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Abstract. The reaching of consensus in group decision-making (GDM)
problems is a common task in group decision processes. In this article, we
consider GDM with linguistic information. Different experts may have
different levels of knowledge about a problem and, therefore, different
linguistic term sets (multi-granular linguistic information) can be used
to express their opinions.
The aim of this paper is to present different ways of measuring con-
sensus in order to assess the level of agreement between the experts in
multi-granular GDM problems. To make the measurement of consensus
in multi-granular GDM problems possible and easier, it is necessary to
unify the different linguistic term sets into a single one. This is done
using fuzzy sets defined on a basic linguistic term set (BLTS). Once the
information is uniformed, two types of measurement of consensus are
carried out: consensus degrees and proximity measures. The first ones
assess the agreement among all the experts’ opinions, while the second
ones are used to find out how far the individual opinions are from the
group opinion. The proximity measures can be used by a moderator in
the consensus process to suggest to the experts the necessary changes to
their opinions in order to be able to obtain the highest degree of con-
sensus possible. Both types of measurements are computed in the three
different levels of representation of information: pair of alternatives, al-
ternatives and experts.

Keywords: Consensus, multi-granular linguistic information, group decision-
making, linguistic modelling, fuzzy preference relation.

1 Introduction

A group decision-making (GDM) problem may be defined as a decision
situation where: i) there exist two or more experts that are characterized
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by their own perceptions, attitudes, motivations and knowledge, ii) there
exists a problem to be solved, and iii) they try to achieve a common
solution.

Fuzzy sets theory has proven successful for handling fuzziness and
modelling qualitative information [6, 7, 13]. In this theory, the qualitative
aspects of the problem are represented by means of “linguistic variables”
[14], i.e., variables whose values are not numbers but words or sentences
in a natural or an appropriate artificial language.

An important parameter to determine in a linguistic context is the
“granularity of uncertainty”, i.e., the cardinality of the linguistic term set
that will be used to express the information. Because experts may come
from different research areas, and thus have different levels of knowledge,
it is natural to assume that linguistic term sets of different cardinality
and/or semantics could be used to express their opinions on the set of
alternatives. In these cases, we say that we are working in a multi-granular
linguistic context [4, 12], and we will call this type of problem a multi-
granular linguistic GDM problem.

In GDM problems there are two processes to carry out before ob-
taining a final solution [3, 5, 8, 9]: the consensus process and the selection
process (see Figure 1). The first one refers to how to obtain the maximum
degree of consensus or agreement between the set of experts on the solu-
tion set of alternatives. Normally this process is guided by the figure of
a moderator [5, 9]. The second one consists in how to obtain the solution
set of alternatives from the opinions on the alternatives given by the ex-
perts. Clearly, it is preferable that the set of experts reach a high degree
of consensus before applying the selection process. In [4], the selection
process for multi-granular linguistic GDM problem was studied. There-
fore, in this paper, we focus on the consensus process, and in particular
we address the problem of how to measure the consensus in such a type
of GDM problem.

Traditionally, the consensus process is defined as a dynamic and it-
erative group discussion process, coordinated by a moderator, who helps
the experts to bring their opinions closer. In each step of this process,
the moderator, by means of a consensus measure, knows the actual level
of consensus between the experts which establishes the distance to the
ideal state of consensus. If the consensus level is not acceptable, i.e., if
it is lower than a specified threshold, then the moderator would urge the
experts to discuss their opinions further in an effort to bring them closer
[2, 15].
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Fig. 1. Resolution process of a group decision-making problem

The aim of this paper is to present two different measurements to
assess the level of agreement between the experts in multi-granular GDM
problems. These measurements can be classified into two types:

a) Consensus measurement to identify the level of agreement among all
experts and to decide when the consensus process should stop.

b) Proximity measurement to evaluate the distance between the experts’
individual opinions and the group or collective opinion. The proximity
values are used by the moderator to guide the direction of the changes
in the experts’ opinions in order to increase the degree of consensus.

