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por ayudarme a dar mis primeros pasos en el IAA y por escucharme. Gracias a
toda la gente del grupo de quásares con los que también he aprendido a trabajar
en equipo. Gracias a Julio por su disposición a echar una mano con lo que hiciera
falta. Gracias a Iris por darme el impuso final que necesitaba para poder escribir
esta tesis.

A Granada no llegue solo, viene con una gran amiga, este camino lo hemos
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Resumen

En los años venideros el sondeo J-PAS cartografiará ∼ 8000 grados2 del hemisfe-
rio norte con 56 colores proporcionando ası́ una cantidad de imágenes de objetos
astronómicos sin precedente. Antes de la llegada de la cámara JPCam al OAJ, la
colaboración J-PAS ha observado 1 grado2 del campo de AEGIS con el mismo
sistema fotométrico que J-PAS. Más de 60 000 objetos fueron detectados y com-
partidos con la comunidad cientı́fica en lo que se conoce como el cartografiado
miniJPAS.

El objetivo principal de esta tesis es identificar y caracterizar objetos con lineas
de emisión en J-PAS. En particular estudiamos las galaxias que presentan lineas
de emisión y las propiedades que se pueden obtener tanto del análisis de estas
lineas como de las poblaciones estelares. Además, dedicamos un capı́tulo a la
detección de quásares. A diferencia de otros sondeos que usan filtros estrechos
para detectar lineas de emisión, las caracterı́sticas únicas de J-PAS nos permiten
estudiar estos objetos en un rango continuo de redshift. Por ejemplo, podremos
detectar las lı́neas de emisión de Hα o [NII] en galaxias desde 0 hasta z ∼ 0.35, y
z ∼ 1, respectivamente. Del mismo modo, la lı́nea de emisión Lyα de los cuásares
se detectará desde redshift 2.1 hasta redshift 4.

Los métodos tradicionales que miden la anchura equivalente (EW) de una
lı́nea de emisión se basan generalmente en el contraste fotométrico. Aunque este
método puede dar buenos resultados, tiene grandes limitaciones. En primer lugar,
hay lı́neas de emisión como Hα y [O ii] que están muy próximas entre sı́ en el
espectro. Por lo tanto, ambas contribuyen al flujo total observado en el filtro, lo
que hace difı́cil desentrañar la contribución individual de cada una de las lı́neas de
emisión. Esto es particularmente relevante para estimar la relación [NII]/Hα y de-
terminar los principales mecanismos de ionización de las galaxias. Además, en al
menos la mitad de las galaxias observadas con J-PAS las lı́neas de emisión caerán
en el centro de dos filtros adyacentes. Por lo tanto, la medición del la anchura
equivalente ya no será posible mediante este método.
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En esta tesis hemos desarrollado nuevas técnicas basadas en la inteligencia
artificial para superar las limitaciones previamente expuestas. A diferencia de
los métodos tradicionales, los algoritmos de aprendizaje automático son capaces
de encontrar patrones en los datos sin necesidad de hacer ninguna suposición
empı́rica o teórica. Sin embargo, se necesitan grandes cantidades de estos para
poder entrenarlos de manera eficiente. Es por ello que hemos necesitado simular
datos de J-PAS a partir de una colección de espectros de otros sondeos como CAL-
IFA, MaNGA y SDSS. En concreto, en el capı́tulo 3 presentamos un tipo de al-
goritmos de aprendizaje automático llamado redes neuronales artificiales (RNA).
Con RNA mostramos que podemos predecir a partir de los colores de J-PAS la
anchura equivalente de las lı́neas de emisión de Hα, Hβ, [O iii] y [NII]. Para
cada espectro, se disponı́a previamente de las mediciones de estas lı́neas en los
catálogos. Con este método hemos demostramos que la señal-ruido mı́nima que
necesitamos en la fotometrı́a para medir una lı́nea con una anchura equivalente
de 10 Å en Hα, Hβ, [NII], y [O iii] es de 5, 1.5, 3.5, y 10 respectivamente. En
cambio, los métodos basados en el contraste fotométrico necesitan para la misma
anchura equivalente una señal ruido en la fotometrı́a de al menos 15.5. Con un
conjunto de entrenamiento compuesto por galaxias de CALIFA y MaNGA hemos
logrado alcanzar una precisión de 0.092 y 0.078 dex en los ratios de [NII]/Hα y
[O iii]/Hβ. Sin embargo, hemos encontrado más dificultades para determinar los
ratios de estas lineas en galaxias que albergan un agujero negro activo.

También hemos usado RNA para distinguir entre las galaxias con lı́neas de
emisión intensas y débiles. De hecho, probamos que el régimen de baja emisión (∼
3 Å) puede ser explorado en J-PAS. Esto se debe a que los algoritmo inteligentes
son capaces de encontrar relaciones mucho más complejas en los datos, por lo
que aunque no tengamos suficiente sensibilidad en el seudo-espectro de J-PAS
para distinguir las galaxias con lı́neas de emisión muy débiles, los algoritmos son
capaces de encontrar otros patrones en los datos.

Con el objetivo de validar la capacidad de las RNA para predecir sobre datos
reales hemos estudiado una muestra de galaxias observadas por miniJPAS con
redshift 0 < z < 0.35. Esto lo desarrolamos en el capı́tulo 4. Los resultados mues-
tras que podemos identificar galaxias con lı́neas de emisión y distinguir además
aquellas cuyo mecanismo principal de ionización proviene de la formación es-
telar de aquellas en las que el gas se ioniza por la emisión de un agujero negro
activo. Podemos también estimar la tasa de formación estelar a través del flujo de
Hα, situar estas galaxias en la secuencia principal de formación estelar o calcu-
lar la evolución de la densidad de formación estelar cósmica hasta redshift 0.35.
Además, nuestros resultados derivados de las propiedades de las lı́neas de emisión
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concuerdan con los resultados obtenidos mediante el análisis de las poblaciones
estelares. Por ejemplo, demostramos que las galaxias que son azules (rojas) en
miniJPAS están compuestas por una población estelar más joven (más vieja) y
presentan lı́neas de emisión más fuertes (más débiles).

Por último, en el capı́tulo 5 hemos abordado el problema de la clasificación
de objetos astronómicos con el objetivo de distinguir entre cuásares de bajo red-
shift, cuásares de alto redshift, galaxias y estrellas. Los resultados indican que
la principal fuente de confusión aparece entre los cuásares de bajo redshift y las
galaxias. Esto se debe a que la galaxias que albergan cuásares a veces son lo
suficientemente brillantes que su luz contribuye al espectro observado. De este
modo, estos objetos presentan caracterı́sticas en el espectro que provienen tanto
de la luz de las estrellas en la galaxia como de la luz del núcleo activo y en con-
secuencia son más difı́ciles de clasificar. Hemos prestado especial atención a la
fiabilidad de las ”probabilidades” que estiman los algoritmos, algo que a menudo
no se investiga en detalle. En particular hemos estudiado el efecto de aumentar
el volumen del conjunto de entrenamiento a través de la hibridación. Esta técnica
consiste en mezclar los espectros de galaxias, cuásares y estrellas para generar
objetos hı́bridos con probabilidades mixtas. Desafortunadamente, no observamos
una mejora global en el rendimiento de los algoritmos. De hecho, observamos
que las probabilidades RNA se suelen subestimar cuando se aplica la hibridación.
Creemos que esto se debe probablemente a la propia naturaleza de las observa-
ciones astronómicas. A diferencia de otros campos de investigación dónde la
hibridación sı́ se ha aplicado con éxito para clasificar objetos, en astronomı́a los
errores son inseparables de las observaciones, por lo que la ‘hibridación’ aparece
de manera natural a medida que disminuye la señal ruido de las fuentes obser-
vadas.

Aunque los métodos y técnicas desarrollados en esta tesis tienen algunas li-
mitaciones, este trabajo sienta las bases para estudiar mejor las propiedades de
los objetos de lı́neas de emisión en J-PAS. Tan pronto como J-PAS comience a
observar el cielo, nuestros métodos se pondrán a prueba en grandes muestras de
galaxias, por lo que será posible refinarlos y mejorarlos.





Abstract

In the years to come the Javalambre Physics of the Accelerating Universe Astro-
physical Survey (J-PAS) will map ∼ 8000 deg2 of the northern sky in 56 colours
(J-spectrum), providing an unprecedented amount of images of astronomical ob-
jects. Before arrival of JPCam to the Observatorio Astrofı́sico de Javalambre
(OAJ), the J-PAS collaboration observed 1 deg2 of the AEGIS field with the J-
PAS-Pathfinder camera, using the same photometric system of J-PAS. More than
60 000 objects were detected in what is known as the miniJPAS survey.

The main goal of this thesis is to identify and characterize emission line ob-
jects with J-PAS. In particular, we study emission line galaxies (ELG) and the
properties that can be derived from the analysis of both the emission lines and
the stellar populations. Furthermore, we dedicate one chapter to the detection of
quasars. Unlike others photometric surveys that use few narrow band filters, the
unique characteristics of J-PAS allows us to study these objects in a continuous
range of redsfhit. For instance, we will be able to detect the emission lines of Hα
or [O ii] in galaxies from 0 to z ∼ 0.35, and z ∼ 1, respectively. Similarly, the Lyα
emission line of quasars will be detected from redshift 2.1 up to redshift 4.

Traditional methods that measure the equivalent width (EW) of an emission
line are generally based on the photometry contrast. Although, this methods gives
a very good first approximation, it is limited in many ways. Firstly, there are
emission lines such as Hα and [N ii] which are very close to each other in the
spectrum. Therefore, they both contribute to the total observed flux in the filter,
making difficult to disentangle the individual contribution of each emission line.
This is particularly relevant in order to estimate the [N ii]/Hα ratio and determine
the main ionization mechanisms of galaxies. What is more, in at least half of
the observed galaxies by J-PAS the emission lines will fall in the middle of two
adjacent filters. Consequently, measuring the EW is no longer feasible with the
photometry contrast approach.

In this thesis we developed new techniques based on machine learning (ML) in
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order to overcome these limitations. Unlike traditional methods, ML algorithms
are able to find patterns in the data without making any empirical or theoretical
assumptions. Nevertheless, large data sets are needed to train them efficiently.
For this purpose, we generated mock J-PAS data, which are based on a collection
of spectra from CALIFA, MaNGA, and SDSS. In chapter 3 we trained artificial
neural networks (ANN) in order to predict from the generated syntethic J-PAS
colors the EW of Hα, Hβ, [O iii], and [N ii] emission lines. Direct measurements
of these lines were available in the catalogues for each spectrum. We showed
that the minimum S/N that we need in the photometry to measure a line with an
EW of 10 Å in Hα, Hβ, [N ii], and [O iii] is 5, 1.5, 3.5, and, 10 respectively.
Instead, methods based on the photometry contrast need for the same EW a S/N
in the photometry of at least 15.5. With a training set composed of CALIFA and
MaNGA galaxies, we reached a precision of 0.092 and 0.078 dex in the [N ii]/Hα
and [O iii]/Hβ ratios. Nevertheless, we found that there ratios are more difficult to
constrain in galaxies hosting an active galactic nuclei (AGN).

We also trained an ANN to distinguish between strong and week emission
line galaxies (ELG). We proved that the regime of low emission (∼ 3 Å) can be
explored in J-PAS. This is because ML algorithms are able to find much more
complex relations between features, so even though we do not have enough sen-
sitivity in the J-spectrum to distinguish galaxies with very low emission lines, the
algorithms are able to find other patterns in the data to make this possible.

As a proof of concept we applied our techniques to a sample of galaxies ob-
served by miniJPAS in the redshift range 0 < z < 0.35. This is done in chapter 4.
We showed that we are able to make a selection of emission line galaxies (ELG),
distinguish AGNs from star forming galaxies based on the [N ii]/Hα and [O iii]/Hβ
ratios, estimate the star formation rate (SFR) in galaxies throughout the flux of Hα,
recover the star formation main sequence of galaxies or constrain the evolution of
the cosmic star formation density up to redshift 0.35. Furthermore, our results de-
rived from the properties of the emission lines are in agreement with the products
obtained through the analysis of the stellar populations. For instance, we showed
that blue (red) galaxies in miniJPAS are composed of a younger (older) stellar
population and present stronger (weaker) emission lines.

Finally, in chapter 5 we addressed the problem of source classification in order
to distinguish between low redshift quasars, high redshift quasars, galaxies, and
stars. We found that the main source of confusion appears between low redshift
quasars and galaxies. This is because the host galaxy of low redshift quasars is
sometimes bright enough to contribute to the observed spectrum. Thus, these ob-
jects present mixing features and consequently they are more difficult to classify.
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We paid special attention to the reliability of the ‘probabilities’ yield by the al-
gorithms, something that is very often neglected in the community. In particular
we investigated the effect of data augmentation via hybridisation. This technique
consists in mixing the spectra from galaxies, quasars, and stars so as to gener-
ate hybrid objects with mixing probabilities. Unfortunately, we do not observe a
global improvement in the performance of the algorithms. As a matter of fact, we
observed that the ANN becomes under-confidence in their prediction. We believe
this is likely due to the intrinsic nature of astronomical observations where errors
are attached to observations, thus ‘hybridisation’ turns out to be a natural outcome
as the S/N of the sources decreases.

Although, the methods and techniques developed in this thesis are limited in
some aspects, this work lays the foundations on which to study better the proper-
ties of emission line objects in J-PAS. As as soon as J-PAS begins to observe the
sky, our methods will be tested in large sample of galaxies, thus it will be possible
to improve them even further.
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Chapter 1

Introduction

Due to the huge timescale of galaxy evolution, we cannot study the transformation
of individual objects during our lifetime. Instead, astronomers attempt to recon-
struct the scene by observing galaxies at different evolutionary epochs. Almost
one century ago the notion of galaxy was about to emerge. In 1925 Edwin Hubble
inferred for the first time the distance to several nebulae, as they were called at
the time, including the Andromeda Galaxy and the Triangulum Galaxy. The mea-
sured distances were too large compared to any other detected object within our
Milky Way, thus these new entities were more likely to be independent systems.
Latter on, the very same Hubble published the so-called Hubble sequence (Hubble
1926) and showed that galaxy morphology exhibits a wide variety of shapes and
forms. The stars that make up galaxies turned up to be arranged following a spiral
structure (S or SB), a elliptical shape (E) or even spread irregularly (Irr) across the
galaxy. In the end, Immanuel Kant’s idea postulated back in the XVII century of
nebulae being ‘island universes’ was not far from real.

During the decade of 1960 and 1970, astronomer begun to develop the first
models of stellar populations (Tinsley 1968; Searle et al. 1973; Tinsley & Gunn
1976). The idea was simple but revolutionary, the relation between the stellar
masses and its metal content with their luminosity across the spectrum can be
used to infer the global properties of galaxies. Certainly, galaxies composed of
very massive and young stars with very short lifetimes (∼ 10 Myr) would show
prominent emission in the blue part of the spectrum and therefore it would indi-
cate that the star formation is taking place at high rate. In the same vein, galaxies
where the star formation have been quenched should be redder because they would
be mainly populated by old low masses stars. Of course, the picture is much more
complex than that. The spectrum of galaxy might look red simply due to the pres-
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ence of interstellar dust around stars. Dusts grains are typically of the size of
∼ 0.3 µm and absorb preferentially the bluest wavelength in the spectrum. Fur-
thermore, more metal rich stars emit less radiation in the blue part of the spectrum
as compared with their metal poor counterparts.

The stellar evolutionary synthesis models for galaxies have been developed
substantially over the subsequent decades (see Conroy 2013, and references therein).
Although there is still room for improvement, our ability to recover the proper-
ties of galaxies depends not as much in the model but mainly on how well we
can observe their spectral energy distribution (SED). With high resolutions opti-
cal spectrographs one can know almost everything about a galaxy: the chemical
abundance, the electron density, the amount of interstellar dust, the age of the
stellar population, the pressure of the interstellar medium, the star formation rate,
whether or not there is an actively feeding supermassive black hole in the centre,
etc. Nevertheless, obtaining high resolution spectra from galaxies is very time
consuming. Consequently, it lowers the sample size under study and restrict the
observations to a small patch of the sky. The alternative comes at the cost of the
spectral resolution. With photometric filters huge and deep images of the cosmos
can be taken at a sets of particular wavelengths in the spectrum. But before going
any further into that, what are actually the key questions regarding the evolution of
galaxies than any astronomer would like to answer? Well, we know that galaxies
exhibit different morphologies and their properties have changed along the cos-
mic history. What make them to look so different? Is there a relation between
morphology and the youth of a galaxy? What are the responsible mechanisms
that quench the star formation? Is the environment surrounding galaxies playing
a major role?

In this chapter, I present the astrophysical context in which this PhD work is
immersed. In section 1.1 I give a brief summary of the most important observa-
tional evidence of galaxy proprieties, what they can tell us about galaxy evolu-
tion, and I discuss the role of large galaxy survey to explore the cosmos. Then, in
section 1.2 I present the Javalambre Physics of the Accelerating Universe Astro-
physical Survey (J-PAS, Benitez et al. 2014) and I discuss its particularities and
potentiality to study galaxy properties. In section 1.3 I review the use of the ma-
chine learning in astronom since some of these techniques have been used during
this thesis. Finally, in section 1.4 I briefly define the goals of this thesis and I
explain the contents of each chapter.
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1.1 Galaxies
Galaxies are gravitationally bound systems composed of stars, interstellar dust,
gas, and dark matter. According to the most accepted cosmological framework,
the so-called Lambda cold dark matter (Λ−CDM) model, the primordial density
fluctuation in the early universe are the building block of galaxies. In an expand-
ing universe, such over-dense regions grows with time by the successive fusion of
dark matter halos, increasing as well the baryonic matter over-densities. The first
generation of stars are thought to be form in these halos. Although they have not
been discovered yet, they are predicted to have masses in the range ∼ 10 − 1000
M⊙ (Hosokawa et al. 2016; Hirano et al. 2018). Their very short lifetime caused
by such huge masses make them to explode rapidly in very powerful supernova
spreading their metals through the Universe. The next generations of stars are
formed from the ashes of the first ones, and they would be more metal rich and
less massive. They would not have enough power to destroy their surrounding
dark matters halos during the explosions as supernova. Hence, it would make
possible for larger gravitational structures to form. Indeed, the variety of morpho-
logical galaxy shapes that we observe in the Universe today are linked to different
evolutionary stages.

1.1.1 Morphological classification
Galaxies were first classified according to their morphological structures by Hub-
ble. In his Real of the Nebulae (Hubble 1936) Hubble proposed the tuning-fork
diagram (Fig. 1.1) where manly two big families of galaxies can be distinguished:
spiral and elliptical galaxies. Spiral galaxies are composed of a central bulge and
a thin disk with spiral arms attached to the bulge. The rotation of the stars in the
disk prevent the gravitational collapse of the galaxy. These galaxies can be further
divide into subclasses (Sa to Sd) where Sd (Sa) are more disk-dominated (bulge-
dominated) with more (less) separated spiral arms. The surface-brightness profile
of such galaxies is well described with a Sérsic profile (Sérsic 1963):

I(r) = I0 exp
−bn

( r
re

)1/n

− 1
 (1.1)

where I0 is the central intensity, and r is a scale radius. The quantity bn is a
function of the Sérsic index n, and is chosen so that the effective radius (re) capture
half of the total luminosity of the galaxy. The surface brightness profile of a disk
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is thought to have an exponential profile (n=1) although this assumption might be
inappropriate at the galactic center (Breda et al. 2020). The bulges on the other
hand are better describe with a Vauconleurs profile (n=4, de Vaucouleurs 1948).

