

NO

YES

Dk=NA, if no shock 
affects module Mk

 
=

=
K

k
kDIR

1

NA

END

Figure 1. MoMA: Modular Matrix-Analytic Algorithm.

4. Maintenance Strategy of Modular Systems Based on Critical Values

Industry spends huge amounts of money to repair failures of machines and products.
With systems becoming more and more complex, it is vital to master optimal maintenance
strategies that can help to reduce the number of complete machine breakdowns, thereby
minimizing machine downtime and associated costs. Many approaches have been de-
veloped recently in the literature. For instance, in [35] the authors proposed a model to
determine inspection and opportunistic maintenance strategies for floating offshore wind
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turbines. In [36], a new procedure based on criticality analysis was proposed to improve the
maintenance of solar tower power plants. In [31], the authors proposed maintenance plans
based on inventory theory, in which replacement is carried out only if there is a minimum
of failed units.

In the above paper, the system is supposed to degrade with time, meaning that we can
consider a range of system performance levels. In general, we can split the state space into
two subsets such that E = U ∪ D, where U contains all the operational states, D represents
all down states, and the up and down states are determined in terms of the number of
operational modules.

In this paper, we do not distinguish between down states; therefore, we can assume
for simplicity that D is a unitary set indicating the failure of the system and is considered an
absorbing state. When the system reaches state D it is correctively maintained and restored
to a state in the set U chosen according to a vector of probabilities. Between inspections,
the system can only progress to a higher degradation level, though not necessarily the
following one. Using m to denote the size of the set U, there are a total of m + 1 states in
the system.

The system is inspected at regular intervals to detect any problems and intervene
if necessary. A maintenance policy is proposed for this system based on the estimated
probability that the system is visiting a certain subset of states at the n-th inspection.

The cost of the intervention depends on the degradation level reached by the system,
with corrective maintenance being the most expensive one.

4.1. Preventive Maintenance Based on the Critical State Probability Criterion (CSPC)

Following a similar strategy as in [37], we consider preventive maintenance criteria
based on a critical state probability criterion (CSPC). Roughly speaking, a preventive
maintenance action is carried out when the system enters a subset of operational states that
are considered critical in some sense. For a better picture of the situation, we can illustrate
it with the following example.

Consider a system with two modules that works as long as at least one module is
operational (i.e., a parallel structure). Let us assume that the two modules are identical
and the system evolution is modeled by a Markov chain with state space defined in terms
of the number of down modules, E = {0, 1, 2}; the set of up states is U = {0, 1}, and the
down-state set is then D = {2}. State 1 can be seen as critical in comparison with state 0.

In general, we assume that U = U1 ∪U2, where the set of up states can be split into
two subsets such that states in U2 are critical to the system’s performance. Let us assume
that card(U2) = m2, for a m2 < m = card(U). Notice that, as we do not distinguish modes
of failure, the total number of states in the system is m + 1 = m1 + m2 + 1. Accordingly, let
us consider the following partition of the generator matrix:

Qsys =

 QU1U1 QU1U2 Q0
U1

QU2U1 QU2U2 Q0
U2

0 0 0


where

Q =

(
QU1U1 QU1U2

QU2U1 QU2U2

)
(19)

and

Q0 =

(
Q0

U1

Q0
U2

)
(20)

The preventive maintenance action is undertaken as soon as the subset U2 is reached
with a prespecified probability. More specifically, we can denote as τ2 the first time the



Mathematics 2022, 10, 3521 13 of 19

system hits subset U2 directly from subset U1, that is, without visiting the state of failure D.
The probability distribution of this time is

F2(t) = P(Xt ∈ U2; Xs ∈ U1, 0 ≤ s < t)

= αU1 Q−1
U1U1

(
exp{QU1U1 t} − Im1

)
QU1U2 eU2

for t ≥ 0, where α = (αU1 , αU2 , 0) is the initial probability vector, αUi is the initial probability
of subset Ui, i = 1, 2, and eU2 is a column vector of ones of the same dimension as U2. As
long as transitions from U1 to D are allowed, there are non-zero elements in the sub-vector
Q0

U1
, meaning that F2(+∞) < 1. Let F∗2 (t) =

F2(t)
F2(+∞)

for all t ≥ 0. A preventive maintenance
action is carried out at time

τ∗(q) := inf{t ≥ 0 : F∗2 (t) ≥ q}, (21)

with q a critical probability value 0 < q < 1, that is, the quantile of order q of the distribu-
tion F∗2 .

After the action is finished, the system is restored to a non-critical state. Then, by the
memoryless property, a new preventive maintenance action is scheduled following the rule
just defined. Note that with this rule we can decide when to carry out the preventive action;
we do not yet decide how the system is to be maintained.