For each one of these measurements, it is interesting not only to know
the global agreement or proximity amongst experts’ but also the partial
degrees on a particular alternative or pair of alternatives. To do this,
both types of measurements are carried out at three different levels of
representation of information:

Level 1 or pair of alternatives level. At this level both the agreement
amongst all the experts and the distance between each experts’ indi-
vidual opinion and the group opinion on each pair of alternatives are
calculated.

Level 2 or alternatives level. At this level, the consensus degree and the
proximity on each alternative are obtained.

Level 3 or experts’ level. In this last level, the global consensus degree
amongst all the experts and the distance between each individual



expert’s opinion and the group opinion on all the alternatives are
calculated.

This means that in total six measurements are obtained, a consensus
measure and a proximity measure at each one of the three levels. To
make the computation of these six measurements in multi-granular GDM
problems possible and easier, it is necessary to unify the different linguistic
term sets into a single one. To do this, fuzzy sets on a basic linguistic term
set (BLTS) are used, and the appropriate transformation functions are
defined.

The rest of the paper is set out as follows. The multi-granular linguistic
GDM problem is described in Section 2. The different consensus and
proximity measures are presented in Section 3. Finally, in Section 4 we
draw our conclusions.

2 Multi-granular Linguistic GDM Problems

We focus on GDM problems in which two or more experts express their
preferences about a set of alternatives by means of linguistic labels. A clas-
sical way to express preferences in GDM problems is by means of prefer-
ence relations [3]. A GDM problem based on linguistic preference relations
may be defined as follows: there are X = {x1, x2, . . . , xn} (n ≥ 2), a finite
set of alternatives, and a group of experts, E = {e1, e2, . . . , em} (m ≥ 2);
each expert ei provides his/her preferences on X by means of a linguis-
tic preference relation, µPei

: X × X → S, where S = {s0, s1, . . . , sg}
is a linguistic term set characterized by its cardinality or granularity,
#(S) = g + 1. Additionally, the following properties are assumed:

1. The set S is ordered: si ≥ sj , if i ≥ j.
2. There is the negation operator: Neg(si) = sj such that j = g − i.
3. There is the min operator: Min(si, sj) = si if si ≤ sj .
4. There is the max operator: Max(si, sj) = si if si ≥ sj .

The semantics of the terms is represented by fuzzy numbers defined
on the [0,1] interval. One way to characterize a fuzzy number is by using
a representation based on parameters of its membership function [1]. For
example, the following semantics, represented in Figure 2, can be assigned
to a set of seven terms via triangular fuzzy numbers:

P = Perfect = (0.83, 1, 1) V H = V ery High = (0.67, 0.83, 1)
H = High = (0.5, 0.67, 0.83)M =Medium = (0.33, 0.5, 0.67)
L = Low = (0.17, 0.33, 0.5) V L = V ery Low = (0, 0.17, 0.33)
N = None = (0, 0, 0.17)
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Fig. 2. A set of seven terms with their semantics

The ideal situation in GDM problems in a linguistic context would be
one where all the experts use the same linguistic term set S to provide
their opinions. However, in some cases, experts may belong to distinct
research areas and will, therefore, have different levels of knowledge about
the alternatives. A consequence of this is that the expression of preferences
will be based on linguistic term sets with different granularity, which
means that adequate tools to manage and model multi-granular linguistic
information become essential [4, 7, 12].

In this paper, we deal with multi-granular linguistic GDM problems,
i.e., GDM problems where each expert ei may express his/her opinions
on the set of alternatives using different linguistic term sets with different
cardinality Si = {si

0, . . . , s
i
p}, by means of a linguistic preference rela-

tion Pei
, where pjk

i ∈ Si represents the preference of alternative xj over
alternative xk for that expert.

3 The Measurement of Consensus in Multi-granular

Linguistic Context

The measurement of consensus in GDM problems is carried out using two
different measures: consensus measures and proximity measures. However,
as we assume multi-granular linguistic context, the first step must be to
obtain a uniform representation of the preferences, i.e., experts’ prefer-
ences must be transformed (using a transformation function) into a single
domain or linguistic term set that we call basic linguistic term set (BLTS)
and is denoted by ST .