Elliptical galaxies do not appear to have a disk and the galaxy is supported
against gravitational collapse by the random motion of the stars. These galaxies
are well characterized by their ellipticity. The subfamily of elliptical (E0 to E6)
is the result of projection effect due to relative angle of the observer. The light
profile of elliptical galaxies resemble that of the bulge of spiral galaxies with a
similar Sérsic index (n = 4). Finally, irregular galaxies do not follow any clear
pattern or structure. At the time where the Hubble’s diagram was published it was
proposed that elliptical galaxies (also called early-type galaxies) would eventually
evolve to become spiral ones (late-type galaxies). Nowadays, although we still
do not fully understand which are the formation and/or evolution processes that
give rise to variety of spiral galaxy that we observe in the Universe, we do know
they are not the result of the evolution of elliptical galaxies. The important of
the Hubble sequences is the fact that morphology can actually be related to the
main physical properties of galaxies such as the colour, the amount of gas and
dust or the kinematic properties. Therefore, the physical processes that govern the
evolution of galaxies should intimately be related to their morphological type.

1.1.2 Color-mass diagram
Generally, spiral galaxies are blue, gas-rich, low-mass, metal-poor and present
high star formation activity. On the other hand, elliptical galaxies exhibit red
intrinsic colours, are more massive, metal-rich and contain very old population
of stars with quenched star formation (Strateva et al. 2001; Baldry et al. 2004;
Schawinski et al. 2014; Dı́az-Garcı́a et al. 2019a). They are part of the so-called
blue cloud and the red sequence, respectively. Strong evidences support the exis-
tence of these two populations beyond the nearby Universe suggesting that they
might already be in place even at z = 4 (Muzzin et al. 2013; Ilbert et al. 2013;
Tomczak et al. 2014). In Fig. 1.2 we observe such bi-modal distribution for a
sample of galaxies observed by SDSS (Schawinski et al. 2014) in the nearby uni-
verse. While the number density of red sequence galaxies has increased by a factor
of two from redshift one to the present day, the number density of blue galaxies
has remain roughly constant (Faber et al. 2007; Ilbert et al. 2010; Pozzetti et al.
2010). This fact has strong implications because it is suggesting that blue galaxies
has been migrating from the blue cloud to the red sequence at least in the last 8
Gyr by process in which the star formation (SF) is suppressed (see eg. Peng et al.
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Figure 1.1: Hubble’s morphological galaxy classification diagram. Elliptical galaxies are shown
on the left (early-type). Spiral galaxies are placed on the right (late-type). An example of an
irregular galaxy is also shown on the far right.

2010; Darvish et al. 2016).
Between the red sequence and the blue cloud there is a third population of

galaxies with intermediate colors and masses, the so-called Green valley. Galax-
ies within this group are often interpret as galaxies in transition. Nevertheless, this
group is more heterogeneous that it might seem in the first place. The distribution
of late-type galaxies in a color-mass diagram is more extend and disperse with re-
spect to early-type galaxies. In other words, we find many more late-type galaxies
with red and green intrinsic colors than early-type galaxies with blue and green
colors. The quenching mechanism that are taken place are operating at different
timescales and therefore they should be different. For instance, Schawinski et al.
(2014) studied a sample of galaxies from the Sloan Digital Sky Survey (SDSS,
York et al. 2000) in the nearby Universe and estimate that late-type galaxies takes
several Gyr to quench the star formation while early-type galaxies should exhaust
their gas reservoir almost instantaneously (∼ 100 Myr). Similarly, Noirot et al.
(2022) investigated a sample of galaxies at intermediate redshift (1 < z < 1.8)
and found different evolutionary tracks from the blue cloud to the red sequence:
one population in a fast mode with a star formation rate (SFR) e-folding time (τ)
lower that 0.5 Gyr, and a slow mode with τ > 1.5 Gyr. Which are the mechanisms
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Figure 1.2: Colour-mass diagram for a sample of galaxies observed by SDSS. In the top left, all
galaxies are shown, whereas on the right, only early-type (top) and late-type galaxies (bottom) are
shown; green lines show the green valley defined by the all-galaxy diagram. The figure is taken
from Schawinski et al. (2014).
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that are turning off the stellar formation in galaxies? Beside, why some galaxies
underwent such a sharp transitions and other evolve slowly across cosmic time?
We will discuss some of the proposed quenching mechanism in section 1.1.6 but
firstly, how can we actually measure the star formation in galaxies?

1.1.3 Tracing the star formation rate
Hydrogen is the most abundant elements in the Universe. It is found in the in-
terstellar medium (ISM) in forms of giant molecular clouds (H2) with masses
∼ 105−6 M⊙, diameters ∼ 50 pc, average densities of < nH2 > ∼ 102 cm−3, and
very low temperature (T = 10 K Williams et al. 2000). They are in hydrostatic
equilibrium so the gas pressure is in balance with the gravitational pull. How-
ever, disruptive events such as the explosion of supernovae or the collapse of two
molecular clouds can provoke instabilities which trigger the gravitational collapse
of certain regions within the cloud and therefore the birth of new stars takes places.
In theory, the initial mass function (IMF), i.e. the relative number of stars at differ-
ent masses that are created in a SF event, depends on the initial conditions of the
molecular clouds. For high temperature or low metallicities, the gas pressure in-
creases, thus more massive gas clouds are required to defeat the radiation pressure
which leads eventually to the creation of more massive stars. This is particularly
important in the formation of the first stars because the temperature was higher
and metals were not presence yet. However, studies of local young and old clus-
ters and associations suggest that the vast majority of the SF events were drawn
from a ‘universal’ IMF even though the exact shape is yet to be known (Bastian
et al. 2010). The estimation of the SFR in galaxies lies on the previous statement
and strong variations of the IMF from galaxy to galaxy or within different regions
in a galaxies might affect significantly our predictions.

The most massive stars (10-100 M⊙) in a galaxy are also the ones with the
shortest lifetimes (∼ 10 Myr) and the highest luminosity (∼ 106−7 L⊙). Thus,
in order to measure the ‘present’ SFR of a galaxy one only needs to count how
many of those stars are shining, the IMF will tell us the rest. The ultraviolet
(UV) emission in a galaxy spectrum is fully dominated by the presence of young
stars. Hence, the SFR can be calibrated by measuring the direct or indirect effect
of such radiation (Kennicutt 1998). In the UV, the wavelength window between
1250 and 2500 Å is optimal because is sufficiently far away form Lyα forest but
close enough to minimize the contamination from older stellar population, so it is
sensitive to the light of stars younger than 100 Myr. Fortunately for us, the earth
atmosphere absorb the UV radiation. Consequently, direct observations of the UV
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emission are only available from the space such as those performed by the Galaxy
Evolution Explorer (GALEX, Martin et al. 2005). Furthermore, the interstellar
dust grains surrounding stars absorb preferentially the shortest wavelength in the
spectrum and re-radiate this energy to the infrared (IR, λ ∼ 10 − 300 µm). Thus,
the UV SFR calibrator need to be corrected form the dust extinction which can
reach up to ∼ 2.5 magnitudes (Burgarella et al. 2013; Cucciati et al. 2012). To
alleviate this problem some authors have proposed hybrid or composite calibrators
(Hao et al. 2011; Catalán-Torrecilla et al. 2015; Boquien et al. 2016). The SFR is
then a function of the observed luminosities in the UV and the IR. For instance,
Catalán-Torrecilla et al. (2015) found that SFR can be derived as:

SFR(M⊙yr−1) = 4.6 × 10−44[L(FUVobs) + 4.08 × L(22µm)] (1.2)

where L(FUVobs), and L(22µm) are the observed luminosity measured by GALEX,
and the Wide-field Infrared Survey Explorer (WISE, Wright et al. 2010) at 1516 Å,
and 22 µm, respectively.

Another approach is to look at nebular emission lines. Photons with energies
above 13.6 eV are able to ionize the neutral hydrogen embedded within molecu-
lar clouds. Then, the hydrogen atoms recombine to excited levels, and the new
excited atoms decay to lower and lower levels by radiative transitions, eventually
reaching the ground level. During this process, line photons are emitted and orig-
inate the Balmer lines observed in all gaseous nebulae. The transitions between
the n = 3 and n = 2 quantum states create the Hα emission line, i.e. photons with
λ = 6562.8 Å. Consequently, the total flux of Hα line is directly related to the
presence of massive young stars (< 20 Myr) and therefore with the ongoing SFR
(Kennicutt 1998):

SFR(M⊙yr−1) = 5.5 × 10−42L(Hαcorr) (1.3)

where a Kroupa (2001) IMF, and solar metallicity are assumed. Although the flux
of Hα is less affected by dust extinction (A(Hα) ∼ 0.2 − 1.5 mag, Garn & Best
2010; Sobral et al. 2016; Duarte Puertas et al. 2017), it is necessary to take it into
account in order to obtain reliable SFR. If the Hβ emission line is also measured,
the dust extinction can be estimated from the Balmer decrement (Domı́nguez et al.
2013). Those are some of the most important direct methods to derive the present
SFR in star-forming galaxies. They are only valid as as long as the star formation
remain constant during the time where calibrators are sensitive.

Finally, indirect methods include fitting the SED assuming either a parametric
or a non-parametric star formation history (SFH) (López Fernández et al. 2018;
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Asari et al. 2007). In principle, this is the most robust approach since it combines
the information across the electromagnetic spectrum to retrieve the galaxy prop-
erties. However, the derived SFH depends on the reliability of models and it can
be degenerated with other model outputs. If possible, one should employ different
SFR calibrators and check they are consistent between each other.

1.1.4 Optical emission line diagnostic
The conversion from the Hα to SFR is only valid as long as the main ioniza-
tion mechanism is dominated by the radiation of young stars. Nevertheless, the
presence of active galaxy nucleus (AGN) or shocks waves as a results of massive
stellar winds, gas collisions due to mergers, jets, etc. are also able to ionise the
interstellar gas. Therefore, determining the main ionization mechanism of galax-
ies is essential not only to recover SFRs but also to understand the processes that
are taking place within galaxies and the role they play in their evolution. In ad-
dition to the Balmer series, collisionally excited emission lines (CEL) are very
frequent in the spectra of the ionized gas under astrophysical conditions. Col-
lision between thermal electrons and ions such as O+, O++, and N+ are able to
excite their low-lying energy levels even though they are much less abundant than
H or He. This is because their excitation potential are of the order of the kinetic
energy of the electrons in the nebula. At low densities (Ne < 104 cm−3) collisional
de-excitation is much less probable than the transition probabilities to the ground
state via spontaneous radioactive decay, thus every excitation leads to emission of
a photon and consequently CEL such as [O ii] λλ3727, 3729, [O iii] λλ4959, 5007,
[N ii] λλ6548, 6584 or the [S ii] λλ6717, 6731 doublets among others are present
in the spectrum of a nebulae.

Line optical ratios depend on physical quantities such as the metallicity of the
ionized gas, the ISM pressure, the hardness of the ionizing radiation field or the
ionization parameter. Baldwin et al. (1981) proposed to use the ratios of [O iii]
λ5007/Hβ, [N ii] λ6584/Hα, and [O ii] λ6300/Hα in order to distinguish among
normal H ii regions, planetary nebulae or objects photoionized by a harder radia-
tion field. The BPT diagrams, as they are known today, define a star-forming se-
quence where galaxies evolve from low mass and low metallicity to high mass and
high metallicity (Left wing on Fig. 1.3). Kewley et al. (2001, Ke01) used a combi-
nation of stellar population synthesis, photoionization, and shock models to derive
an upper limit for a maximum star-formation in this diagram. Galaxies above this
line cannot be ionized by only star formation events and must contain ionization
from AGN or shock excitation. Latter on, Kauffmann et al. (2003a, Ka03) studied
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a complete sample of galaxies from the SDSS survery and shifted the Ke01 line
to provide a more accurate demarcation. Objects between these two curves might
have contribution from several ionization mechanisms, they are often called com-
posite objects. The AGN branch in the BPT has also been dived empirically by
Schawinski et al. (2007) to define a region populated by Low Ionization Nuclear
Emission Regions (LINER, Heckman 1987) and pure AGN. LINER emission was
associated with Low Luminosity AGN with a harder ionizing radiation field and
a lower ionization parameter (Kewley et al. 2006). Nevertheless, shocks by jets
or other outflows may be needed to power the emission of LINERs (Molina et al.
2018). Furthermore, galaxies with very weak emission lines that are in the process
of quenching might cross the Ka03 line and finally end up in the LINER region.
The ionizaiton mechanism of these galaxies might be caused by post-AGB stars
(Cid Fernandes et al. 2011; Hsieh et al. 2017). On the top of that, the position of
AGN in the BPT diagram might change at high redshift where metals were even
less abundant (Kewley et al. 2013). In essence, the BPT diagram in its most pop-
ular representation is a very useful tool to select a sample of star-forming galaxies
in the local Universe but it might not be the ideal diagnostic to differentiate be-
tween other ionization mechanisms. This is reason why combinations of other
line ratios that includes the UV have been proposed (Kewley et al. 2019).

1.1.5 The main sequence of star formation
The SFR for star-forming galaxies correlates almost linearly with their stellar
mass (SFR ∼ Mα). This relation, which is referred to as the star formation main
sequence (SFMS), has been proven to be true regardless the star formation tracer
used (see e.g. Oliver et al. 2010; Boogaard et al. 2018; Shin et al. 2021). Although
the exact value of the slope of the SFMS (α) is already under debate, most of the
works agree that a sub-linear slope (0.6 < α < 1) is more likely to govern the rela-
tion between the SFR and the stellar mass (see the compilation of works in Spea-
gle et al. 2014). This implies that the SFR efficiency or the specific star formation
rate (sSFR = SFR/M∗) decreases as galaxies grow in mass. Furthermore, some
authors have found that the relation between the SFR and the stellar mass turns
over at mass of 1010 M⊙ from which the slope becomes flatter (α ∼ 0.3,Whitaker
et al. 2014; Lee et al. 2015; Schreiber et al. 2015; Tomczak et al. 2016). Nev-
ertheless, such flattening might be the result of different effects, the star-forming
selection criteria, the accuracy to determine the SFR, the selection bias of the sur-
vey, etc. Determining the exact shape of the SFMS is crucial to understand the
mass assembly history of galaxies. In fact, the relatively small scatter found in
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Figure 1.3: BPT diagram for a sample of SDSS galaxies. Figure taken from Duarte Puertas
et al. (2017).
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star-forming galaxies around the SFMS (σ ∼ 0.15−0.5 dex, Whitaker et al. 2012;
Salmi et al. 2012; Speagle et al. 2014; Schreiber et al. 2015; Ilbert et al. 2015) has
been interpreted as a sign that galaxies undergo preferentially a secular evolution
rather than violent episodes of star-formation. We would expect strong variations
in the SFR for star-forming galaxies if mergers were the main driver of galaxy
evolution.

Observations of galaxies at high redshifts prove that the SFMS relation holds
true at early epochs with a global increase of the SFR (Oliver et al. 2010; Rodighiero
et al. 2011; Karim et al. 2011; Whitaker et al. 2012; Ilbert et al. 2015; Schreiber
et al. 2015). Therefore, the SFR can be parameterized as function of the mass
and the redshift (e.g. SFR ∼ Mα(1 + z)β) which allow us to set constrains on the
average SFHs of galaxies. For instance Ciesla et al. (2017) used the best-fit found
by Schreiber et al. (2015) to recover the evolutionary path in the SFMS for dif-
ferent mass seeds at redshift 5 and estimated the most realistic parametrization
of the SFH. In terms of the cosmic star formation rate density (ρS FR), the Uni-
verse reached a peak at approximately 3.5 Gyr after the Big Bang (z ∼ 2) and
it has been decreasing exponentially since then, with an e-folding timescale of
3.9 Gyr (Madau & Dickinson 2014). Unfortunately, only the brightest and more
massive galaxies can be observed at high redshift (see Fig. 1.4) which reduce our
ability to recover the SFR-M relation at early time. Alternatively, reconstruction
of the SFHs can be done thorough the records of present stars in nearby galax-
ies, the so-called fossil record method. Studies of well resolved galaxies in the
local Universe with surveys such as the Calar Alto Legacy Integral Field Area
(CALIFA, Sánchez et al. 2012) or the Mapping Nearby Galaxies at Apache Point
Observatory (MaNGA, Bundy 2015) have confirmed the shape of the ρS FR (López
Fernández et al. 2018; Sánchez et al. 2019). The comparison between these two
method can be seen in Fig. 1.5.

1.1.6 Galaxy quenching
Although the mechanisms that quench the star formation in galaxies are not yet
fully understood, two main scenarios are invoked: mass quenching and environ-
mental quenching. Both galaxy mass and the environment in which galaxies re-
side have been proven to play a key role in the cessation of star formation activity
(Peng et al. 2010; Kovač et al. 2010; Paccagnella et al. 2016; Gu et al. 2021).
Figure 1.6 is quite illustrative in this regard. Peng et al. (2010) who studied the
relation between mass, SFR, and environment in a sample of SDSS and zCOS-
MOS (Lilly et al. 2007) galaxies up to redhsift one, showed that the fraction of
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Figure 1.4: Star formation main sequence as a function of redshift derived from deepest Her-
schel images. Light gray curves show the best-fit relation to the main sequence. Figure taken from
Schreiber et al. (2015).
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Figure 1.5: Cosmic evolution of the SFR density (ρS FR) obtained with a sample of MaNGA
(black solid stars, Sánchez et al. 2019) and CALIFA (black dotted points, López Fernández et al.
2018) galaxies using the fossil record method. The ρS FR is broken into star-forming (blue solid
squares) and quiescent galaxies (red solid squares) for the MaNGA sample. The shadowed regions
correspond to the star-formation rate densities derived from direct observations based on cosmo-
logical surveys compiled by Madau & Dickinson (2014). Figure taken from Sánchez et al. (2019).

red galaxies increases either with galaxy mass or the environmental density. In
other words, galaxies with masses lower than 1010 M⊙ are actively forming stars
unless they are found in high density environment. On the other hand, the most
massive galaxies ( ≥ 1011 M⊙) are always quenched no matter they are found in
the field or within a galaxy cluster.

Any processes that aim to characterize the quenching of star formation should
propose an explanation of why the cold gas reservoir is depleted. Locally, at
galaxy level, there are evidences that suggest that AGN might be responsible of
heating the gas and eventually shutting down the star formation. For instance,
Penny et al. (2018) studied a sample of low mass galaxies (≤ 109 M⊙) with the
MaNGA survey and found that among those galaxies where the line ratios at the
galactic center are compatible with the presence of an AGN, the gas was not in
dynamical equilibrium. Besides, Cicone et al. (2014) studied the massive molec-
ular outflows traced by the carbon monoxide emission lines in a sample of nearby
galaxies and found that galaxies hosting an AGN are indeed able to increase the
outflow rate and reduce the depletion time scale of gas consumption. From a the-
oretical point of view, in order to reproduce the observed fractions of quenched
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Figure 1.6: Red fraction of a sample of SDSS and zCOSMOS galaxies between 0 < z < 1 as
functions of stellar mass and environment. Figure taken from Peng et al. (2010).

galaxies and color distributions some form of AGN feedback is required (Wein-
berger et al. 2018; Donnari et al. 2021). Rather than the AGN feedback, other
mechanism have been proposed, that includes the supernova feedback and stellar
winds (Cantalupo 2010; Chevance et al. 2022). Most likely, mass quenching is a
process driven by several quenching mechanism whose relative importance might
even vary as galaxies grow in mass.