4.2. Maintenance Strategy Expected Cost

A maintenance cost depending on the state of the system at the moment of the in-
tervention is considered in this subsection. A system failure is followed by a corrective
maintenance action which involves a cost equal to CCM. Preventive maintenance is carried
out in the system following the CSPC rule. Specifically, a probability of system failure
is fixed, i.e., q, meaning that the time between two consecutive PM actions is τ∗(q), as
provided in (21). The cost associated with a PM intervention depends on the operative state
of the system at the moment of inspection. We define a vector of costs CPM = (c1, . . . , cm)′

as follows:

• cj = 0, for j = 1, . . . , m1

• 0 < cm1+1 < cm1+2 < . . . < cm, where m = m1 + m2, as above
• cm ≤ CCM

Let Cq(t) denote the total cost associated with a potential maintenance action at a
fixed time t. If the system is found failed at that time, then a CM action is undertaken; on
the other hand, a PM action is only carried out if t = τ∗(q). The expected cost at time t can
be obtained as follows:

E
[
Cq(t)

]
= 1{t=τ∗(q)} ∑

i∈U2

P(Xt = i)CPM,i + P(Xt ∈ D)CCM, (22)

where CPM,i = cm1+i for i = 1, . . . , m2 and 1{A} is an indicator function taking a value of 1
if condition A is true and 0 otherwise.

Let us assume that the system is allowed to operate for a prespecified period of time
τ0 and that the only inspections are carried out at times tk = kτ∗(q) for k = 1, 2, . . ., as
represented in Figure 2. Each time a PM action is carried out, the system is returned to a
functioning state in the subset U1 chosen with a probability provided by the vector αU1 , that
is, the initial law α restricted to the elements of U1. The following transitions are governed
by the matrix Q. Starting at the specified time, a new inspection of the system is carried out
at time τ∗(q) later, and so forth. This behavior continues until time τ0 is reached. The total
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number of PM actions developed is equal to r, which can be written as τ0 = r τ∗(q) + τ̄.
The total expected cost involved in the interval (0, τ0] is then

E[Cq(τ0)] = ∑
i∈U2

P(Xτ∗(q) = i)CPM,i + P(Xτ∗(q) = D)CCM +

+(r− 1)(β(τ∗(q))CPM + γ(τ∗(q))CCM)

+β(τ̄)CCM,

where
β(t) = P(Xt0 ∈ U1, Xt0+t ∈ U2) = αU1,0 exp{Qt}1U2

and where 1U2 = (

m1︷ ︸︸ ︷
0, . . . , 0,

m2︷ ︸︸ ︷
1, . . . , 1)′; αU1,0 = (αU1 ,

m2︷ ︸︸ ︷
0, . . . , 0)′; furthermore,

γ(t) = P(Xt0 ∈ U1, Xt0+t ∈ D) = αU1,0 exp{Qt}Q0.

where Q and Q0 are defined in Equations (19) and (20).

Figure 2. Maintenance schedule.

5. An Application Example: A Two-out-of-Three Voting Scheme for a
Surveillance System

As stated in [38], many industrial processes require tight control and are so critical
that such control cannot rely on just one surveillance transmitter, given that a transmitter
failure might cause nuisance, a false trip, or a process upset involving unnecessary costs.
This is why in industry it is very common to introduce redundancy in surveillance systems;
two-out-of-three (2oo3) voting schemes are particularly common ([38]). Let us consider
some machinery that is monitored by a system composed of three sensors. If one sensor
fails or malfunctions and emits a failure signal when this is not the case, then the system
does not send a false trigger, as the other two sensors are working properly. Thus, with
a 2oo3 strategy in the system of sensors, these situations involving false positives do not
occur and faulty instruments (sensors) can be repaired or replaced without interrupting
the process.

5.1. Description of the System

Let us consider a three-modular system with the following specifications:

1. Internal degradation
For each i = 1, 2, 3 module i, Mi, is a sub-system with ni = 2 identical and independent
units in series. Each unit has a PH-distribution according to (αj,i, Tj,i), which are

Tj,i =

(
−3 2
2 −3

)
and αj,i = (0.8, 0.2)

for j = 1, 2 and modules M1 and M2, and

Tj,i =

(
−5 4
4 −4

)
and αj,i = (0.8, 0.2)
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for j = 1, 2 in module M3. For any unit in any module, we denote the operative
phases as {0, 1} and the absorbent phase representing the failure of the unit as 2.

2. External shocks
Independently, each module receives shocks that arrive following an MAP with
parameters (D0, D1) such that

D0 =

(
−2 1
0 −3

)
; and D1 =

(
1 0
3 0

)
.

The MAPs governing the shocks arriving at the modules are identical and independent.
Moreover, when a shock occurs in module Mi this can affect the module, producing
its complete failure, with probability pi; otherwise, it does not affect the module at all,
which occurs with probability 1− pi. We take pi = 0.1 for all i = 1, 2, 3

3. System regime
We assume a 2oo3 architecture for the system behavior, which means that the system
is working when at least two out of three modules are working. Then, the UP states
of the system can in general be written as

< (a1, b1; f1), (a2, b2; f2), (a3, b3; f3) >,

when all modules in the system are working, where ai, bi ∈ {0, 1}; for i = 1, 2, 3, we
refer to the internal phase of the units inside the module Mi, and fi ∈ {1, 2} denotes
the phase of the MAP affecting module Mi. The up states when one module of the
system is down are described as