The measurement of consensus in multi-granular linguistic GDM prob-
lems is therefore carried out in three steps: (i) making the linguistic in-
formation uniform, (ii) computation of consensus degrees and (iii) com-
putation of proximity measures



3.1 Making the Linguistic Information Uniform

In this step, a basic linguistic term set (BLTS), ST , has to be selected.
To do this it seems reasonable to impose a granularity high enough to
maintain the uncertainty degrees associated to each one of the possible
domains to be unified. This means that the granularity of the BLTS has
to be as high as possible. Therefore, in a general multi-granular linguistic
context, to select ST we proceed as follows:

1. If there is only one linguistic term set, from the set of different domains
to be unified, with maximum granularity, then we choose that one as
the BLTS, ST .

2. If there are two or more linguistic term sets with maximum granular-
ity, then the election of ST will depend on the semantics associated
to them:
(a) If all of them have the same semantics (with different labels), then

any one of them can be selected as ST .
(b) If two or more of them have different semantics, then ST is defined

as a generic linguistic term set with a number of terms greater
than the number of terms a person is able to discriminate, which
is normally 11 or 13 [11], although we can find cases of BLTS with
15 terms symmetrically distributed [4, 10].

Once ST has been selected, the following multi-granular transforma-
tion function is applied to transform every linguistic value into a fuzzy
set defined on ST :

Definition 1 [4] If A = {l0, . . . , lp} and ST = {c0, . . . , cg} are two lin-
guistic term sets, with g ≥ p, then a multi-granular transformation func-
tion, τAST

, is defined as

τAST
: A −→ F (ST )

τAST
(li) = {(ch, αih) /h ∈ {0, . . . , g}, ∀li ∈ A

αih = max
y
min{µli(y), µch

(y)}

where F (ST ) is the set of fuzzy sets defined on ST , and µli(y) and µch
(y)

are the membership functions of the fuzzy sets associated to the linguistic
terms li and ch, respectively.

The composition of the linguistic preference relations provided by the
experts µPei

with the multi-granular transformation functions {τSiST
, ∀i}



will result in a unification of the preferences for the whole group of experts.
In particular, the linguistic preference plk

i will be transformed into the
fuzzy set, defined on ST = {c0, . . . , cg},

τSiST
(plk

i ) = {(ch, α
lk
ih) / h = 0, . . . , g}

αlk
ih = max

y
min{µplk

i
(y), µch

(y)}.

We will continue to denote τSiST
(plk

i ) by plk
i , and we will use only the

membership degrees to denote the uniformed linguistic preference rela-
tion:

Pei
=







p11

i = (α11

i0 , . . . , α
11

ig ) · · · p1n
i = (α1n

i0 , . . . , α
1n
ig )

...
. . .

...
pn1

i = (αn1

i0 , . . . , α
n1

ig ) · · · pnn
i = (αnn

i0 , . . . , α
nn
ig )







3.2 Computation of Consensus Degrees

In GDM problems, each consensus parameter requires the use of a dissim-
ilarity function to obtain the level of agreement among all the experts.
Several dissimilarity functions have been proposed to measure how far
each individual expert is from the rest, including the Euclidean distance,
the cosine and sine of the angle between vectors, etc [2, 15].

Initially, we used these traditional distance functions to measure the
proximity between the linguistic preferences plk

i , p
lk
j given by experts ei, ej ,

by comparing the membership degrees vectors associated to them. How-
ever, after checking the results of some trials, we discovered cases in which
unexpected results were obtained, as is shown in the following example,
which implied that these functions were not suitable for our objectives.