In very dense environment, such as those found in groups or clusters, galax-
ies moving through the intercluster medium experience a pressure that depends
on the intracluster gas density and the speed of the galaxy. Such pressure can
eventually strip out part of the gas that was gravitationally bound to the galaxy.
This phenomenon is know as ram pressure stripping (Boselli et al. 2022) and it
has been observed in many galaxies which exhibit a ‘jellyfish’ shape with tenta-
cles of gas that appear to be stripped from the main body of the galaxy (Ebeling
et al. 2014; Poggianti et al. 2016, 2017). Furthermore, it has also been proposed
that the gas supply might be suppressed if galaxies become satellites of a larger
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halo, thus the formation of new stars is stopped as the available gas is consumed
through a process called ‘starvation’ or ‘strangulation’. For instance, Peng et al.
(2015) measure the stellar metallicity in quiescent and star-forming galaxies ob-
served by SDSS. The authors argue that ‘starvation’ is the dominant quenching
mechanism since stellar metallicity in quiescent galaxies increased significantly
respect to star-forming ones at a given mass. Such metal enrichment would not
be expected if the quenching were driven by processes where the gas is instead
removed abruptly from the galaxy. However, the recovered distribution of stellar
metallicity for both star-forming and quiescent galaxies reveal a strong variation
from the mean values which suggest that actually other processes might also be
in place. In addition to ramp pressure stripping and starvation, other processes
occurring in dense environment include tidal interactions (Chung et al. 2007) and
galaxy harassment (Moore et al. 1996). Finally, galaxy merger, since it is a very
disruptive event, is able to stop the formation of new stars even though galaxies
might undergo a star-burst phase (t ∼ 10−100 Myr) in the fist stages of the merger
process (see e.g. Cortijo-Ferrero et al. 2017).

In conclusion, galaxy quenching is a very complex process produced by many
different phenomena that can act even simultaneously. Certainly, one of the major
challenges in astronomy in the upcoming years will be to determine at which con-
ditions the mentioned mechanisms are more relevant to explain the cessation of
the star formation in galaxies. In this regard, analyzing large and unbias samples
of galaxies will be crucial to push the envelope.

1.1.7 Large galaxy surveys
Large galaxy surveys are conducted by telescopes either from the ground (e.g.
GTC, VLT, VISTA) or from the space (e.g. HST, JWST). Certainly, the starting
point to design the strategy of any galaxy survey is to have a clear idea of what
are the scientific questions that want to be addressed, the measurements that will
be performed, and the desired accuracy. Ideally, one would like to map the whole
sky with the highest possible precision and reach the fainter galaxies in the Uni-
verse. Unfortunately, the finite amount of funding assigned to scientific projects
together with our current technological limitations make this dream impossible.
Therefore, galaxy surveys follow a wedding-cake approach, where either we ob-
serve huge but shallow areas of the sky, large semi-deep fields or small very deep
fields. For instance, the Two Micron All-Sky Survey (2MASS, Skrutskie et al.
2006) mapped the whole sky in three IR phtometric bands, the J, H, and Ks bands
(1.25, 1.65, and 2.17 µm) detecting 471 million sources. However, the depth of



CHAPTER 1. INTRODUCTION 31

the survey in J band reaches only ∼ 15 mag. On the other hand, the VISTA Deep
Extragalactic Observations survey (VIDEO, Jarvis et al. 2013) was able to detect
galaxies at redshift 4 with a magnitude depth of 24.4 magnitude in the same band.
Nevertheless, only 12 deg2 of the southern sky were mapped. While 2MASS pro-
vided large samples of galaxies in the IR, the VIDEO survey detected objects at
very high redshift. The science goals of these surveys are different but they com-
plement each other. Definitely, the depth and the collected area of the survey is
one the most important aspect but the wedding-cake comes in a variety of flavours
as observations are carried out at different wavelengths. That includes observa-
tions in Gamma rays, X-ray, UV, optical, IR, microwaves or radio. Depending
on the physical phenomenon we are interested in, some portion of the electro-
magnetic spectrum might be more desirable. For example, the light emitted by
the stellar population within galaxies is usually analyzed in the optical and near-
infrared wavelengths while the structure of the neutral hydrogen is observed at 21
cm. Nevertheless, other astrophysical phenomena, for example the AGN activity,
might need a multi-wavelength analysis in order to trace the diversity of physical
processes that take place around SMBH.

Moreover, astronomical surveys can be divided in two big categories depend-
ing on whether spectroscopy or photometry is used. On the one hand, photomet-
ric surveys observe the sky with a set of filters obtaining high resolution images
at specific wavelengths. For instance, in Fig. 1.7 we show an example of how
M101 looks like with photometric bands that go from the UV to the NIR. On the
other hand, spectroscopic surveys are able to observe the SED with much more
detail as they can measure the energy of photons in a continuous range. Cer-
tainly, SDSS is one of most successful spectroscopic galaxy surveys up-to-date. It
observed millions of galaxy spectra in the nearby universe (z ∼ 0.1), but also col-
lected the biggest quasar census with more 700 000 objects. Alternatively, other
spectroscopy surveys performed deeper observations such as the DEEP2 Galaxy
Redshift Survey (Newman et al. 2013) that obtained spectra for nearly 53,000
galaxies being complete up to redshift 1 in 2.8 deg2 or the VIMOS Ultra Deep
Survey (Le Fèvre et al. 2005) that observed the COSMOS field and was able to
take galaxy spectra in the redshift range 2 < z < 4 with the HST. One of the
drawback of these surveys is that they are limited to one spectrum per galaxy, and
very often they lose a significant fraction of the light, specially for nearby resolved
galaxies. For example, SDSS used a fiber of 3 arcsec leading to aperture effects
that might bias our scientific analysis (Duarte Puertas et al. 2017). This problem
is alleviated with the use of Integral Field Spectroscopy (IFS), a technique that
uses integral field unit (IFU) to take spectra from individual regions within the
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galaxy. Past and on-going IFU surveys includes Atlas3D (Cappellari et al. 2011),
CALIFA (Sánchez et al. 2012), MaNGA (Bundy 2015), MUSE-WISE (Urrutia
et al. 2019) or SAMI (Croom et al. 2021) to name but a few. Without going into
greater detail, the IFUs utilized by these surveys differ in their wavelength range,
their spectral and spacial resolution and their field of view (FoV) coverage. This
fact together with the galaxy sample selection of each survey allow us to study
different aspects of well-resolved galaxies in the nearby universe. However, they
still have important limitations. For instance, they cannot trace the environment
of nearby galaxies because they observe segregate areas of the sky. Furthermore,
they suffer from aperture selection effects either because they are not able to cap-
ture the outskirt regions of galaxies or either because they exclude galaxies with
angular sizes that do not fit within the FoV of the IFUs. In contrast, narrowband
photometric surveys such as SHARDS (Pérez-González et al. 2013; Lumbreras-
Calle et al. 2019), ALHAMBRA (Moles et al. 2008; Molino et al. 2014) or the
Javalambre Photometric Local Universe Survey (J-PLUS, Cenarro et al. 2019) do
not experience these effects and they are able to detect fainter objects than their
spectroscopic counterparts under the same observational conditions. In this re-
gard, Fig. 1.8 is very informative. The FoV of the T80Cam (Marin-Franch et al.
2015) used in the observations of J-PLUS is compared with several IFUs.

Upcoming surveys will observe the cosmos even with more filters improving
their ability to describe the SED of galaxies. This is the case of J-PAS, which has
the most powerful photo-metric system in terms of wavelength coverage up-to-
date. Let us review now the details of J-PAS.

1.2 Javalambre Physics of the Accelerating Universe
Astrophysical Survey

In this section, I describe the particularities of J-PAS data. For that, I begin in
section 1.2.1 by introducing the facilities where J-PAS will be carried out. Then,
in section 1.2.2 I explain the characteristics of J-PAS, i.e. the JPCam and the J-
PAS photo-metric filter system. Finally, in section 1.2.3 I discuss the scientific
potential of J-PAS, specially for galaxy evolution studies.
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Figure 1.7: Multi-wavelength view of M101. Each image represents the flux measured by J-
PLUS with broad band filters, from UV to NIR. A composite image of the galaxy is shown in the
center.

Figure 1.8: Left panel: colour composite image of the SVD pointing ‘1500041-Arp313’, il-
lustrating the 2 deg2 FoV of T80Cam. Right panel: 10′ × 10′ zoom covering the Arp313 triplet,
where the galaxies NGC3991, NGC3994, and NGC3995 are visible. The FoV of several IFUs
is displayed: MEGARA (Gil de Paz et al. 2016), SAMI (Croom et al. 2021), MaNGA (Bundy
2015), SAURON (Bacon et al. 2001), MUSE (Bacon et al. 2010) and PMAS/PPAK (Roth et al.
2005; Sánchez et al. 2012). Figure taken from Logroño-Garcı́a et al. (2019).
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Figure 1.9: View of the Observatorio Astrofı́sico de Javalambre in the Pico del Buitre, in the
Sierra de Javalambre, Teruel (Spain). The image of the JST/T250 telescope is attached on the top
left-hand side of the image. Image provided by CEFCA.

1.2.1 The Observatorio Astrofı́sico de Javalambre
The Observatorio Astrofı́sico de Javalambre (OAJ) is a Spanish astronomical fa-
cility designed to perform large sky photometric surveys. Two professional tele-
scopes with large FoV are the main infrastructures at the OAJ, the 2.5m Javalam-
bre Survey Telescope (JST250, Cenarro et al. 2019) and the 80cm Javalambre
Auxiliary Survey Telescope (JAST/T80, Marin-Franch et al. 2015). The OAJ was
developed by the Centro de Estudios de Fı́sica del Cosmos de Aragón (CEFCA)
who is responsible of its management and the exploitation of the data products
obtained from the surveys conducted at the telescopes. The observatory is located
at the Pico del Buitre (see Fig. 1.9), in the Sierra de Javalambre, Teruel, (Spain),
1957 m above the sea level. The site meets exceptional conditions in terms of the
night sky surface brightness (V ∼ 22.1 mag arcsec −2), the number of clear nights,
the median seeing (0.71 arcsec in V band) the transparency or the photometric
stability (Moles et al. 2010).

1.2.2 The JPCam and the J-PAS filter system
The Javalambre Panoramic Camera (JPcam, Cenarro et al. 2019; Taylor et al.
2014) is the main scientific instrument of the OAJ installed in the JST/T250 tele-
scope in order to conduct the J-PAS survey. The JPCam is a camera of 1.2 Gpixel
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with a plate scale of 0.46 arcsec pix−1 and it will cover an area of 4.6 deg2 with a
14-CCD mosaic. That means that the JPCam can observe in one single pointing
the whole extension of Andromeda galaxy as it shown in Fig. 1.10.

In Fig. 1.11 we show J-PAS fitler system, which is composed of 56 bands of
which 54 are narrowband (NB) filters in the optical range, and two are medium-
band filters, one in the near-UV and another in the near-infrared. NB filters are
separated by 100 Å and have a width of ∼ 145 Å, which provides a pseudo-
spectrum of an equivalent resolving power of R ∼ 60. However, a J-sepctrum,
as we often called it, differs for a low-resolution spectrum in two senses. Firstly,
there is overlapping between filters since their widths are greater than their wave-
length separation. Therefore, photons with the same energy can contribute to total
flux of two continuous filters. Consequently, a narrow emission line might look
broader in the J-spectrum than what it would be appear from the observations
taken with an actual R ∼ 60 spectrometer. Secondly, the sky images are not col-
lected with all filters at the same time, which imply having different observational
conditions for each tray of filters. Concretely, each tray contains 14 NB filters (see
Fig. 1.10). These are important details to keep in mind in order to understand the
nature of J-PAS data.

1.2.3 Galaxy evolution studies with J-PAS

The special design of the J-PAS filter system together with its large area coverage
(∼ 8000 deg2) makes J-PAS survey unique and very versatile. Certainly, J-PAS
will be competitive across many different astrophysical fields, from the study of
very metal-pool stars, globular clusters, galactic stellar streams, withe drafts to
the evolution of galaxies or large scale structure through the measurement the of
Baryonic acoustic oscillations (Benitez et al. 2014; Bonoli et al. 2021).

When it comes to galaxies, J-PAS will be in a extraordinary position to study
them, both in the nearby universe and since z ∼ 1. As a low spectral resolution
IFU, J-PAS will observe thousands of spatially resolved galaxies covering a large
range of masses and morphological types. We will be able to analyse them in di-
verse environments, from galaxies in voids to galaxies in groups and clusters. Def-
initely, the unprecedented spatial resolution of its NB filters (∼ 0.46 arcsec/pixel1)
make possible to resolve the stellar populations and derive the age-metallicity gra-
dients at different scales. For instance, galaxies in the Local Volume such as M101

1The actual pixel size of JPCam is 0.23 arcsec/pixel, but observations will be sample in pair of
pixels for NB filters
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Figure 1.10: Andromeda Galaxy (M31). Technical First Light Image taken by the JPCam in the
JST/T250 on June 29, 2020. 14 CCD detectors are arranged in the filter tray. Image provided by
CEFCA.

Figure 1.11: Transmission curves of the J-PAS filter system. Figure taken from (Bonoli et al.
2021).
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can be resolved at ∼ 18 pc, while more distance galaxies (z < 0.1) a scale of 2 kpc
can be reached. With such resolution different components and subcomponents,
the disk, the spiral arms, bars, rings, or bulges can be treated separately, shed-
ding light to the build-up history of galaxy sub-structures. Furthermore, the radial
migrations of gas and stars across the disk might be identified systematically by
looking at their footprints in the age-metallicity relation. In contrast with modern
IFU surveys such as CALIFA or MaNGA, J-PAS will be able to reach the low
surface brightness external parts of disks beyond what the FoV of the IFU can
capture. What is more, it will provide a much larger sample of galaxies.

With the J-PAS photometric system the main spectral features in the optical
range of galaxies, quasars and stars can be captured with enough precision that
it allows us to identify and characterize them as function of cosmic time. For in-
stance, nebular emission lines such as Hα or [O ii] will be observed in continuous
range of redshift, all the way from 0 to z ∼ 0.35, and z ∼ 1, respectively. Similarly,
the Lyα emission line of quasars will be detected from redshift 2.1 up to redshift
4. This is an important difference compared to other surveys using narrow band
filters such as HiZELS (Matthee et al. 2017) or LAGER (Khostovan et al. 2020)
where emission lines can only be detected in a set of redshift windows.

Although J-PAS has not started observations yet, the first scientific operations
at the JST250 were conducted with JPAS-Pathfinder camera, an instruments de-
signed to test the telescope performance and demonstrate to the scientific commu-
nity the capability of J-PAS to give insights in a variety of astronomical fields. A
detail description of this survey, named the miniJPAS survey, together with some
of the most relevant results regarding galaxy evolution are described in chapter 2.

1.3 Machine learning in astronomy
Over the last two decades astronomical data have underwent an enormous growth
both in size and complexity. From the success of past surveys such as SDSS,
MaNGA, CALIFA or GALEX, the new generation of surveys such as the Dark
Energy Spectroscopic Instrument (DESI, Levi et al. 2013), the Large Synoptic
Survey Telescope (LSST, Ivezić et al. 2019) the Square Kilometer Array (SKA,
Dewdney et al. 2009), J-PAS or the James Webb Space Telescope (Gardner et al.
2006) among others, will observe of the order of millions or even billions of ob-
jects. Such unprecedented amount of data will offer astronomers the opportunity
and the need to apply the most sophisticated machine learning (ML) algorithms
in order to fully exploit its content scientifically.



1.3. Machine learning in astronomy 38

ML is a brunch of artificial intelligence where models or algorithms ‘learn’ to
perform particular set of tasks on sample data often called the trained set. Then,
they are tested on an unseen data refereed to as the test set. The power of ML
algorithms is precisely the ability to find patterns in the data without making any
empirical or theoretical assumptions on how different observable, or features as
they are called within the ML community, are related. Broadly speaking, ML
algorithms can be divided in three main categories: supervised learning, unsu-
pervised learning, and reinforcement learning. In this section I will only discuss
supervised and unsupervised ML learning algorithms which have been used more
frequently within the astronomical field. I will pay more attention to their use
rather than the mathematical framework behind the algorithms. For a more com-
prehensive and detail review I recommend to read Baron (2019).

1.3.1 Supervised ML learning
Supervised machine learning algorithms are able to find the relation between fea-
tures in an arbitrary high dimensional space to a given set of outputs which have
been previously labeled by humans. For instance, let us suppose we would like to
distinguish between images of different species of birds. Bird images need to be
classified or labeled in the first place by humans so the algorithm can be trained
in a supervised manner. In such a case, the inputs or features are represented by
matrices (images), perhaps with different colors or channels. Then, after seeing
many examples, the algorithm has to find the map that connect a set of matrices
to a set of integers which represent each one of the bird species. For simple prob-
lems, such function might even be analytical so one does not need ML algorithms
to perform a classification task. However, most of the time the mapping function
is so complex that only via ML we are able to address the problem. Instead of
classifying bird images we might also want to determine the sizes of their wings
where the outputs are no longer discrete but continuous. In this case we refer to it
as a regression task.

There is a zoo of ML algorithms that can actually success in doing these tasks,
the literature is extended (see e.g. Géron 2019, for a comprehensive overview) and
depending on the problem one should consider to employ different ones. Nonethe-
less, it is worthy to briefly describe two of the big families of ML algorithms:
artificial neural networks (ANN) and decision tree (DT) based algorithms. ANN
are based on a collection of neurons arranged in a set of layers. Each neuron is
connected to all the neurons in the continuous layers by a matrix of weights and
bias. During the process of training neurons are switched on and off according
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to an activation function. This is key ingredient of ANN that allows to find an
approximation of the mapping function, which is often highly non-linear (Hornik
et al. 1989). In order to find the best combinations of weights and bias, the ANNs
minimize a certain loss function that compare the predicted values with the actual
ones. Some ANNs include convolutional layers which employ convolutional ker-
nels to extract meaningful features that are afterwards fed into the fully connected
layers. They are called convolutional neural networks (CNN) and they have be-
come the gold standard for classifying images in large datasets.

DT algorithms makes predictions by splitting the data set in the feature space
in an iterative process until data cannot longer be split. Each decision boundary
is encoded in a node of the tree. In order to find the optimal strategy that lead to
the best classification, the algorithm evaluate the information gain of splitting the
data using each one of the features. Random forest (RF) and Gradient Boosting
are some of the most used DT algorithms by the ML community.