< (a1, b1; f1), (a2, b2; f2), (DOWN; f3) >,

when module M3 is not working,

< (a1, b1; f1), (DOWN; f2), (a3, b3; f3) >,

when module M2 is not working, and

< (DOWN; f1), (a2, b2; f2), (a3, b3; f3) >,

when module M1 is not working. We denote the whole set of working states of the
system by U.
The DOWN state of the system can be reached as soon as any two modules fail; within
this macro-state, we can consider any of the following configurations as

< (a1, b1; f1), (DOWN; f2), (DOWN; f3) >,

when only M1 is working,

< (DOWN; f1), ((a2, b2; f2), (DOWN; f3) >,

when only M2 is working, and,

< (DOWN; f1), (DOWN; f2), (a3, b3; f3) >,

when only M3 is working, with ai, bi ∈ {0, 1}, fi ∈ {1, 2}, and finally

< (DOWN; f 1); (DOWN; f2), (DOWN; f 3) >,

when none of the modules is functioning.
With this specification, the size of the set of up states U is m = 704. We can split the
set of up states U = U1 ∪U2 into two subsets. In the first subset, U1, we consider the
case where all the three modules are occupying any of their operative phases, while
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and in the second, U2, we consider the states where there is one module down. We
call this subset the critical set.

5.2. Reliability and Maintenance of the 2oo3-Voting System

1. Reliability
Dependability measures are displayed in Figure 3, with the reliability function pre-
sented on the left panel and the hazard function shown on the right. The expected
lifetime of the system is obtained as 0.357 u.t. On the other hand, the hazard rate
presents a very fast increasing tendency at the beginning of the system lifetime until
it reaches a maximum around t = 1, after which it stabilizes and presents an almost
constant hazard rate above 4 (u.t.)−1.
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Mean time to failure:  0.357
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Hazard function

t

h(
t)

Figure 3. Voting system. (Left panel): Reliability function with mean time to failure. (Right panel):
Hazard function.

2. Maintenance
In this case, we consider that the system is inspected periodically to perform preven-
tive maintenance (PM). The interval of inspection is determined according to Section 4.
We determine the optimal inspection time τ∗(q) depending on a critical probability
criterion, that is, we perform system inspection every time the probability that the
system is in an operational but critical state exceeds a prespecified value q. We assume
that the cost involved in a PM action is half the cost that is implied by a CM action. In
particular, we take CPM = 1 for restoring the system from any critical state to a state
in the set U1 chosen according to αU1 , and we take CCM = 2.
The results are presented in Figures 4 and 5. In Figure 5, it can be observed that the
maintenance cost increases as the critical probability increases, reaching its peak close
to the critical probability value of q = 0.8. after that, the cost decreases rapidly, which
could mean that after a certain value of q it is better in terms of cost to let the system
fail and perform maintenance correctively.
In Figure 5, we illustrate the situation described in Section 4.2, with the system allowed
to operate for a prespecified period of time τ0 = 2 u.t. As can be seen, the expected
cost of maintenance decreases as the critical probability increases. However, for
probabilities above q = 0.8 the situation becomes unstable. For higher values of q the
optimal inspection time for PM is very long, meaning that at the time of inspection
the system is likely to have failed, at which point it has to be correctively maintained.
With the parameters selected in this particular case for the vector of cost (PM and
CM), it seems more convenient to let the system fail.
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Figure 4. 2oo3 voting system. (Left panel): Optimal time to PM. (Right panel): Optimal maintenance cost.
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Figure 5. 2oo3-voting system with a maximum operation time before replacement.

6. Conclusions and Future Work

In the present paper, we have described a modular system by means of Matrix-Analytic
methods. The description of the system has been made based on the relationship between
the functioning of the units within a module and the functioning of the system as a whole.
We have considered that system failure can occur due to internal wear or due to external
shocks representing the surrounding environmental conditions. The description here
presented is generic, allowing different types of modular and non-modular systems to be
represented by our model. Finally, for the considered type of system, we have proposed
a maintenance strategy that involves preventive maintenance actions when the system
is inspected at regular intervals of time. The time of inspections is determined based on
the probability of reaching critical states in system operation at a given time. We have
showcased the model by means of a numerical application.

In this work, we do not consider any differences in the type of failure that affects the
system when it fails due to wear or shock, nor do we consider different ways in which
maintenance intervention can recover the system to a previous state of (non)degradation
depending on the type of intervention and how well it is performed (maintenance effi-
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ciency). However, we have obtained clues pertaining to these two questions. The next
steps are to incorporate maintenance efficiency into the model and consider the effect of
decision-making related to different types of failure. The model used here assumes that no
more than one module can fail simultaneously after the occurrence of a shock; however, in
real systems this may not be the case. Therefore, we plan to relax this assumption in our
future work. Another issue to be dealt with concerns common cause failures, both internal
and external.

Other important extensions of our work that could be considered in future research
involve incorporating empirical data. Specifically, based on a sample of lifetimes from a
system that fits a modular structure similar to the one presented in this paper, we aim to
build a model that can explain the evolution of the system over time from a parametric
and/or a nonparametric perspective (see [39] for a recent monograph on statistical analysis
of reliability data).
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