Example 1 If p12
1 = (1, 0, 0, 0, 0, 0), p12

2 = (0, 0, 0, 1, 0, 0) and p12
3 =

(0, 0, 0, 0, 0, 1) are three experts’ assessments on the pair of alternatives
(x1, x2), the following values are obtained using the Euclidean distance:

d(p12

1 , p
12

2 ) =

√

√

√

√

g
∑

i=0

(α12

1i − α12

2i )
2 =

√
2 ; d(p12

1 , p
12

3 ) =

√

√

√

√

g
∑

i=0

(α12

1i − α12

3i )
2 =

√
2

With the Euclidean distance, both preference values p12
3 and p12

1 are
at the same distance from preference p12

2 , although, it is clear, however,
that the first one is further from p12

2 than the second one. The problem in
this case is the way the information of these fuzzy sets is interpreted, as



a vector of membership values without having taking into account their
positions in it. To take into account both the values and positions, a
different dissimilarity function able to represent the distribution of the
information in the fuzzy set plk

i is necessary. The use of the central value
of the fuzzy set, cvlk

i , is suggested:

cvlk
i =

∑g
h=0

(index(si
h) + 1) · αlk

ih
∑g

h=0
αlk

ih

, index(si
h) = h (1)

This value represents the average position or centre of gravity of the
information contained in the fuzzy set plk

i = (αlk
i0, . . . , α

lk
ig). The range of

the central value function is the closed interval [1, g + 1].

Example 2 The application of (1) to the assessments of example 1 gives
the following central values:

cv12

1 = 1, cv12

2 = 4, cv12

3 = 6.

For p14
1 = (0.3, 0.8, 0.6, 0, 0, 0), p24

1 = (0, 0.3, 0.8, 0.6, 0, 0), and p34
1 =

(0, 0, 0, 0.3, 0.8, 0.6), the cental values are:

cv14

1 = 2.18, cv24

1 = 3.18, and cv34

1 = 5.18.

As expected, when the information (membership values) moves from the
left part of the fuzzy set to the right part, the central value increases.

The value |cvlk
i −cv

lk
j | can be used as a measure of distance between the

the preference values plk
i and plk

j , and, therefore, a measure of similarity
or proximity between these two preference values, measured in the unit
interval [0, 1], is defined as:

s(plk
i , p

lk
j ) = 1−

∣

∣

∣

∣

∣

cvlk
i − cv

lk
j

g

∣

∣

∣

∣

∣

(2)

Clearly, the closer s(plk
i , p

lk
j ) to 1 the more similar plk

i and plk
j are,

while the closer s(plk
i , p

lk
j ) to 0 the more distant plk

i and plk
j are.

Example 3 The values of similarity between the assessments of exam-
ple 1 are: s(p12

1 , p
12
2 ) = 0.4, s(p12

1 , p
12
3 ) = 0 and s(p12

2 , p
12
3 ) = 0.6.

Using the above similarity function (2), the computation of the con-
sensus degrees is carried out in several steps:



1. After the experts’ preferences are uniformed, the central values are
calculated:

cvlk
i ; ∀ i = 1, . . . ,m; l, k = 1, . . . , n ∧ l 6= k (3)

2. For each pair of experts ei, ej (i < j), a similarity matrix SMij =
(

smlk
ij

)

is calculated, where

smlk
ij = s(plk

i , p
lk
j ) (4)

3. A consensus matrix, CM , is obtained by aggregating all the similar-
ity matrices. This aggregation is carried out at the level of pairs of
alternatives:

cmlk = φ(smlk
ij ); i, j = 1, . . . ,m ∧ ∀ l, k = 1, . . . , n ∧ i < j

In our case, we propose the use of the arithmetic mean as the aggre-
gation function φ, although, different aggregation operators could be
used according to the particular properties we want to implement [8].

4. Computation of consensus degrees. As we said in Section 1, the con-
sensus degrees are computed at the three different levels: pairs of
alternatives, alternatives and experts.

Level 1. Consensus on pairs of alternatives, cplk, to measure the con-
sensus degree amongst all the experts on each pair of alternatives.
In our case, this is expressed by the element (l, k) of the consensus
matrix CM , i.e.,

cplk = cmlk, ∀l, k = 1, . . . , n ∧ l 6= k

The closer cplk to 1, the greater the agreement amongst all the
experts on the pair of alternatives xl, xk. This measure will allow
the identification of those pairs of alternatives with a poor level of
consensus.

Level 2. Consensus on alternatives, cal, to measure the consensus
degree amongst all the experts on each alternative. For this, we
take the average of each row of the consensus matrix CM .

cal =

∑n
k=1 cm

lk

n
(5)

These values can be used to propose modification of preferences
associated to those alternatives with a consensus degree lower than
a minimal consensus threshold γ, i.e, cal < γ.