Certainly, one of most common used of supervised ML algorithm in astron-
omy is the estimation of photometric redshifts. In the pioneering work of Collister
& Lahav (2004) the authors trained an ANN to predict the redshift of galaxies with
SDSS phtometric bands. They proved that an ANN was competitive respect to tra-
ditional template fitting methods. Nowadays, in almost all photometric surveys,
ML has been employed to estimate photometric redshift. More sophisticated algo-
rithms are also able to predict the probability density function (PDF, Graham et al.
2018; Ramachandra et al. 2022) which is particular important given the intrinsic
degeneracies of the mapping function. Other works employed CNNs trained on
photometric images, rather than integrated fluxes or magnitudes, which are spe-
cially powerful to extract the spatially resolved information of galaxies (Pasquet
et al. 2019; Zhou et al. 2022).

Source classification is another important application of supervised ML algo-
rithm in astronomy, specially in the context of large astronomical surveys where
we do not only need accurate identification of astronomical objects but also meth-
ods that are computationally faster. Some works explored the classification be-
tween point-like and extended sources (see e.g. Burke et al. 2019; Baqui et al.
2021) or between galaxies, stars and quasars (Logan & Fotopoulou 2020; Xiao-
Qing & Jin-Meng 2021; He et al. 2021). Others focus on the classification of
galaxies according to their morphological types (Domı́nguez Sánchez et al. 2018;
Cheng et al. 2021a), the spectral classification of stars (Sharma et al. 2020) or
even combine source detection and classification (González et al. 2018; He et al.
2021).

Besides photometric redshift, other regression-like problems have been ad-
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dressed with supervised ML to predict quantities of physical interest. For instance,
Bonjean et al. (2019) trained a RF to estimate the SFR and the stellar masses of
galaxies from WISE observations at near and mid-infrared wavelengths. The SFR
was previously determined by measuring the Hα emission line in SDSS spectra
for the same objects. Furthermore, with ML one can investigate the importance
of each feature to predict the target variables. The authors demonstrated that lu-
minosity at 3.4 µm is the most important quantity to derived the SFR, while the
color between the 4.6 µm and 12 µm bands is also relevant to determine the total
stellar mass. Dust particles heated by the radiation field of newborn stars re-emit
preferentially at 3.4 µm which explain the correlation between the SFR and the
luminosity at this band. The stellar mass also correlates with the 3.4 µm luminos-
ity but the color is needed to differentiate between different stellar populations.
We might argue that we do not need ML algorithm to confirm what our current
physical knowledge can already tells us. Nevertheless, observations are becom-
ing more and more complex every time, thus the feature space is more difficult to
explore and hence correlations between physical quantities might not be straight-
forward. In Dobbels & Baes (2021) the authors succeed in predicting maps of
specific dust luminosity, specific dust mass, and dust temperature by training a
RF with a set of surface brightness images of galaxies from UV to mid-infrared
wavelengths. They studied the relation between stellar light and dust properties at
different pixel scales in order to test the limitation of the energy balance approxi-
mation at resolved scales. They concluded that at 400 pc scales the energy balance
approximation holds true although they admit spacial correlations of nearby pixels
might affect their concussions since the algorithm was trained pixel by pixel. This
is an example of how ML can help us to give insight in the physical processes that
take place within galaxies.

Another important application of the RF algorithm has been found by Bluck
et al. (2022) who proposed a way to distinguish correlation from causality in as-
tronomical data. They trained a RF classifier to differentiate between quiescent
and star-forming galaxies in SDSS, MaNGA and the Cosmic Assembly Near-
Infrared Deep Extragalactic Legacy survey (CANDELS Grogin et al. 2011). They
found that at all redhisft the mass of the bulge is the most predictive parameter of
quenching. However, if the central velocity dispersion of stars was also used to
train the RF, then it became even more predictive than bulge mass. Both quanti-
ties are related but the central velocity dispersion might have a more fundamental
connection with cessation of star formation in galaxies.

Supervised ML have also been used to reduce the computational cost of SED
fitting by order of magnitudes. The idea is not to retrieve the model parameters
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from a set of observation, which would eliminate the information of the posterior
probability, but to approximate with ANNs the theoretical SED function given
the model parameters. With this approach one can still use Bayesian inference
and quantify the uncertainties and degeneracies among parameters. Emulators or
speculators, as they are called, have been developed to generate stellar population
synthesis models and predict the photometry or the spectra of galaxies (Alsing
et al. 2020), the supernova spectra (Kerzendorf et al. 2021) or to estimate the 21
cm signal from the epoch of reionization parameter space (Kern et al. 2017). Hahn
& Melchior (2022) went an step further and proposed to employ Amortized Neural
Posterior Estimation to analyse the SED of galaxies and estimate the posterior
probability distribution over the full range of observations. The authors tested
their method in a sample of galaxies from the SDSS survey taking only 1 second
per galaxy to obtain the posterior for 12 model parameters.

1.3.2 Unsupervised ML learning
Unlike supervised ML algorithms, unsupervised learning do not require the data to
be tagged by an expert. Let us go back to our previous example of bird images and
assume there are three different species. For instance, a goldfinch, a nightingale
and a swallow. This time, we would not provide to the algorithms which image
correspond to each species. With sufficient amount of data the algorithm would
be able to identify three different clusters by looking at properties that each image
shares with the others. This is one of the application of unsupervised learning
called clustering. Some of the most popular clustering algorithms are K-means,
Hierarchical clustering, or Gaussian mixture model (see chapter 9 for details on
how these algorithms work, Géron 2019). For example, Turner et al. (2019) stud-
ied a sample of galaxies from the Galaxy And Mass Assembly (GAMA, Driver
et al. 2011) survey in order to find sub-populations of galaxies that go beyond the
well known bi-modal distribution. The authors trained a K-means algorithm using
as features the total stellar mass, the sSFR, the Half-light radius (HLR), the u-r
colour and the Sérsic index of each galaxy. They found that 2,3,5, and 6 clusters
can explain the structure of the data, suggesting the existence of different sub-
populations of galaxies. In the same vein, Tammour et al. (2016) studied a sample
of quasars from SDSS and trained the K-means algorithm with the properties of
some of the UV emission lines present in the spectra of quasars. They were able
to recover clusters that follow a smooth distribution of physical properties such as
the hardness of the SED which have not seen by the algorithm.

Clustering algorithms have the power of unveiling the existence of different
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populations of objects or different physical regimes with only a data-driven ap-
proach. Nevertheless, there is one critical assumption that is behind that: the
distance between objects in the features space is assumed to be caused by their
intrinsic physical difference. Therefore, features need to be chosen carefully, in
this case by an expert astronomer, in order to attribute a physical meaning to the
clusters found by the algorithm. In Turner et al. (2019) some of the features are
observational properties (e.g. the HLR a galaxy) and others are the results of a
model output such as the mass or sSFR. Only with the previous knowledge that
this set of features is indeed meaningful to characterize galaxy populations one
can classify them in different groups.

Sometimes, we might not have a clear insight on which features are the most
relevant to explain the physical nature of the problem or we do not simply want to
restrict ourselves to the product of physical models which have their own biases.
This is the reason why Dimensionality Reduction Algorithms are often used. The
idea is to find a representation of data in a lower dimensional space that encodes
the most relevant information. In order to do that, the algorithms are forced to
reconstruct the original dimensions of the input data from this compact represen-
tation. For instance, Portillo et al. (2020) proved that using variational autoen-
coders, i.e. a type of ANN that performs a non-linear dimensionality reduction,
the spectra of different galaxies such as extreme emission line galaxies or galaxies
hosting an AGN appear naturally in different locations in the reduced dimensional
space called the latent space. What is more, one can define tracks within the latent
space that yields sequences of realistic spectra that interpolate between different
types of galaxies even though the algorithm was not trained with physical infor-
mation. Clustering algorithms have been applied after reducing the dimension
of the feature space (see e.g. Jiménez et al. 2020) but some recent works have
shown that combining both task in one single algorithm outperform the previous
approach (Cheng et al. 2021b; Teimoorinia et al. 2022). This is because the algo-
rithms is force to find a meaningful representation of the data at the same time the
clustering performance is optimized.

Anomaly detection is another important application of unsupervised ML al-
gorithms in astronomy. Some works relied on the reconstruction error to detect
outliers (Ichinohe & Yamada 2019; Portillo et al. 2020). Since the algorithms
only learn to reduce the dimensions of objects that follow the general distribu-
tion, extreme cases will not be reconstructed properly. For instance, Ichinohe &
Yamada (2019) simulated X-ray spectra and they were able to differentiate be-
tween the ‘normal’ single-temperature electron plasma from the two-temperature
plasma and electron plasma out of the collisional ionization equilibrium which
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they consider to be anomalous. Another interesting approach was proposed by
Baron & Poznanski (2017) who searched for peculiar objects classified as galax-
ies by SDSS. The authors used as features the original fluxes at each wavelength
in the spectrum. Then, they generated synthetic spectra by sampling from the
marginalized distribution of each feature so the covariance between features is lost
in the synthetic sample. A RF classifier was trained to distinguish between real
and synthetic spectra so the algorithm was able to identify the covariance in the
data. Finally, they used the decisions taken by all trees within the forest to define
a similarity distance. The weirdest objects are those which are far away from the
whole sample. This method proved to be successful in identifying peculiar object
within the training set such as galaxies with high ionisation lines, galaxies which
host supernovae or galaxies with unusual gas kinematics. Certainly, the most chal-
lenging part concerning anomaly detection is to distinguish between ‘interesting’
anomalies which might be an indication of new physics from those caused by ob-
servations issues either due to instrumental effects or low signal to noise-ratio.
A possible solution to deal with this problem was proposed by Sarmiento et al.
(2021) who used contrastive learning on MaNGA galaxies. Briefly, the authors
applied mathematical transformations to a set of maps containing information of
the stellar population and kinematics of galaxies that leave unchanged their physi-
cal properties. For example, adding noise to a map or rotate a galaxy certain angle
does not modify their physical information. Then, they use a CNN to project the
maps to a representation space where they maximized the agreement between the
original data object and its transformed pair. With this approach they were able to
identify differences between galaxies caused only by real physical dissimilarity.

One of the major limitation of ML algorithms is that they need enormous
amount of data to work properly. Very frequently, we have access to sufficiently
large observational data but only a small fraction of the data are labelled. For
example, as we will see in next chapter, the miniJPAS survey detected plenty of
galaxies in the AEGIS field. However, spectroscopic redshift is only available for
a fraction of them. In this case, one possible approach to estimate photometric
redhisft for miniJPAS with ML is to use semi-supervised learning. In a first step
the ML algorithm is trained in an unsupervised manner so as to learn the most
important features of the data, e.g. the uncertainty in the photometry, the depth of
the survey, the colors of galaxies etc. Subsequently, with the fraction of galaxies
that have spectroscopic redshift the algorithm is retrained to predict them. This is
called transfer learning since the knowledge from the first phase of the training
is transferred to the second one. A similar approach has been used by Eriksen
et al. (2020) in order to predict photometric redshifts for the observations per-
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formed by the Physics of the Accelerating Universe Survey (PAU, Serrano et al.
2022). However, the authors employed simulated data to train their networks in
the first phase. Transfer learning can also be used in a purely supervised man-
ner. For example, Domı́nguez Sánchez et al. (2019) transferred the knowledge
of a CNN trained to classified galaxies in SDSS to perform the same task in the
Dark Energy Survey (DES). The authors proved that the size of the training size
to adapt the classification from one survey to another can be reduced by one order
of magnitude.

All in all, the use of ML in astronomy is diverse and very promising given the
fact that the era of big data is upon us. As a final remark, I would like to stress
some of the limitation that are intrinsic to the field. As we show, ANN and RF
algorithms are excellent approximators of high dimensional mapping functions.
Nevertheless, the ability to make successful predictions on unseen data relies on
how representative the training set is respect to the target population. If ML al-
gorithms are trained on simulations, they should mimic observations in the best
possible way. If instead observation are used for the training, special care should
be paid to the amount of training examples of different physical properties as very
few examples might not be enough to capture the entire richness of the physical
problem. Another important limitation, specially for ANN, is the lack of inter-
pretability. Sometimes it is difficult to understand how the algorithms came to a
decision. Consequently, we might be unable to improve its performance further.
Finally, it is important to bear in mind what is the physical problem we would
like to address and whether or not the use of ML can actually be helpful. Simple
problems require simple solutions, the laws of physics have been developed for
centuries while only in last two decades we begun to have access to large data
sets and being in a position to apply ML to our science. These two worlds are
nothing but independent, so the great challenge lies on our capability to find the
right meeting point.

1.4 Scope of the thesis
The aim of this thesis is to understand better the properties of emission line ob-
jects in J-PAS. Thanks to the J-PAS photometric system we will be able identify
and characterize galaxies and quasars with no selection bias rather than the depth
of the survey. Certainly, the main spectral features of galaxies and quasars will be
capture with enough precision that it can act, in practice, as a low resolution spec-
trograph. Therefore, it will be possible to study the properties of emission line
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galaxies covering a large range of masses and morphological types. The emission
lines of Hα or [O ii] will be observed in continuous range of redshift, from 0 to
z ∼ 0.35, and z ∼ 1, respectively. In the same vein, the Lyα emission line of
quasars will be detected from redshift 2.1 up to redshift 4. This is a fundamental
differences respect to other photometric surveys where NB filters can only select
emission line objects in a set of redsfhit windows.

We begin in chapter 2 with an overview of the miniJPAS survey giving details
to the nature and properties of the data. This data has been used as a proof of con-
cept for the techniques developed in this thesis. We discuss how the observations
were carried out, the photometric system used, the data calibration process, the
methods employed to derive photometric redshift, etc. Furthermore, we make a
brief summary of the results related to galaxy evolution studies. In chapter 3 we
present an algorithm based on ANN to first detect emission line galaxies (ELGs)
and second predict the equivalent width of the main emission lines in the optical
spectrum. In chapter 4 we made used of this algorithm to understand the proper-
ties of ELGs in miniJPAS. We retrieve the main ionization mechanism of ELG,
the star formation main sequence, the cosmic evolution of the star formation rate
density and the relation between the properties of the gas and the properties of
the stellar populations. Subsequently, in chapter 5 we address the problem of
source classification in order to distinguish between low redshift quasars, high
redshift quasars, galaxies, and stars in miniJPAS and we investigate the effect of
augmenting the data through hybridisation. Finally, we summarized our results
and conclusions in chapter 6. We also discuss some of the works that might be
done in the future.





Chapter 2

The miniJPAS survey

2.1 Observations

Before the arrival of the JPCam at the OAJ, the J-PAS collaboration carried out the
miniJPAS survey and observed 1 deg2 along the Extended Groth Strip (AEGIS,
Davis et al. 2007). For that, the J-PAS-Pathfinder camera, a single CCD direct
imager (9.2k × 9.2k, 10 µ m pixel) with a pixel scale of 0.23 arcsec pix −1, was
installed at the center of the JST/T250 FoV. Observations of the AEGIS field were
conducted with the photometric filter system detailed in section 1.2.2 plus four
SDSS-like BB filters, uuJAVA, gSDSS, rSDSS, and iSDSS.

The wealth of multi-wavelength observations available at the AEGIS location
makes this field optimal for a science verification program. In Fig. 2.1 we show
the footprint of miniJPAS field together with the footprint of other projects such as
SDSS, ALHAMBRA or the HSC-SSP (Aihara et al. 2018) wide field. With four
pointings of 0.27 deg2, i.e. the FoV of the J-PAS-Pathfinder camera, the AEGIS
field was covered almost entirely. After taking the mask into account, the effective
area in the four tiles amount to 0.895 deg2.

Unlike the JPCam that can observe the sky with 14 CCD at the same time, the
observations with the J-PAS-Pathfinder were performed in groups of six filters be-
tween May and September 2018. A minimum of 4 exposures, with a dithering of
10 arcsec along the horizontal and vertical direction of the CCD were carried out
to generate each tile image. The exposure time for the broad bands gSDSS, rSDSS,
and iSDSS was set to 30 s, while for the 56 J-PAS filters and the uJAVA filter was 120
s. The depths of both NB filters and BB filters reached by the miniJPAS survey
are shown in Fig. 2.3. Differences in the depth for adjacent filters are due to dif-
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Figure 2.1: Footprint of the miniJPAS field (red squares), the Extended Groth Strip (in green),
pointing #6 of the ALHAMBRA Survey (in violet), the W07 wide field of the HSC-SSP (large
circle in pale blue), field W3 of the CFHTLS (in yellow), OSIRIS Tunable Emission Line Object
survey (OTELO) (small square close to the center of the figure) and SDSS (in light gray occupying
the whole area). Right: gSDSS, rSDSS, and iSDSS composite image of miniJPAS with zoom in three
selected areas. Figure taken from Bonoli et al. (2021).

Figure 2.2: Average FWHM of the PSF. The coloured symbols represent the average values for
each filter, while the gray ones are the value for each pointing. The larger symbols indicate the
FWHM of the the broad bands. Figure taken from Bonoli et al. (2021).
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Figure 2.3: Estimated depths (5σ at 3 arcsec aperture), computed from the noise in each tile, for
the NB (left) and BB (right). The coloured symbols show the average values for each filter, while
the gray ones are the values for the co-added images of each pointing. For the NB, the dashed gray
line indicates the approximate targeted minimum depth, as defined in Benitez et al. (2014). Figure
taken from Bonoli et al. (2021).

ferent observational conditions and on the final number of combined images. The
average full-width-half-maximum (FWHM) of the point spread function (PSF) as
a function of the tile and the filter are shown in Fig. 2.2. Due to the fact that
the reddest filters were scheduled to be observed at the end of the observing cam-
paign, the AEGIS field reached the lowest elevation and therefore the FWHMs
are slightly larger for these filters despite the sky conditions did not change. It
is expected that observations with the JPCam will improve this situation as the
FHWM will be homogenized among filters with a target value around 1 arcsec.

The data Processing and Archiving Unit (UPAD) is the group at CEFCA in
charge to process all data collected by the OAJ. As far as image reduction is con-
cerned, the UPAD team needed to account for several issues such as the subtrac-
tion of background patterns, removal of strong vignetting in the outer parts of the
CCD or fringing effects in the reddest filters. Using the software Scamp (Bertin
2010) and the Gaia DR2 (Gaia Collaboration et al. 2018) as reference catalogue,
astrometric calibration of the images was performed.

The software SExtractor was used to detect sources within miniJPAS field
and estimate their fluxes and AB magnitudes in a set of apertures. SExtractor
was run in two complementary modes. In the dual-mode catalogue, SExtractor
was first run in the rSDSS band, the detection band, from which the rest of the
photometry is computed. If an object is not detected in particular band the fluxes
might be negatives since the sum of the light only accounts for the sky background.
In single-mode, however, source detection is performed individually in each band.
Thus, every detection leads to a reliable measurement of the flux within an aper-
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ture but the position of the objects might vary from filter to filter. One of the main
advantage of this mode is the possibility to identify emission line objects that are
too faint to be detected in the reference band. Total fluxes and AB magnitudes
for each object using different methods implemented in SExtractor are pro-
vided in the photometric catalogues, that includes the FLUX AUTO, FLUX ISO, and
FLUX PETRO photometry. Furthermore, the integrated flux within a set of elliptical
apertures (FLUX APER ...) that ranges from 0.8 to 6 arcsec are available. Addi-
tionally, in order to take into account the variations of the PSF from filter to filter,
the users can obtain some of the previous photometry measured after degrading
each image to the worst PSF ( FLUX ISO WORSTPSF and FLUX APER3 WORSTPSF)
or work with the FLUX PSFCOR photometry that corrects the differences in the PSF
among different bands with a Kron aperture (Molino et al. 2017).

The miniJPAS survey contains more than 64 000 sources in the dual-mode
catalogue. For point-like sources the miniJPAS catalogue is 99 % complete up to
rSDSS ∼ 23.6 (MAG AUTO), while for extended sources this limit is constrained at
rSDSS ∼ 22.7. The procedure to compute the completeness of the survey has been
incorporated as a part of the J-PAS pipeline. It is based on the synthetic injection
of sources and the fraction of successful detection under the observational condi-
tions of the field. In Fig. 2.4 we show some examples of Luminous Red galaxies
(LRGs), Emission Line galaxies (ELGs), and quasi-stellar objects (quasars) at
different redshift and magnitudes that are presented both with in miniJPAS and
SDSS. The main features in the spectrum such as the 4000 Å break, the emission
lines or the absorption lines are clearly captured thanks to the J-PAS filter system.
All data is publicly available and can be accessed from the J-PAS website1. More-
over, CEFCA developed a Science Web Portal2in order to make the access to the
data easy and user friendly. In Fig. 2.5 we show a screenshot of the webpage,
and the sky navigator. Each object can be visually inspected by clicking on any
marker. Additional information to fully explore the Science Web Portals is given
in the user’s manual3.

1https://j-pas.org/datareleases/minijpas_public_data_release_pdr201912
2http://archive.cefca.es/catalogues
3http://archive.cefca.es/catalogues/static/manuals/science_archive_

users_manual_v1_18.pdf
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Figure 2.4: Comparison of the J-sepctra (coloured dots) with the SDSS spectra (grey lines)
for galaxies and quasars in the miniJPAS field. The miniJPAS object ID, the r magnitude, the
spectroscopic redshift, and the photometric redshift are provided in the legend. A multi-colour
RGB image centred on the object covering 30 arcsec across is included for each object. Figure
taken from Bonoli et al. (2021).
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Figure 2.5: Screenshots of the Science Web Portal (see links on the footnotes). The sky navi-
gator shows a region of the AEGIS field observed by miniJPAS. The photometry of one galaxy is
visually inspected.
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2.2 Photometric redhisft

One of the primary goals of J-PAS is to provide accurate photometric redshift
(photo-z) for extragalactic objects so as to conduct cosmological experiments. As
it was described in Benitez et al. (2014), it will be possible to measure baryon
acoustic oscillations (BAO) not only for LRGs down to z ∼ 1 but also for ELGs,
and quasars up to redshift z ∼ 1.5, and z ∼ 3, respectively. Naturally, the photo-
z precision decreases as objects are detected with lower S/N. In order to esti-
mate photo-z for galaxies, Hernán-Caballero et al. (2021) customised a version of
LePhare (Arnouts & Ilbert 2011) using a set of templates optimised for the J-PAS
filter system, and studied a sample of 5 266 galaxies spcectocopically confirmed
by SDSS and DEEP in the miniJPAS field. This sample is representative of the
main observed properties of galaxies within miniJPAS. Thus, a certain desired
photo-z accuracy, either in terms of a target σNMAD or a maximum outlier rate (η),
can be achieved by setting constrain on the model’s outputs, for instance the pho-
metric redshift error or the odds (see Hernán-Caballero et al. (2021) for details).
In miniJPAS there are ∼ 17 500 galaxies with rSDSS < 23 that present valid photo-z
estimates with an average σNMAD = 0.013 and outlier rate of η = 0.39. Around
∼ 4 200 of them are expected to have |∆z| < 0.003. In Fig. 2.6 we compare the
estimated photo-z with the spectroscopic redshifts for the whole sample (left) and
for odds > 0.61 (right). In these samples, 64 %, and 87 % of the objects have
|∆z| < 0.03, respectively.

Photometric redshift can also be predicted for quasars (Bonoli et al. 2021).
Queiroz et al., (in prep.) developed a method that estimate the photo-z of quasars
through a PCA modeling of the spectral variations and a reddening law that takes
into account the change in the slope of dusty-rich quasars. The eigenspectra of the
PCA capture the most relevant features of a selection of broad-line quasars from
SDSS. For the subsample of 97 SDSS quasars in the miniJPAS footprint with
zspec < 3.5, and rSDSS < 22, the method reaches an uncertainty of σNMAD = 0.0059
with an outlier fraction of 4.1% (Fig. 2.7). In the future, other methods, not
only based on template fitting but also on ML, will be available in the J-PAS
collaboration to predict phot−z for quasars and galaxies. Thus, we will be able to
improve further the current photo-z accuracy.
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Figure 2.6: Comparison between photometric and spectroscopic redshifts for individual mini-
JPAS galaxies in the spectroscopic sample. The left panel includes all galaxies with rSDSS < 23
and valid photo-z estimates, while the right one contains only half the sample (those with higher
odds). The bottom panels show the redshift errors, |∆z|. A 2-D Gaussian smoothing is applied to
the data to improve the visualisation of the density of points. The solid line marks the 1:1 relation,
while the dotted lines indicate the |∆|z = 0.03 threshold used to define outliers. Figure taken from
Hernán-Caballero et al. (2021).

2.3 Galaxy evolution studies with miniJPAS

Since the publication of miniJPAS data in December 2019 many works have
proven the capability of J-PAS to conduct galaxy evolution studies. González
Delgado et al. (2021) characterized the populations of unresolved galaxies in
miniJPAS down to z ∼ 1 by means of fitting the SED with parametric and non-
parametric stellar population codes. The J-PAS filter system allows for the de-
termination of the main properties of galaxies such as the total stellar mass, rest
frame colours, the stellar extinction or the average stellar age. Some of the most
relevant results of this work are shown in Fig. 2.8 and Fig. 2.9. Overall the popu-
lation of red galaxies decreases at high redshift while the amount of blue galaxies
increases. Although some discrepancies are found between codes at high redshift,
those are most likely due to the drop in the number of galaxies per bin and the
lower median S/N of such population that reaches values below 5. The average
mass-weighted age of the stellar population decreases as a function of the red-
shift for both galaxy types regardless the SED fitting routine employed. Finally,
a sub-population of galaxies in the nearby universe (0.05 ≤ z ≤ 0.15) was used
to derive the cosmic evolution of the star formation rate density obtaining a great
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Figure 2.7: Upper panel: photometric versus spectroscopic redshifts for a sample of 97 DR14
quasars with zspec < 3.5, and rSDSS < 22. Larger symbols represent higher median S/N. The solid
diagonal line indicates the 1:1 relation and the dashed lines correspond to zphot = zspec ± 0.05(1 +
zspec). Bottom panel: photo-z precision as a function of redshift, with the horizontal dashed gray
line indicating the average photo-z uncertainty. Figure taken from Bonoli et al. (2021).

Figure 2.8: Evolution in the fraction of red and blue galaxies (right panel) and its age as a
function of redshift obtained by BaySeAGal with a delayed-τ SFH (circles), MUFFIT (squares),
AlStar (stars), and TGASPEX (crosses). The color-code on the right panel indicates the intrinsic
(uSDSS − rSDSS) colour. Figures taken from González Delgado et al. (2021). More details of how
these SED codes work can be found there.
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Figure 2.9: Cosmic evolution of the SFRD (ρ∗) obtained from the SED-fitting results of
BaySeAGal (black dots), MUFFIT (coral dots), AlStar (cyan dots), and TGASPEX (olive dots)
with nearby galaxies (0.05 ≤ z ≤ 0.15). The different lines represent the ρ∗ obtained in other
works. Figure taken from González Delgado et al. (2021).

agreement with other works based either on the fossil record method with galaxies
from CALIFA (López Fernández et al. 2018) and MaNGA Sánchez et al. (2019)
or the results derived from cosmological surveys (Sobral et al. 2013; Madau &
Dickinson 2014; Driver et al. 2018).

The properties of galaxies as a function of the environment has also been stud-
ied very recently by González Delgado et al. (2022). In this work, the role that
groups and clusters plays in quenching the star formation is investigated by com-
paring how their properties changes respect to galaxies that are found in the field.
As expected, the fraction of red galaxies increases with the galaxy mass but it
is always higher in groups than in the field. Similarly, the fraction of quenched
galaxies (sS FR < 0.1 Gry−1) is much higher in groups than it is in the field. Fur-
thermore, Rodrı́guez Martı́n et al. (2022) prove that the same tools can be applied
to analyze individual clusters such as mJPC2470-1771, the most massive cluster
found in miniJPAS, and study the properties of each galaxy as a function of their
location respect to the cluster center.
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Figure 2.10: J-spectra of an ELG from miniJPAS at redshift z = 0.077. We show the total
integrated J-spectrum (top) and the J-spectra within two elliptical rings (see text on the image).
Note the variations in the intensity of the emission lines or the slope of the spectrum as a function
of the radial distance.

Although very few galaxies are bright enough to be resolved spatially in the
miniJPAS footprint, preliminary tests have shown the potential of J-PAS to work
as a low resolution IFU. In Fig. 2.10 we show an emission line galaxy at redshift
z = 0.077 with a HLR of ∼ 7.5 kpc. The photometry has been extracted assuming
elliptical rings apertures and shows variations of the J-spectrum from the center
to the periphery, where the star formation is taking place at a higher rate. Another
example is shown in Fig. 2.11, i.e. a quiescent galaxy at redshift z = 0.075 with a
HLR of ∼ 13.9 kpc that has also been observed by the MaNGA survey. The SED
in the inner part of the galaxy (r < 0.5 HLR) obtained by the miniJPAS photom-
etry shows a great agreement with the integrated spectrum of MaNGA over the
same region. Furthermore, the average luminosity age of the stellar population
derived by fitting the spectrum with STARLIGHT (Cid Fernandes et al. 2005) coin-
cides with the results of BaySeAGal and AlStar that fit the miniJPAS photometry
with different assumption on the SFH. While the FoV of MaNGA only reaches 1
HLR, miniJPAS images can go all the way up to 2 HLR. As we pointed out before,
this is one of the major advantage of J-PAS compared to IFU-like surveys.
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Figure 2.11: Left panel: The MaNGA spectrum of the central ring of 0a.5 HLR (grey line)
of a galaxy at z = 0.075 is compared with miniJPAS data (black dots). The result of the best fit
to miniJPAS data is also plotted (red dots). The inset shows an image of the galaxy in the rSDSS
band where two ellipses are overlaid at 0.5 HLR and 2 HLR. The FoV of the MaNGA survey
is over-plotted as a red hexagon. Right panel: Comparison of the radial variation of the average
luminosity age < logt >L derived from miniJPAS data, with the non-parametric code AlStar (red
dots) and the parametric code BaySeAGal (blue dots), and from the MaNGA data analysed with
the STARLIGHT code (black stars). Figure taken from Bonoli et al. (2021).
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3.1 Introduction

The study of the formation and evolution of galaxies through cosmic time has
been addressed in recent decades through an understanding of how their physical
properties leave footprints in the spectral energy distribution (see e.g., Dı́az-Garcı́a
et al. 2019b, and references therein). Both the analysis of the light coming from
stars and the ionized interstellar gas can be converted, via well-known recipes, to
physical quantities such as the stellar mass, star formation rate (SFR), dust attenu-
ation, luminosity-age, and gas-phase metallicity. In addition, they may unveil the
main ionization mechanism responsible for the optical emission lines that we can
observe in the spectrum (for some of the most recent reviews on these topics, see
Conroy 2013; Madau & Dickinson 2014; Kewley et al. 2019).

The most massive and youngest stars that lie within galaxies are responsible
for the ultraviolet emission in the spectrum, but very often, the presence of dust
grains does not allow ultraviolet photons to travel freely through the interstellar
medium; consequently, this makes it difficult to constrain the SFR from the blue
part of the spectrum alone. However, those stars can actually ionize the surround-
ing interstellar gas. Very rapidly, hydrogen atoms recombine, leaving tracks the
in form of emission lines at a particular wavelength in the spectrum. The Hα
emission line at 6562.8 Å is less affected by dust extinction, thus it serves as an
excellent tracer for measuring SFRs up to z ∼ 0.4 in the optical range (Catalán-
Torrecilla et al. 2015).

Other lines, such as the forbidden [O iii] λλ4959, 5007 Å and [N ii] λλ6548, 6584
Å doublets1, are sensitive to the gas-phase metallicity, which is ideal for investi-
gating the metal enrichment of gas throughout cosmic time (Maiolino & Man-
nucci 2019). The [N ii]/Hα and [O iii]/Hβ ratios, among others, were used to
construct the so-called BPT diagrams (Baldwin et al. 1981), which distinguish
galaxies where the gas is preferentially ionized by the presence of an active galac-
tic nucleus (AGN) from those where the main ionization mechanism comes from
high rates of star formation in the galaxy or shock-ionized gas regions.

Even though spectroscopic surveys have revolutionized astronomy across a
number of fields, they provide a limited picture of the universe in many senses.
Both multi-object spectroscopy (MOS) and integral field units (IFUs) surveys are
partially biased due to the pre-selection of samples, where some properties such
as fluxes, redshift, or galaxy-size are limited to a certain range. Some of these

1In the remaining of this chapter, [O iii] λ5007 and [N ii] λ6584 will be denoted [O iii] and
[N ii] , respectively.
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issues can partially be solved with narrow band photometric surveys. Although
they have been historically limited to few filters, they can act as low-resolution
spectrographs and they are able to map the sky quickly and deeply – therefore
they offer a more comprehensive snapshot of the universe. Needless to say, some
astrophysical analyses will always require the highest possible spectral resolution
to fully exploit all the information encoded in the spectrum.

One of the most competitive astrophysical surveys designed to overcome the
weaknesses of both photometry and spectrography, functioning halfway between
them, could well be the Javalambre-Physics of the Accelerating Universe (J-PAS,
Benitez et al. 2014). It will sample the optical spectrum with 54 narrow-band
filters for hundreds of millions of galaxies and stars over ∼ 8000 deg2. This
is equivalent to a resolving power of R ∼ 60 (J-spectrum hereafter). Initially
thought to explore the origin and nature of the dark energy in the universe, J-PAS is
also ideal for galaxy evolution studies and to detect emission line objects (Bonoli
et al. 2021). However, the large number of galaxies peaking over a wide range of
redshift makes it difficult to employ traditional methods, such as subtracting from
the emission line flux the image of the stellar continuum (Vilella-Rojo et al. 2015).
Furthermore, line fluxes will contribute to several J-PAS filters, which also vary
with the redshift of the object. Consequently, it is necessary for new techniques
and algorithms to be developed in order to completely leverage the capability of
J-PAS.

Machine learning (ML) techniques have effectively become a powerful tool
across many fields where large quantities of data are available. The capability
of these algorithms to find patterns in the data without making any empirical
or theoretical assumptions has turned out to be their main advantage. In recent
decades, astrophysical surveys are increasingly releasing vast amounts of data,
which brings the opportunity of employing the most sophisticated up-to-date al-
gorithms in order to analyze them faster and more efficiently. The applications
range from the estimation of photometric redshifts (Pasquet et al. 2019; Cavuoti
et al. 2017) and the identification of stars (Whitten et al. 2019) up through the
classification of galaxies (Domı́nguez Sánchez et al. 2018) and the separation be-
tween galaxies and stars (Baqui et al. 2021) up to the determination of the SFR
(Delli Veneri et al. 2019; Bonjean et al. 2019) – to cite some of the most recent
research. In this chapter, we developed a new method based on artificial neural
networks (ANN) to detect and measure some of the main emission lines in the
optical range of the spectrum: Hα, Hβ, [N ii], and [O iii].

This chapter is organized as follows. In section 3.2, we present the J-PAS
data together with data from other surveys that have been used to train and test
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the ANNs. In section 3.3, we describe in detail the main characteristics of the
ANNs along with a discussion of how they can be trained and tested to deal with
the uncertainties associated to the data. In section 3.4, we show the performance
of ANNs in SDSS simulated data sets and discuss its main weaknesses. In sec-
tion 3.5, we test our method in galaxies that have been observed both in miniJPAS
and SDSS. Finally, we present a summary in section 3.6 and point out the steps
needed to improve and extend the performance of the ANN in detecting and pre-
dicting emission lines.

3.2 J-PAS and spectroscopic data
In this section, we present J-PAS and the spectroscopic data used throughout this
chapter for training and testing our ML codes. The reader can skip the following
section 3.2.1 if she/he went thought section 1.2.

3.2.1 J-PAS

J-PAS is an astrophysical survey (Benitez et al. 2014) that is aimed at mapping out
close to 8000 deg2 of the northern sky with 56 bands, namely, 54 narrow-band fil-
ters in the optical range plus 2 medium-band – one in the near-UV (uJAVA band)
and another in the NIR (J1007 band). With a separation of 100 Å, each narrow-
band filter has a full width at half maximum (FWHM) of ∼ 145 Å, whereas the
FWHM of the uJAVA band is 495 Å and the J1007 is a high-pass filter. The obser-
vations will be carried out with the 2.55 m telescope (T250) at the Observatorio
Astrofı́sico de Javalambre, a facility developed and operated by CEFCA, in Teruel
(Spain) using the JPCam, a wide-field 14 CCD-mosaic camera with a pixel scale
of 0.46 arcsec and an effective field of view of ∼ 4.7 deg2 (see Cenarro et al. 2019;
Taylor et al. 2014; Marin-Franch et al. 2015). The survey is expected to detect ob-
jects with an apparent magnitude equivalent to iAB < 22.5, up to z ∼ 1 and with a
photo-z precision of δz ≤ 0.003(1 + z) for luminous red galaxies.

The J-PAS project started its observations taking data with the Pathfinder cam-
era observing four AEGIS fields with 60 optical bands amounting to 1deg2. These
data allow us to build a complete sample of galaxies up to rS DS S ≤ 22.5 mag
(Bonoli et al. 2021). More than 60.000 objects have been detected and can be
downloaded from the website of the survey2. The survey, referred as to miniJPAS,

2http://www.j-spas.org/
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Figure 3.1: Synthetic photometry (colored dots) of an emission line galaxy model (gray line) at
z = 0.044 in the J-PAS photometric system.

was described in detail in section 2 but we provide a short description in sec-
tion 3.5.1. One example of how a nearby star-forming galaxy would be observe
with J-PAS is shown in Fig. 3.1. We also show in the same figure the transmission
curves of the J-PAS filter system.

3.2.2 CALIFA survey

The Calar Alto Legacy Integral Field Area (CALIFA, Sánchez et al. 2012; Garcı́a-
Benito et al. 2015) is an integral field spectroscopy survey which observed 600
spatially resolved galaxies in the local universe (0.005 < z < 0.03). The obser-
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vations were taken with the 3.5 m telescope at the Calar Alto observatory with
the Postdam Multi Aperture Spectrograph (PMAS, Roth et al. 2005) in the PPaK
mode (Kelz et al. 2006), which contains 331 fibers of 2.7” in diameter. With a
field of view of 71′′ × 64′′ and a spatial sampling of 1 arcsec/spaxel, CALIFA ob-
served each galaxy in the wavelength range of 3700 − 7300 Å with two different
overlapping setups. Here, we use the spectra taken in the low-resolution setup
(V500) that provides spectra from 3745 to 7500 Å with a spectral resolution of 6
Å to generate J-PAS synthetic photometry.