Level 3. Consensus amongst the experts, ce, to measure the global
consensus degree amongst the experts’ opinions. It is computed as
the average of all consensus on alternative values, i.e,

ce =

∑n
l=1 ca

l

n
(6)

If the consensus value ce is low then there exists a great discrepancy
between the experts’ opinions, and therefore they are far from reaching
consensus. In this case, the moderator would urge the experts to discuss
their opinions further in an effort to bring them closer. However, when the
consensus value is high enough, the moderator would finish the consensus
process and the selection process would be applied to obtain the final
consensus solution to the MPDM problem [2, 15].

3.3 Computation of Proximity Measures

Proximity measures evaluate the agreement between the individual ex-
perts’ opinions and the group opinion. Thus, to calculate them, a col-
lective preference relation, Pec

= (plk
c ), has to be obtained by means of

the aggregation of the set of (uniformed) individual preference relations
{Pei

= (plk
i ); i = 1, . . . ,m}:

plk
c = ψ(plk

1 , . . . , p
lk
m)

with ψ an “aggregation operator”. As plk
i = (αlk

i0, . . . , α
lk
ig) then plk

c =

(αlk
c0, . . . , α

lk
cg) with

αlk
cj = ψ(αlk

1j , . . . , α
lk
mj).

which means that plk
c is also a fuzzy set defined on ST .

Clearly, the expression (2) can be used to evaluate the agreement
between each individual expert’s preferences, Pei

, and the collective pref-
erences, Pec

. Therefore, the measurement of proximity is carried out in
two steps:

1. A proximity matrix, PMi = (pmlk
i ), for each expert ei, is obtained

where pmlk
i = s(plk

i , p
lk
c ).

2. Computation of proximity measures. Again, we calculate proximity
measures at three different levels.

Level 1. Proximity on pairs of alternatives, pplk
i , to measure the

proximity between the preferences, on each pair of alternatives, of
each individual expert, ei, and the group’s ones. In our case, this



is expressed by the element (l, k) of the proximity matrix PMi,
i.e.,

pplk
i = pmlk

i , ∀l, k = 1, . . . , n ∧ l 6= k

Level 2. Proximity on alternatives, pal, to measure the proximity
between the preferences, on each alternative, of each individual
expert, ei, and the group’s ones. For this, we take the average of
each row of the proximity matrix PMi.

pal
i =

∑n
k=1 pp

lk
i

n
(7)

Level 3. Experts’s proximity, pei, to measure the global proximity
between the preferences of each individual expert, ei, and the
group’s ones. It is computed as the average of all proximity on
alternative values, i.e,

pei =

∑n
l=1 pa

l
i

n
(8)

If the above values are close to 1 then they have a positive contri-
bution for the consensus to be high, while if they are close to 0 then
they have a negative contribution to consensus. As a consequence, these
proximity measures can be used to build a feedback mechanism, based
on simple rules or recommendations to support the experts in changing
their opinions and thus obtain the highest degree of consensus possible,
as was done in [8].

4 Conclusions

The reaching of consensus in GDM problems needs measurements to as-
sess the consensus degree between the experts. In this paper, two types
of measurements were proposed: consensus measurement and proximity
measurement. The first one is used to assess the agreement amongst all the
experts’ opinions, while the second one is used to find out how far the indi-
vidual opinions are from the group opinion. Both types of measurements
are computed at three different levels of representation of information:
pair of alternatives, alternatives and experts.

We have also shown that to make the measurement of consensus pos-
sible in multi-granular GDM problems, it was necessary to unify the dif-
ferent linguistic term sets into a single linguistic term set. To do this,
fuzzy sets defined on a basic linguistic term set (BLTS) were used.



Finally, for future research, the proximity measures will be used to de-
sign a consensus support system able to generate advice on the necessary
changes in the experts’ opinions in order to reach consensus, which would
make the figure of the moderator unnecessary in the consensus reaching
process.
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