There are measurements of the emission lines available for a total of 275787
spectra corresponding to 466 galaxies processed through the reduction pipeline
of Garcı́a-Benito et al. (2015). These spectra include emission patterns of many
different zones within the galaxy. Therefore, even though the integrated spectra of
CALIFA galaxies might not be heterogeneous enough to build a training set, the
individual zones cover plenty of diverse physical states. The properties of the stel-
lar populations and the state of the ionized interstellar gas change from one region
to another in each individual galaxy. Hence, with the amount of galaxies observed
with CALIFA, we can expect to see a rich representation of the most likely physi-
cal scenarios. The emission lines in each spaxel were measured from the residuals
spectra obtained after subtracting the stellar continuum with Starlight (Cid Fer-
nandes et al. 2005).

3.2.3 MaNGA survey

The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA, Bundy
2015) is an ongoing integral field spectroscopic survey that plans to observe spa-
tially resolved spectra for ten thousand galaxies in the nearby universe (z < 0.15).
With a wavelength coverage of 3600 − 10300 Å at a resolution of R ∼ 2000,
MaNGA is equipped with an IFU, in total 19 fibers of 12′′ and 127 of 32′′. In
this chapter, we use the catalog available in 3 and processed by Pipe3D pipeline
in MaNGA SDSS-IV datacubes Sánchez et al. (2016b,c). The analysis of the
stellar populations and ionized gas provides spatially-resolved information of the
strongest emission lines in the optical range for a total of 4670507 spaxels from
2755 galaxies.

3https://www.sdss.org/dr14/manga/manga-data/manga-pipe3d-value-added-catalog
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3.2.4 SDSS survey
The Sloan Digital Sky Survey (SDSS, York et al. 2000) contains spectroscopic
measurements for more than three million astronomical objects and deep images
of one third of the sky in five optical bands. The spectra were taken with a fiber
of 3′′ in diameter and a spectral coverage of 3800 − 9200 Å at a resolution of R ∼
2000. Here, we use the publicly available MPA-JHU DR8 catalog from the Max
Planck Institute for Astrophysics and Johns Hopkins University (Kauffmann et al.
2003b; Brinchmann et al. 2004). All the information regarding the catalog and the
fitting procedure of the galaxy physical properties can be consulted online 4. The
catalog provides a total of 818333 galaxies with redshift up to z ∼ 0.35. We only
consider galaxies with reliable emission line measurements. Thus, we exclude
the objects with RELIABLE = 0 and/or ZWARNING > 0 from the sample. We also
discard galaxies where J-PAS synthetic magnitudes can not be calculated due to
the lack of data in certain wavelength range of SDSS spectra. Finally, we ended
up with spectra from 701975 galaxies.

3.3 Method of analysis.
In this section, we describe the architecture of the network in section 3.3.1 and the
strategies used for training and testing the model in section 3.3.2. We also explain
how to deal with photo-redshift uncertainty in section 3.3.3, how errors can be
estimated in section 3.3.4, and how to treat missing data in section 3.3.5.

3.3.1 Architecture of the Network
In this chapter we use a class of ANN that is referred to as a fully connected
neural network. The implementation was carried out with Tensorflow (Abadi
et al. 2015) and Keras libraries (Chollet et al. 2015) in Python. It is composed of
a set of layers which have a specific number of neurons. The first layer contains
the inputs (features) of the network. In this chapter, the inputs are the colors of
J-PAS measured with respect to the filter corresponding to Hα for each spectrum.
For instance, in nearby galaxies (z< 0.015), the Hα emission line will be captured
by the J0660 band. Then the color in the filter Ji is defined as the difference respect
to the magnitude measured in the J0660 band (Ci = mAB(J0660) − mAB(Ji)). The
final layer contains the output of the network, sometimes also named targets in

4www.sdss3.org/dr10/spectro/galaxy_mpajhu.php
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the machine learning argot. Our targets are the equivalent width (EW) of Hα, Hβ,
[N ii], and [O iii]. We built two different ANNs: one performs a regression task
and obtains the values of these EWs, this network will be referred to as ANNR.
The other, ANNC, carries out a classification between galaxies without emission
lines (below a given threshold) and emission line galaxies (ELG) by imposing cuts
in the EWs of the mentioned lines. We could have performed this classification
based on the values yielded by the ANNR but an algorithm specifically constructed
for a given task gives better results.

As we mentioned earlier, emission line fluxes have contribution to different
bands according to the redshift of the source and the width of the emission line.
The redshift might be treated as an input in the model but that would imply to
train the ANN with a uniform distribution in this parameter, otherwise the ANN
would not be able to make predictions equally at all redshifts. Furthermore, this
approach would reduce our sample size and limit our range of predictability due
to the different redshift coverage of CALIFA, MaNGA, and SDSS. For these rea-
sons, we trained a different ANN for each redshift, going from 0 to 0.35 with a
step of 0.001. We shifted all the spectra of the training set in wavelength at the
same redshift and we computed the colors within the common wavelength range
between J-PAS and the spectroscopic surveys described in Sect 3.2. This range
depends on the redshift and, consequently, the number of inputs vary between 28
and 39 colors.

Between the input and the output layers, the ANN can hold inner layers, com-
monly called ‘hidden’ layers, with no restrictions to the number of layers and
neurons in it. There is no standard recipe to find the optimal architecture of a
network. Theoretically, with only one hidden layer and sufficient amount of neu-
rons is possible to model the most complex function. However, deep ANN, i.e.
those with mores hidden layers, have a much higher parameter efficiency, thus
they are able to model complex functions by using much fewer neurons (Géron
2019). Few hidden layers are normally sufficient if the relation between input and
output is not very complex. Certainly, this is our case since emission lines are
clearly visible in the J-spectra. In addition, other features, such as the color of
the J-spectra can help to estimate the emission line patterns because they linearly
connected to the inputs.

The amount of neurons in the hidden layer varies between the size of the input
and the size of the output layers. Our ANNs have 2 hidden layers with 20 neu-
rons each, which is in between the number of inputs (34 colors in average) and
the number of outputs (four EWs for the ANNR and two classes in the case of
the ANNC). A schematic view of the ANNR used in this chapter can be seen in
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Fig. 3.2.
All the neurons in a given layer are connected to the neurons in the contiguous

layer by a matrix of weights, W, and a bias, B:

Ln = g(Wn · Ln−1 + Bn), (3.1)

where Ln refers to layer n. Also, L0 are the inputs of the ANN and g is the
activation function of neurons. It worth mentioning the importance of such a
function, as it is responsible for the non-linear behavior in the network. Otherwise,
the outputs would be simply a linear combination of the inputs, which would
not be sufficient to address non-linar problems. We use the so-called Rectified
Linear Unit (ReLU) activation function (Nair & Hinton 2010), which has become
the default activation function in recent years due to its advantages (Glorot et al.
2011).

Typically, ANN are trained using an algorithm commonly referred to as back-
propagation. Adjusting the set of weights and bias that minimizes a certain loss-
function is the actual process of training. For regression-like problems the most
common loss-function is usually a mean square error, while for binomial classi-
fication the binary cross entropy is frequently employed. We make use of these
functions in our models.

One important aspect to take heed of when when we are training an ANN is
to avoid overfitting. Improving the loss-function indefinitely would lead to the
algorithm fitting features of certain data that do not represent the general trend.
Consequently, the predictability of the network would be compromised. One way
to avoid that is to impose a maximum value over the weights that each neuron can
carry.

Optimising the architecture of the network is a process that requires tweaking
many hyper-parameters. As part of these efforts, we tested different architectures,
increasing and decreasing the number of neurons or hidden layers or by using
alternative loss functions such as the mean absolute error or the mean relative error
for regression. Sometimes even different architectures can obtain very similar
results. The model that we describe in this chapter is among the ones we tested
that better perform.

3.3.2 Training strategy
We generate synthetic J-PAS data by convolving the spectra presented in sec-
tion 3.2 with the J-PAS filter system. Since the wavelength coverage of CALIFA,
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Figure 3.2: Schematic diagram of the ANNR used for predicting lines emission at rest frame.
The J0660 filter is our reference band for colors.

MaNGA, SSDS, and J-PAS are different, in our model, we only use the common
wavelength range of the four instruments at z = 0, which is 3810 − 6850 Å.

The training sample is built differently, depending on whether we are dealing
with a classification or a regression task. In a classification problem, an unbal-
anced number of classes in the training sample might under-predict the minor
class (see e.g., Ali et al. 2015, for a review in the topic). Therefore, when is pos-
sible, a balance training set is more desirable. In regression-like problems the
optimal training set is the one that better covers the parameter space of the target
variables. For instance, a training set built for classifying galaxies above and be-
low 3 Å in the EW of Hα will be different from one that aims to compute the
same EW in the range between 0 and 20 Å. Simply because we would need many
more galaxies in the interval from 3 to 20 Å than would be needed below 3 Å.

Considering the data that we have at hand, there are other aspects that need
to be taken into account to build the training sample. First, in order to ensure the
algorithm receives the most reliable information, we would wish to select only the
spectra where emission lines have been measured with high signal-to-noise ratio
(S/N). However, being too strict in the selection criterium induces a bias towards
line-emmiting galaxies and reduces significantly the size of the sample. Second,
while CALIFA and MaNGA have observed the nearby universe spatially resolv-
ing the physical properties of the interstellar medium within galaxies, SDSS can
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only see the inner parts of nearby galaxies but with the advantage of covering
distances further away in the universe. It has been shown how spatial resolution
affects the location of points (spaxels) in the BPT, possibly altering AGN classi-
fication or simulating it via mixed spectral featured (Gomes et al. 2016). Finally,
the emission line catalogs obtained from these surveys have been derived with
different fitting tools, which makes it difficult to compare them in equal terms.

In essence, there is not a simple and unique way of putting together all these
data and build the training set that better represents the universe as J-PAS will look
at it. Instead, we propose to train the ANN with different training sets in order to
understand the source of errors and inaccuracies of the model.

Training and testing sets in the ANN for classification

With the aim of identifying galaxies with low and high emission lines, we train
a ANN classifier to perform a binary classification based on the EW of Hα, Hβ,
[N ii] or [O iii]. This type of classification might allows us to disentangle the
structure of the bimodal distribution found in the EW of Hα in CALIFA and
SDSS galaxies (Bamford et al. 2008; Lacerda et al. 2018). In these works the
authors found that the mentioned bimodal distribution has its minimum around 3
Å. In the regime of low emission the J-PAS filter system is not sensitive enough
to detect emission lines and hence, it is only via machine learning, which can
extract features from the J-spectra much more complex, it is possible to address
this problem.

Galaxies are considered emitting-line galaxies or Class 1 according to the fol-
lowing criteria:

EW(Hα) > EWmin ∥ EW(Hβ) > EWmin ∥

EW([O iii]) > EWmin ∥ EW([O iii]) > EWmin
, (3.2)

and Class 2 in the rest of our cases. We trained several classifiers where EWmin

takes the following values: 3, 5, 8, 11, and 14 Å. In short, if a galaxy has an EW
greater than the EWmin in any of these lines, it will be considered as Class 1. If all
the EWs in a galaxy are below the threshold then it will be tagged as Class 2.

In most of the cases, Hα is the most powerful emission line and, consequently,
it determines whether galaxies belong to one class or other. There is nothing
special in the values chosen for EWmin except that they are in the regime of low
emission. With the ANN classifier we prove that this regime can be explored in
J-PAS. In addition, any other EWmin around these values could be implemented in
the future.
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The combination of data from different surveys used in this chapter does not
improve or worsen the performance of the ANN classifier. Consequently, for the
sake of simplicity, we train only with CALIFA synthetic J-spectra and we test with
SDSS galaxies. We do not impose any cut in the errors of the EWs, but we ensure
to have the same amount of J-spectra in both classes in the training set. We end
up with 200000 synthetic J-spectra to perform the training.

Training and testing sets in the ANN for regression

For the purpose of obtaining the values of the EWs of galaxies in J-PAS, we pro-
pose two training sets. The first one, which we call the CALMa set, is only com-
posed of CALIFA and MaNGA synthetic J-spectra, while the second one, the
SDSS set, includes only SDSS galaxies.

We test the performance of the model by randomly removing 15000 synthetic
J-spectra from the training samples: 5000 from CALIFA, 5000 from MaNGA
and 5000 from SDSS. Those synthetic J-spectra are considered as validation or
test samples depending on the training sample. For instance, if we train with the
CALMa set, we use MaNGA and CALIFA samples to tune the hyper-parameters
of the model (validation samples) and SDSS galaxies to actually evaluate the
model; and the other way around: if we train with the SDSS sample, SDSS galax-
ies plays the role of the validation sample and CALIFA and MaNGA synthetic
J-spectra are used for testing purpose. In this way, we ensure that the color terms
that might appear as a result of fitting tools used to derive the emission lines or the
instruments that obtained the spectra are not playing a major role in the prediction
made by the ANN. If that were the case, building samples with different surveys
in the training and testing sets would allow us to identify any potential bias arising
from such circumstances.

We add only those synthetic J-spectra to the training set that have emission
lines with an error below a certain threshold. In the case of MaNGA galaxies,
spaxels with a S/N below 10 in the flux of Hα, Hβ, [N ii] or [O iii] were discarded.
However, we were more flexible with spaxels in CALIFA and SDSS galaxies,
going down to a S/N of 2.5. Such flexibility allows us to increase the amount of
low-emitting galaxies in the samples. In addition, when it comes to the CALMa
set, we achieved a more equilibrated weight between the prominence of CALIFA
and MaNGA in the training sample. We also excluded from the training set those
spectra where the EWs are greater than 600 Å (these are very rare cases, 10 in
total). Since the loss function is quadratic in the EWs, this type of spectra force
the ANNR to fit, at the same time, two antagonistic regimes: low-emitting and
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extreme emission line galaxies. Consequently, it would worsen the performance
of the ANNR in the range of interest. Finally, we ended up with a training set of
134000 synthetic J-spectra from CALIFA, 280270 from MaNGA that altogether
make up the CALMa set, as well as 135300 galaxies in the SDSS set.

3.3.3 Photo-redshift uncertainty

Even though J-PAS will provide redshifts with a high precision (Benitez et al.
2014, δz ≤ 0.3 % 5 for luminous red galaxies), the performance of the ANN
could be compromised in certain cases. Let us assume, for example, that we aim
to predict the EWs of a galaxy at redshift 0.3 with ∆z = 0.003. In the best-case
scenario, the galaxy redshift would be between 0.296 and 0.304. According to our
redshift bin, we have eight possible ANNs to test with. While in the vicinity of
the true redshift the ANN can do a reasonably good job, in the extremes, the EWs
would dramatically be underestimated. Since colors are computed with respect
to a filter far away from the one corresponding to Hα, the ANN will interpret
as an absorption line what indeed is an emission line. Although the probability
density functions (PDFs) of the photo-z can help to improve the predictability in
assigning weights to each redshift; whenever we found a non-gaussian PDF with,
for instance, an asymmetric distributions with two peaks, it would be difficult for
the ANN to make reasonable predictions.

One way to obtain better results in galaxies where the uncertainty in the red-
shift is high is to consider only the configurations (redshifts) that maximize a cer-
tain function. Certainly, for emission line galaxies, the redshift where the sum of
all EWs reaches the highest value is close to the true redshift. However, this red-
shift overestimates the EWs in galaxies with low emission. In order to minimize
such an effect, we average over the five configurations (redshifts) that maximize
the sum of all EWs within the photo-redshift uncertainty (∆z). The fact that these
configurations might be found in non-contiguous redshift bins can help in those
cases where there are asymmetric PDF distributions of photo-redshifts.

As we go on to discuss in section 3.4.4, this method is capable of somehow
recomputing the redshift of the galaxy, correcting a possible deviation from the
spectroscopic redshift in galaxies where

∑
EWi > 20 Å. Therefore, the method

of the five maximum, hereafter 5max, can certainly help the ANNR to improve its
performance but cannot be used with the ANNC. Most probably, it would increase
the amount of false positives as the redshift uncertainty increases. In section 3.4,

5Throughout this chapter we use the convention ∆z = (1 + z)δz, where ∆z = z − zphoto.
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we quantify how the error in the redshift can impact the predictions of the ANNC

and the ANNR. Fortunately, the ANNC is less sensitive to that effect (see Fig. 3.3
and Table 3.1).

3.3.4 Estimation of errors
The uncertainty of the ANN method can be estimated by considering three sources
of error: the error of the photometry, the error in the photometric redshift, and the
intrinsic error of the ANN training. Before the training actually starts, weights
and biases in ANN can be set to a certain value by initialising randomly according
to any distribution function. Generally, each initialization state will converge to
different local minimum of the loss-function. Even though it is possible to find the
state that leads to the best score over the validation sample, it is usually a Monte
Carlo approach called the committee (i.e. the mean of the individual predictions
of a set of ANN) that will be a more robust and accurate estimate of the targets.
Thus, the variations of the outputs in each individual member of the committee
with respect to the mean provide an estimation of the uncertainty in the predictions
intrinsically associated to the training procedure. The paragraphs bellow details
the steps to follow in order to account for the contribution of each uncertainty to
the errors budget.

Photometric error: we input the ANN with N + 1 different values of the mag-
nitude, where one corresponds to the nominal value and the other N are randomly
drawn from a gaussian distribution centred on the nominal value and with standard
deviation equal to the photometric error. The median (M) and the median absolute
deviation (MAD) of N+1 predictions give us the prediction and the weight of one
member in one committe:

Piz j = M[piz j

0 , p
iz j

1 , ..., p
iz j

N+1],

Wiz j = 1/MAD[piz j

0 , p
iz j

1 , ..., p
iz j

N+1],

where i stands for the committe member and z j for the redshift.
ANN intrinsic error: the prediction of the committe in a given redshift can be

estimated by computing the average (AVG) of all members in the committe with
the weights obtained above. The error of the committe is simply the MAD of
m(N+1) prediction, where m refers to the number of members in the committe.
We found that averaging over five members is enough to obtain reliable results:

Pz j = AVG[P0z j , P1z j , ..., Pmz j; W0z j ,W1z j , ...,Wmz j],

ϵANN
z j
= MAD[p1z j

0 , ..., p
1z j

N+1, p
2z j

0 , ..., p
2z j

N+1, ..., p
mz j

0 , ..., p
mz j

N+1],
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Photo-redshift uncertainty: we compute the median value of n committes, one
for each redshift. In the case of the ANNR we select the five maximum setting
(see section 3.3.3) and for the ANNC, we consider all the redshift within the error
range:

PANNR = M[Pz0(max0), Pz1(max1), ..., Pz4(max4)],
PANNC = M[Pz0 , Pz1 , ..., Pzn],

Finally, the error is the quadratic sum of the median error of all committees
plus the dispersion of these committees respect to the median, which gives us the
contribution of the redshifts uncertainty.

ϵANN =

√
M[ϵANN

z0
, ϵANN

z1
, ..., ϵANN

zn
]2 +MAD[Pz0 , Pz1 , ..., Pzn]2,

If the spectroscopic redshift of the object were known, the expression above
would be simply: ϵANN = ϵ

ANN
zspec

.

3.3.5 Missing data
There are a number of problems, both related to the data reduction or the obser-
vation, that could lead to incomplete or missing data. Consequently, a fraction
of our sample will lack photometric measurements in some of the filters used by
the ANN. Certainly, many such objects would have to be rejected automatically if
the photometry is not reliable in the bands capturing the emission lines. However,
there will be galaxies where the photometry might be problematic only in some
of the bands dominated by the stellar continuum. For instance, in the miniJPAS
area, among the galaxies that are below 0.35 in redshift and 22.7 magnitudes in
the rSDSS band (2291), 30 % of them have at least one band where the photome-
try is not reliable. Most of the galaxies in this sample (70 %) have a median S/N
below 10. Naturally, this fraction will decrease as the median S/N of the sample
increases.

One solution to address the problem of missing date requires training several
ANN and considering different configurations where part of the data is accessi-
ble. Nevertheless, this would imply testing the performance of the ANN in many
scenarios and would be computationally very expensive. The other solution is
to replace the missing data in the corresponding filter with the fluxes obtained
from the spectral fitting of the stellar continuum. Several spectral fitting codes
can be used, such as MUFFIT (Dı́az-Garcı́a et al. 2015) or BaySeAGal (Amorim
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et al. in prep.). This analysis provides reliable photometric predictions for the
missing data, as well as information regarding their stellar population properties
(e.g., stellar mass, age, and extinction, which is always necessary for a more com-
prehensive picture). Furthermore, the stellar continuum is needed for obtaining
absolute emission line fluxes. We follow this technique to treat the missing data
in J-PAS.

3.4 Validation of the method.
In this section we perform several tests to study the predictability and limitations
of the model. First, we evaluate the capability of the ANNC in section 3.4.1.
Second, in section 3.4.2, we compare the predictions of the EWs obtained by
the ANNR and trained with the CALMa set with the SDSS testing sample. In
section 3.4.3, we compare the performance of the different training sets proposed
in section 3.3.2. In section 3.4.4, we test the 5max method and we study the impact
of the redshift uncertainty on the ANNR predictions as a function of the EW in
section 3.4.5. Finally, in section 3.4.6 we estimate the minimum EW measurable
in function of the S/N of the photometry for each of the emission lines predicted
by the ANN.

3.4.1 Classifying galaxies
The ANNC is trained with the CALIFA training sample. To evaluate its efficiency,
we explicitly selected a subset of 10000 galaxies from the SDSS catalog with of
which 5000 galaxies belongs to Class1 and 5000 to Class2. (see section 3.3.2).
Galaxies in each class are picked at random from the catalog. For each galaxy, the
ANNC yields a number between 0 and 1 indicating the probability of being one of
the two classes. As we discuss in section 3.4.4, the 5max method (section 3.3.3) is
not suitable for galaxies without emission lines. Most probably, it would increase
the amount of false positives as the redshift uncertainty increases. Since we have
noticed that the ANNC is less sensitive to redshift and is able to classify galaxies
even when the uncertainty is high, we simply compute the average of each one of
the predictions within the redshift interval defined by δz.

We show in Fig. 3.3 the receiver operating characteristic (ROC) curve, which
represents the true positive rate (TPR) versus the false positive rate (FPR) for
EWmin = 3 Å. We also show how the ROC curve varies as a function of the
redshift uncertainty. The ANNC scores very high even when δz = 0.01 and loses
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Figure 3.3: ROC curve of the ANNC for EWmin = 3 Å as a function of the redshift uncertainty
for 10000 SDSS galaxies. The legend shows the areas under the ROC curves for each ∆z. In Table
3.1 we show these values for other EWmin settings. Blue dashed line shows the performance of a
random classifier.

efficiency gradually as the uncertainty in the redshift increases. We summarize in
Table 3.1 the area under the ROC curves for others EWmin. The ROC curves do
not show remarkable changes in function of the EWmin used in the classification.

3.4.2 ELG: EWs, line ratios and BPT diagram

In this section, we discuss how the CALMa training set (see section 3.3.2) scores
in the SDSS testing sample. We use the spectroscopic redshift provided in the
catalog without considering any error so as to separate the uncertainties intrinsi-
cally associated to the model from those related to redshift. We do not consider
the errors of SDSS spectra; rather, we add Gaussian noise to each magnitude 100
times, assuming an average S/N of 10.

The testing set from CALIFA, MaNGA, and SDSS are composed of 5000
synthetic J-spectra with S/N in the EWs above 10. This criterion excludes prefer-
entially galaxies with low emission. We also exclude the spectra where the EWs
are greater than 600 Å to test the model in the range of which we trained the
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EWmin Area (∆z = 0.01) Area (∆z = 0.02) Area (∆z = 0.03)
3 Å 0.9949 0.9629 0.8394
5 Å 0.9948 0.9507 0.8160
8 Å 0.9938 0.9604 0.8407
11 Å 0.9915 0.9594 0.8547
14 Å 0.9894 0.9600 0.8614

Table 3.1: Area under the ROC curve as a function of the redshift uncertainty and the EWmin

used in the classification.

ANNR. Hence, even though we are able to identify strong and weak emission
lines galaxies, their EWs might not be accurate due to these selection criteria on
the training sample.

Equivalent widths

Fig. 3.4 compares the EWs predicted by the ANNR and those in the SDSS testing
sample (extracted from the MPA-JHU DR8 catalog). We do not plot the errors
yielded by the ANNR for visual reasons. A complete analysis of the errors esti-
mated by the ANNR, as discussed in section 3.3.4, is performed in section 3.4.6.
The plots on the left are color-coded with the density of points and the ones in the
middle with the redshift of the galaxy. The histograms on the right represents the
relative difference between the ANNR predictions and the SDSS testing set. We
constrain better the EW of Hα followed by Hβ, [O iii] and [N ii] (see median and
median absolute deviation in Fig. 3.4). The Hα line, which is the most powerful
one, presents less dispersion and bias. Hβ and [O iii] lines are recovered with
similar precision and [N ii] line shows more dispersion and bias. We observe that
[N ii] line saturates at high values, that is to say, the EWs tend to be underesti-
mated as the strength of the line increases. The same effect occurs in the [O iii]
line in form of a second branch. We analyze this effect in section 3.4.2. We do not
observe strong color gradients in the middle panels, indicating we are not biased
with regard to the redshift of the galaxy.

In summary, the EWs of Hα, Hβ, [N ii], and [O iii] can be predicted with a
relative standard deviation of 8.4 %, 13.7%, 14.8 %, and 15.7 % respectively. Hα,
Hβ, [N ii], and [O iii] lines presents a relative bias of 0.03%, 5.0 %, 4.8 %, and
−6.4 % respectively.
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Figure 3.4: EWs of Hα, Hβ, [N ii] and [O iii] predicted by the ANNR compared to SDSS testing
sample. The ANNR is trained with the CALMa set. The color-code represents the density in
arbitrary units (right panel) and the redshift (left panel). The normalized histograms show the
relative difference between both values. Black and blue numbers are the median and the MAD of
the difference. Black line is the 1:1 relation and grey dashed lines represents the best linear fit.
The red dashed line represents the median.
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Ratios between emission lines

Based on the EWs, we can easily obtain the ratios of [N ii]/Hα and [O iii]/Hβ un-
der the approximation that each couple has the same stellar continuum. From that,
we also obtain the metallicity indicator O 3N 2 ≡ log{([O iii]/Hβ)/([N ii]/Hα)}
(Pettini & Pagel 2004). Fig. 3.5 shows the comparison between the logarithmic
ratios obtained with ANNR and the SDSS testing sample. As in Fig. 3.4, the plots
are color-coded with the density of points (left column) and the redshift of the
galaxy (middle panel). The histograms on the right show the logarithmic differ-
ence between the ANNR predictions and the SDSS testing set.

The [N ii]/Hα ratio is predicted within 0.092 dex and a bias of −0.02 dex.
The [O iii]/Hβ ratio is slightly better constrained, with no bias and a dispersion
of 0.078 dex. Finally, the O 3N 2 is recovered within 0.108 dex and a bias of
0.04 dex. The saturation of the [N ii] line at high values is responsible of the
same effect observed in the [N ii]/Hα ratio. Since MaNGA and CALIFA surveys
observed galaxies spatially resolved, the number of star-forming spaxel is much
more numerous in the training sample and consequently the ANNR has few spectra
to constrain the ratio of [N ii]/Hα in galaxies hosting an AGN. To a lesser extent,
that also occurs in the [O iii]/Hβ ratio for galaxies with values higher than 3.2 and
in the form of a second branch in the [O iii] line.

BPT diagram

In Fig. 3.6, we compare the BPT diagram recovered by the ANNR (left plot) and
the one obtained from the SDSS testing sample (right plot). Galaxies are color-
coded with the density of points and are grouped into four classes by three dividing
lines: star-forming, composite, Seyfert, and LINER. The solid curve is derived
empirically using the SDSS galaxies (Kauffmann et al. 2003a, hereafter ka03).
The dashed curve is determined by using both stellar population synthesis models
and photoionization (Kewley et al. 2001, hereafter Ke01). The dotted line is a
empirical division between Seyfert and LINER found by (Schawinski et al. 2007,
hereafter S07). The sequence of metal enrichment experienced by star-forming
galaxies from high to low values of the [O iii]/Hβ ratio is clearly visible and well
reproduced in the diagram. We will refer to that as the SF-wing. However, the
saturation of the [N ii]/Hα and [O iii]/Hβ ratios produces the migration of galaxies
from right to left and from top to bottom lowering the percentage of Seyferts (from
10.04 % to 6.78 %), composite (from 15.4 % to 10.33 %) and LINERS galaxies
(from 1.7 % to 0.21 %) and increasing the percentage of star-forming galaxies
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Figure 3.5: Comparison between [N ii]/Hα, [O iii]/Hβ and O 3N 2 ratios estimated by the ANNR

and SDSS testing sample. Same scheme of Fig. 3.4. The ANNR is trained with the CALMa set.
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Figure 3.6: BPT diagram obtained with the ANNR and SDSS testing sample from the MPA-JHU
DR8 catalog. The ANNR is trained with the CALMa set. The color-code indicates the density of
points. The solid (ka03), dashed (Ke01) and dotted lines (S07) define the regions for the four main
ionization mechanism of galaxies. The percentage for each group is shown in black.

(from 74.29 % to 83.27 %).
Another way to look at this is Fig. 3.7. We show the direction towards the

location which galaxies should be placed in the BPT according to the SDSS MPA-
JHU DR8 catalog. The vectors are color-coded with the distance of each galaxy
between the two BPT diagrams and those at a greater distance are plotted last.
On average, star-forming galaxies deviate 0.10 dex while Seyfert and composite
galaxies do 0.12 dex. In the right panel of Fig. 3.7, we plot the angular distribu-
tion of star-forming, Seyfert, and composite galaxies. The angle is defined as a
clockwise rotation towards the x axis. While star-forming galaxies do not show
any preferential direction, Seyfert and composite galaxies point with an average
angle of 45o in the diagram. The CALMa set is very good at predicting the SF-
wing because the main ionization mechanism in most of the regions in CALIFA
and MaNGA galaxies is dominated by star-formation process. However, galaxies
with a high [N ii]/Hα ratio are more difficult to constrain.

3.4.3 Comparison between different ANNR training sets
As we pointed out in the section 3.3.2 we trained the ANNR with two different
training samples. In Appendix A, we show the results obtained with the SDSS
training set in the SDSS testing sample. A quick look at these plots (Appendix
A.1, A.2, and A.3) proves the importance of testing the model on data with a
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Figure 3.7: BPT diagram obtained by the ANNR trained with the CALMa set. Arrows point
in the direction towards the location where galaxies should be placed according to their position
in the SDSS MPA-JHU DR8 catalog. The color represents the distance for each point between
the two BPT diagrams. The solid (ka03), dashed (Ke01) and dotted lines (S07) define the regions
for the four main ionization mechanisms of galaxies. The percentage for each group is shown
in black. The histograms on the rights represent the angular distribution of the arrows for Star
forming, Seyfert and composite galaxies. The angle is defined as a clockwise rotation towards the
x axis.

different observational setup and calibration. Considering the fact that the EWs
are estimated from a pseudo-spectrum (J-spectrum) with a much lower resolving
power, the performance of the SDSS training set in SDSS testing sample is out-
standing. Nevertheless, it would not be realistic to deduce from that the actual
capability of this method to predict in J-PAS data. Testing the CALMa training
set with SDSS galaxies or vice versa gave us a better picture of the weakness and
inaccuracies of the model. For instance, the predictions made by ANNR that were
trained with SDSS set on the [N ii]/Hα and [O iii]/Hβ ratios of MaNGA and
CALIFA spaxels tend to be overestimated. This is the opposite effect observed
when the ANNR is trained with CALMa training set and tested on SDSS galaxies.
The performance on the validation samples, i.e. the data that belongs to the same
survey, is generally better.

In Table 3.4.3 and 3.4.3 we show the performance of both training sample
(SDSS test and CALMa set) in each one of the testing sets (CALIFA, MaNGA
and SDSS). There is always an emission line that is better recovered in one partic-
ular simulation, for example, Hα in CALMa versus SDSS, however, the overall
performance of the ANNR is generally more accurate using data from the same
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survey.

Training vs Test Hα (%) Hβ (%) [O iii] (%) [N ii] (%)
SDSS vs SDSS −0.4 ± 8.1 −2.1 ± 12.4 1.9 ± 16.0 2.7 ± 16.4
SDSS vs CALIFA −6.3 ± 10.7 −12.5 ± 13.5 −5.3 ± 21.1 −2.3 ± 21.4
SDSS vs MaNGA −2.4 ± 11.1 −8.1 ± 13.7 −3.5 ± 19.9 9.8 ± 22.1
CALMa vs CALIFA −4.4 ± 8.1 −4.9 ± 12.2 1.5 ± 19.2 −3.8 ± 15.3
CALMa vs MaNGA −2.3 ± 8.6 −1.7 ± 12.2 0.4 ± 17.4 8.4 ± 18.2
CALMa vs SDSS 0.03 ± 8.4 5.0 ± 13.7 4.8 ± 14.8 −6.4 ± 15.7

Table 3.2: Relative difference between the EWs (in percentage) predicted by ANNR and the
true values. Two training sample are used for training: CaLMA and SDSS, and three for testing:
SDSS, CALIFA and MaNGA.

Training vs Test [N ii]/Hα [dex] [O iii]/Hβ [dex] O 3N 2 [dex]
SDSS vs SDSS 0.019 ± 0.089 0.027 ± 0.080 0.014 ± 0.12
SDSS vs CALIFA 0.018 ± 0.122 0.04 ± 0.102 0.023 ± 0.159
SDSS vs MaNGA 0.06 ± 0.105 0.033 ± 0.096 −0.031 ± 0.148
CALMa vs CALIFA 0.003 ± 0.088 0.035 ± 0.089 0.037 ± 0.131
CALMa vs MaNGA 0.051 ± 0.083 0.019 ± 0.077 −0.03 ± 0.125
CALMa vs SDSS −0.020 ± 0.092 0.007 ± 0.078 0.04 ± 0.108

Table 3.3: Relative difference between the EWs ratios (in dex) predicted by ANNR and the true
values. Two training sample are used for training: CaLMA and SDSS, and three for testing: SDSS,
CALIFA and MaNGA.

3.4.4 The 5max method in practice
A simple test to confirm the capability okf the 5max method for retrieving the
redshift of the object is to verify whether the average redshift over the five con-
figuration is far from the true redshift. Normally, we would predict the EWs only
in the redshift within the PDF of photo-z before applying the 5max, but let us as-
sume we do not have any information regarding the redshift of the object. Then,
we have to calculate the EWs in all the redshift from 0 to 0.35 inside the grid and
pick only the five redshifts that maximize their sum. Fig. 3.8 shows this scenario
where points are color-coded with the spectroscopic redshift. For emission line
galaxies (

∑
EWi > 20 Å), this method is able to obtain the redshift of the object

with high precision; what is more, the redshift is not needed as an input. Never-
theless, the 5max is not able to retrieve the redshift of the object when galaxies
have low emission. The set of redshifts that maximizes the sum of the EWs is
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largely uncertain and consequently we do need the PDFs to constrain the redshift
value.

Figure 3.8: δz obtained from the difference between the spectroscopic redshift and the median
redshift in the 5max setting in function of the sum of the EWs provided in the SDSS catalog for a
total of 10000 galaxies. Points are color-coded with the spectroscopic redshift.

3.4.5 Dependency on the EW and redshift uncertainty
In order to explore the limitation of the model as a function of the redshift un-
certainty and the EW of each one of the emission lines, we assembled galaxies in
bins by the EW provided in the SDSS catalog and computed the ratio (R) between
the predicted and observed EW. Each bin contains 500 galaxies in the interval
10γ < EWS DS S < 10γ+0.1 with γ ranging from 0.8 to 2.5 for Hα, from 0.8 to 2.2
for [O iii], from 0.8 to 1.8 for Hβ and from 0.8 to 1.8 for [N ii]. As we observe in
Fig. 3.9, Hα is clearly more affected by the 5max strategy when EW(Hα) ≤ 101.2

Å. Independently of the redshift uncertainty, the ANNR trained with the CALMa
set has more difficulties to constrain the [N ii] line underestimating its value as the
EW increases. It also presents more dispersion, which is an indication that high
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Figure 3.9: Each point represents the median ratio between the predicted and the observed SDSS
EWs and bars indicate the mean absolute deviation. Each bin contains 500 galaxies in the interval
10γ < EWS DS S < 10γ+0.1 with γ ranging from 0.8 to 2.5 for Hα, from 0.8 to 2.2 for [O iii], from
0.8 to 1.8 for Hβ and from 0.8 to 1.8 for [N ii]. From left to right and top to bottom we increase
the uncertainty in the redshift. Dashed blue lines point to a ratio of 1.15 and 0.85 respectively.
Dash black line represent zero bias between the predicted and observed EWs.
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values of the [N ii] line implies a higher number of galaxies hosting an AGN.
Nonetheless, we are able to constrain the EW of galaxies with a bias less than
10 % for most of the lines – even with high uncertainty in the redshift.

3.4.6 EW limit
The minimum EW measurable in a photometry system using a traditional method
depends only on the S/N of the photometry and the effective width of filters in
the system. Let us assume that an emission line falls within one filter ( fi) and we
know with high precision the redshift of the object. The EW of an emission line
can be computed assuming the line is infinitely thin, as:

EW = ∆′(λz)(Q − 1), (3.3)

where ∆′ is the effective width of filter fi and Q is the ratio between the flux with
and without emission line see (see Pascual et al. 2007, for details) or simply:

Q = 10−(mobs
AB−mcont

AB )/2.5, (3.4)

in AB magnitudes. Then, if we are able to estimate the flux of the stellar contin-
uum in the filter tracing the emission line, obtaining the EW is straightforward.
The S/N of such line can be expressed in terms of Q and the S/N of the photometry
in the filter fi through the following equation:

S/NEW =
Q − 1

Q
S/Nphot. (3.5)

The minimum EW measurable can be written as:

EWmin =
∆′

S/Nphot − 1
. (3.6)

For S/Nphot = 10 only lines with EW greater that 16.1 Å can be measured in a
filter width of 145 Å.

In Fig. 3.10, we determine the relation between the S/N of each line obtained
with the ANN in function of the S/N of the photometry. As before, we assume
no errors in the redshift of the objects. We analyze here the same galaxies used
in the previous section in order to study the dependence with the EW. Each color
represents the average S/N obtained in the line for 500 SDSS galaxies with the
same EW. The red dashed line follows Eq. 3.5 for EW = 10 Å, which is the
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Figure 3.10: Predicted S/N of Hα, Hβ, [O iii] and [N ii] lines in function of the S/N in the
photometry. For a given S/N in the photometry, each point represent the mean S/N obtained in the
line for 500 SDSS galaxies in the interval (color-coded) γ < log EWS DS S < γ+ 0.1 with γ ranging
from 0.8 to 2.5 for Hα, from 0.8 to 2.2 for [O iii], from 0.8 to 1.8 for Hβ and from 0.8 to 1.8 for
[N ii]. Errors bars indicate the mean absolute deviation. Dashed red line represents Eq. 3.5 for
EW = 10 Å.
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lowest EW bin considered in the simulations. All the lines estimated with the
ANN can be measured with a precision higher than a method based on the contrast
between the emission line flux and the stellar continuum.

Hβ is the line that can be predicted with the highest S/N for the same EW, with
even better precision than Hα. This is not surprising since the algorithm has found
the implicit relation between Hα and Hβ constrained by the Balmer series and the
amount of interstellar dust. Therefore, an EW in Hβ of 10 Å, which corresponds
on average to an EW in Hα of about 30 Å, is measured with the same S/N. More
complex relations, such as the one between Hα and [N ii] has also been found,
but we observe a flattening of the S/N of the [N ii] line for the highest EW with an
increase in the scatter. This regime is populated with more AGN-like galaxies and
consequently it is more difficult to constrain it with the CALMa set. This finding
agrees with the behaviour observed in Fig. 3.9, where higher values of [N ii] are
systematically underestimated. Finally, the [O iii] line is generally more difficult
to constrain as we obtain lower S/N. Nevertheless, it can be recovered with better
precision than a method based only on the photometry contrast.

To sum up, with an ANN one can measure a EW of 10 Å in Hα, Hβ, [N ii],
and [O iii] lines with a S/N in the photometry of 5, 1.5, 3.5, and, 10 respectively.
However, methods based on the photometry contrast need for the same EW a S/N
in the photometry of at least 15.5. These facts illustrate once again the capability
of machine learning algorithms to go beyond in precision and accuracy respect to
traditional methods when large amount of data sets are available.

3.5 Comparison between miniJPAS and SDSS
In this section, we analyze and compare the data from the SDSS survey that has
also been observed with miniJPAS in the AEGIS field. First, we describe the
miniJPAS survey in section 3.5.1. We analyze and compare the properties of
galaxies in terms of their emission lines in section 3.5.2.

3.5.1 The miniJPAS survey
The miniJPAS survey (Bonoli et al. 2021) is the result of the J-PAS-Pathfinder
observation phase carried out with the 2.55 m telescope (T250) at the Observatorio
Astrofı́sico de Javalambre in Teruel (Spain). the miniJPAS survey was conducted
with the Pathfinder camera, the first instrument installed in the T250 before the
arrival of the Javalambre Panoramic Camera (JPCam, Cenarro et al. 2019; Taylor
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et al. 2014; Marin-Franch et al. 2015). The JPAS-Pathfinder instrument is a single
CCD direct imager (9.2k×9.2k, 10µm pixel) located at the center of the T250 FoV
with a pixel scale of 0.23 arcsec pix−1, that is vignetted on its periphery, providing
an effective FoV of 0.27 deg2. The miniJPAS data includes four pointings of 1
deg2 along the Extended Groth Strip (called the AEGIS field). We use the same
photometric system of J-PAS. Thus, AEGIS was observed with 56 narrow band
filters covering from ∼ 3400 to ∼ 9400 Å. Observations in the four broad bands
(uJPAS , and SDSS g, r, and i) were also taken. More than 60000 objects were
detected in the r band, allowing to build a complete sample of extended sources
up to r ≤ 22.7 (AB). A detailed description of the survey is in Bonoli et al. (2021).
The data is accessible and open to the community through the web page of the
survey6.

3.5.2 The miniJPAS versus SDSS

For this comparison, we selected all galaxies observed with SDSS and miniJPAS
with redshift below z ≤ 0.35 and a minimum average S/N of 20 in J-PAS narrow
band filters. By a visual inspection we get rid of all quasars in the sample. We
ended up with a total of 89 objects. Whenever photometry measurements are
lacking or the S/N in a particular filter is below 2.5, we replace it with the best-
fit obtained from the stellar population analysis of the galaxy, as we discuss in
section 3.3.5. For this comparison, we employ BaySeAGal (Amorim in prep), a
Bayesian parametric approach which assumes a tau-delayed star formation model
for the star-formation history.

Generally, galaxy properties vary within the galaxy: the distribution of the
gas, its temperature and its density, the distribution of interstellar dust or the stel-
lar populations change as a function of the position in the galaxy (González Del-
gado et al. 2015). Consequently, if the SFR of a galaxy were higher in the outer
parts, the galaxy would look younger in the integrated spectrum than in the cen-
tral part. Similarly, the AGN of a galaxy would not leave the same imprint in the
spectrum if the integrated areas covered regions dominated by other ionization
mechanisms. Therefore, ideally, it would be optimal to analyse the same region in
both surveys, which implies integrating over the same area. However, the aperture
corresponding to the 3 arcsec fiber of SDSS is not sufficiently large to ensure that
the point spread function (PSF) in miniJPAS observations is not affecting the pho-
tometry in the filters where the seeing is worse. For this reason, we make use of

6http://www.j-pas.org
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Figure 3.11: Comparison between the EWs of Hα, [N ii], Hβ and [O iii] measured in the SDSS
spectra and the predictions made by the ANN on miniJPAS data using the MAG PSFCOR (top panel)
and synthetic J-PAS magnitudes obtained from the SDSS spectra (bottom panel). Black and blue
numbers are the median and the median absolute deviation of the difference. Dashed black line is
line with slope one.

the MAG PSFCOR photometry which corrects each magnitude individually by con-
sidering the light profile of the galaxy and the PSF for each filter (Molino et al.
2014, 2019). As a consequence, the integrated area varies from galaxy to galaxy,
going from 2 to 7 arcsec, and should be taken into account to interpret fairly this
comparison. Although the ANNR only use colors as inputs, we scale the SDSS
spectrum to match the rSDSS miniJPAS magnitude in each galaxy for a visual
inspection.

Figure 3.11 shows the EWs obtained by the ANNR on miniJPAS photometric
data (column 1) and on the synthetic J-PAS magnitudes obtained after convolving
SDSS spectra with J-PAS filters (column 2) and assuming an average S/N of 20.
We compare those values with the EWs derived as a result of fitting a Gaussian
function to each one of the emission lines in the spectrum (x-axis). We do not
include in this comparison the emission lines where EWs are below 1 Å, which
indeed are compatible with zero. The number of galaxies in each row are from top
to bottom 57, 37, 64, and 31. We find an excellent agreement when it comes to
SDSS synthetic magnitudes, which is in line with the simulations performed with
the SDSS dataset. We also find a remarkable correlation in Hα, Hβ and [N ii]
with J-PAS magnitudes, but we obtain in most of the cases higher values with an
increase in the dispersion (see median and MAD in Fig. 3.11). The agreement
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is less favourable for the [O iii] line. Nevertheless, we should bear in mind the
limited number of galaxies used here in order to avoid drawing any conclusion that
may not be supported from a statistical point of view. Instead, we consider more
appropriate to analyze the origin of these discrepancies by visually examining
each object.

In Fig. 3.12, we show several galaxies analyzed in this comparison. We re-
scaled the SDSS spectrum to match the rSDSS J-PAS magnitude. We compare
the values of the EWs measured in the SDSS spectrum (black) with the values
predicted by the ANNR (blue) for each one of these galaxies. On the bottom part,
we show in each filter the difference between miniJPAS data and SDSS synthetic
photometry, which can certainly help to shed light on the origin of the discrepan-
cies.

The third first images in Fig. 3.12, are emission line galaxies where the agree-
ment in most of the EWs is remarkable. Although ANNs are often difficult to
interpret, it is evident after a visual inspection that the filters capturing the fluxes
of the emission lines are the most relevant in determining the values of the EWs.
The excess in the flux of Hα in galaxy 2243-8838 explains the increase in its
EW respect to what it is obtained from a direct measurement in the spectrum or
with the synthetic fluxes by means of the ANNR. In the same vein, the drop in
the flux observed in the [O iii] line in galaxy 2241-12850 clarifies the differences
found in the EW. Second-order terms include the relation between emission lines
(Balmer decrement or recombination lines) and the colors of galaxies. Certainly,
the excess in the flux of Hβ in galaxy 2243-9127 does not only increase the value
of such line, but it also contributes to the enlargement of the EW of Hα.

2243-9804, 2241-10941, and 2241-13222 are early-type galaxies (ETGs) where
the differences between miniJPAS data and SDSS synthetic fluxes are negligible.
The ANNC estimates very low probability for these galaxies to have any emission
line with a EW greater than 3 Å, which is in agreement with the measurements
performed in SDSS spectra. As we discussed in section 3.4.5 the ANNR tends to
overestimate the EWs in the regime of low emission and consequently a zero level
bias appears in these galaxies. Nonetheless, for many of these lines the values are
compatible with the uncertainty and never overcome the 3 Å limit.

Finally, the fluxes observed by miniJPAS and SDSS present evident differ-
ences in the blue part of the spectrum in the last three galaxies of Fig. 3.12. Most
probably, the integrated areas in miniJPAS for 2243-9209 and 2406-4867 galax-
ies are capturing regions with greater populations of young stars. Such popula-
tions raise the number of ionizing photons being responsible for the increase in
the EWs of emission lines that we observe. The opposite effect occurs in galaxy
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Figure 3.12: Examples of J-PAS galaxies in the AEGIS field with SDSS spectrum. The SDSS
spectrum is re-scaled to match the rSDSS J-PAS magnitude. Diamonds correspond to the filters
not used by the ANN. Blue and black numbers show, respectively, the predictions made by the
ANNR on the EWs and the values measured in the SDSS spectrum. On the top-left part of the plot,
we indicate the J-PAS ID of the object, its redshift and the prediction of the ANNC for EWmin = 3
Å. At the bottom, we show the difference in magnitude between the synthetic fluxes obtained from
SDSS spectra and miniJPAS data. Dashed lines mark from left to right the position of [O ii], Hβ,
[O iii], and Hα emission lines.
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2406-5886, the galaxy looks redder with miniJPAS data and the flux in Hα is less
intense. Therefore, the predictions of the ANNR in the EWs are below the values
measured in the SDSS spectrum.

To sum up, despite of the fact that this comparison suffer from several dif-
ficulties and it would need many more galaxies to be statistically robust, results
are coherent with the simulations presented in section 3.4 and lay the foundations
to better understand and interpret the whole sample of galaxies observed in the
AEGIS field, which we will analyze in the following chapter.

3.6 Summary and conclusions
We have developed a new method based on ANNs to measure and detect emission
lines in J-PAS up to z = 0.35. We can classify galaxies according to the EWs of
the emission lines, even with high uncertainty in the redshift. This will allow us
to better study the density function of emitting-line galaxies in J-PAS.

Using the synthetic photometry of CALIFA, MaNGA or SDSS spectra, we
trained an ANNR to estimate the EWs of Hα, Hβ, [N ii], and [O iii] lines. We
present two training samples to undertake this task.

First, we trained the ANNR with only synthetic J-spectra from MaNGA and
CALIFA surveys and we used SDSS to evaluate the performance of the model.
The lack of a large enough number of AGN-like synthetic J-spectra leads to a sat-
uration of [N ii]/Hα and [O iii]/Hβ ratios at high values, which compromises the
ability of the model to deal with galaxies where the main ionization mechanism is
not dominated by star-formation processes. Nevertheless, we are able to constrain
those ratios within 0.078 and 0.092 dex. Furthermore, we are able to reach 0.070
and 0.087 dex, respectively, if one considers only star-forming galaxies. While a
method based on the photometry contrast need for an EW of 10 Å a S/N in the
photometry of at least 15.5, the ANN can measure the same EW in Hα, Hβ, [N ii],
and [O iii] lines with a S/N in the photometry of 5, 1.5, 3.5, and, 10, respectively.

Second, we trained the ANNR with SDSS galaxies and we revealed the impor-
tance of testing the model with data coming from different surveys. Otherwise,
the performance of the model may be overestimated. While the SDSS training set
scores very high with SDSS testing sample, the performance worsens when we
compare it with the MaNGA or CALIFA test sample.

Finally, we estimate the EWs of a set of galaxies observed both in SDSS and
miniJPAS. We compare the performance of ANNR in the synthetic SDSS fluxes
with the performance in the fluxes measured by miniJPAS. Despite the difficulty
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of comparing data from different surveys in equal terms, we reached an overall
agreement. We argue that the origin of the discrepancies might be attributed to
differences between the integration areas in miniJPAS and SDSS and/or photom-
etry artefacts that appear as a result of the PSF. Many more data would be needed
to be conclusive.

In this chapter, our model is limited to redshift below z = 0.35 in order to
ensure Hα line is measurable with the J-PAS filter system. However, J-PAS will
be able to detect galaxies up to z ∼ 1. Other emission lines, such as the [OII]λλ
3726,3729 doublet, are visible in the optical range up to redshift z < 1.6 and has
been used to trace the star formation (Kewley et al. 2004; Sobral et al. 2012). Such
line might be include in a future version of the model.

Another important limitation of our work lies on the unavoidable gap between
simulations and observations. The data reduction process is full of assumptions
and limitations than can impact the photometry and the error estimates provided in
the final catalogues. For instance, the JPCam will not take pictures of the sky with
its 56 filters simultaneously. Instead, the observations will be carried out in trays
of 14 CCDs, thus different observational conditions will be present in the SED of
individual galaxies. One way to fill this gap might be to used transfers learning. As
as soon as J-PAS begins to observe the sky, we will have J-PAS data for galaxies
already observed by spectroscopic surveys. Therefore, the model might be retrain
with actual observations. An ultimate version of our models should take into
account those facts and build a more sophisticated and complete training sample
so as to be able to overcome the limitations and inaccuracies mentioned and fully
exploit the potentiality of J-PAS. Our main conclusions are summarized below:

• The ANNC can classify galaxies according to the EWs of the emission lines
beyond the contrast that can directly be measured with sufficient signifi-
cance in J-PAS (∼ 16 Å) and in the case of high uncertainty in the redshift
as well.

• The ANNR trained with the CALMa set can estimate the EWs of Hα, Hβ,
[N ii], and [O iii] in SDSS galaxies with a relative standard deviation of
8.4 %, 13.7 %, 14.8 %, and 15.7 %, respectively. The Hα, Hβ, [N ii], and
[O iii] lines present a relative bias of 0.03 %, 5.0 %, 4.8 %, and −6.4 %
respectively. For a S/N of 3, the minimum EW measurable in Hα, Hβ,
[O iii] and [N ii] lines is 18, 6, 40, and, 13 Å, respectively.

• The [N ii]/Hα is constrained within 0.092 dex and a bias of −0.02 dex and
the [O iii] Hβ ratio with no bias and a dispersion of 0.078 dex in SDSS
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galaxies. The O 3N 2 is recovered within 0.108 dex and a bias of 0.04 dex.

• We found an overall correlation between miniJPAS and SDSS galaxies in
the EW of Hα, Hβ and, [N ii] lines. The correlation in the EW of [O iii] is
less strong. More data will be needed to unveil the origin of such discrep-
ancy. Certainly, the problems associated with the integrated areas play an
important role.
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4.1 Introduction

The Hα emission line is an excellent tracer for estimating the current star forma-
tion rate (SFR) in galaxies because it is less affected by dust extinction than UV
light (Kennicutt 1998; Garn et al. 2010; Oteo et al. 2015; Catalán-Torrecilla et al.
2015). The Hα line can be observed in the optical range up to z ∼ 0.4. Thus,
it is very useful for the identification of emission line galaxies (ELGs) in spec-
troscopic and photometric surveys. The detection of other emission lines, such
as [O iii] λλ4959, 5007 Å and the [N ii] λλ6548, 6584 Å doublets1 , is crucial to
determine the main ionization mechanism of ELGs (see, e.g., Cid Fernandes et al.
2011; Belfiore et al. 2016; Sánchez et al. 2018; Lacerda et al. 2020; Kalinova
et al. 2021). Diagrams such as the WHAN (EW(Hα) vs. [NII]/Hα) (Cid Fernan-
des et al. 2011) or the BPT (Baldwin et al. 1981) (e.g., [OIII]/Hβ vs. [NII]/Hα)
can differentiate galaxies in which the gas is ionized by young stars or by an active
galactic nucleus (AGN), from low ionization nuclear emission regions (LINERs,
Heckman 1980), or extended low-ionization emission lines (see, e.g., Lacerda
et al. 2018), in which the ionization might be attributed to old and hot stars. Fur-
thermore, the characterization of the galaxy populations through the SFR and its
correlation with other galaxy properties, such as stellar mass, colors, ages, metal-
licity, and neutral gas content (Kewley et al. 2019; Förster Schreiber & Wuyts
2020), is essential to obtain insight into the formation and evolution of galaxies.

Galaxies grow in mass mainly through star formation, which is fed by gas
accretion from the cosmic web. While massive galaxies undergo a larger fraction
of their star formation at early times, less massive galaxies are still forming stars at
a high rate today. The star formation main sequence (SFMS), a tight quasi-linear
relation between stellar mass, (M⋆), and the SFR in log scale (Zahid et al. 2012;
Renzini & Peng 2015; Cano-Dı́az et al. 2016; Duarte Puertas et al. 2017; Belfiore
et al. 2018; Boogaard et al. 2018; Sánchez et al. 2019; Cano-Dı́az et al. 2019;
Shin et al. 2021; Vilella-Rojo et al. 2021), can reveal indications how this process
takes place. Galaxies that are undergoing a starburst, for instance, lie above the
SFMS, while galaxies that have already quenched their star formation lie below
this relation.

The SFMS and its evolution with redshift are expected outcomes of hydrody-
namical models. The currently best cosmological hydrodynamical simulations of
galaxy formation such as Illustris (Sparre et al. 2015) or EAGLE (Furlong et al.

1In the remaining of the chapter, [O iii] λ5007 and [N ii] λ6584 are denoted [O iii] and [N ii],
respectively.
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2015) predict a slope near unity. Semi-analytical models favor a sublinear slope
that is generally higher than 0.8. For instance, Dutton et al. (2010) predicted a
slope of 0.96 for galaxies with stellar masses between 109 and 1011M⊙. However,
Mitchell et al. (2014) used GALFORM and retrieved a slope of 0.87 at z = 0.1.

The slope of the SFMS in observations ranges from 0.6 to 1, depending on the
data, the SFR tracer, and method used (see, e.g., the study of Speagle et al. 2014,
and references therein). The discrepancies found by different studies are expected.
On the one hand, spectroscopic surveys such as the Sloan Digital Sky Survey
(SDSS, York et al. 2000) have aperture effects that can cause an underestimation
of the total SFR within the galaxy (Duarte Puertas et al. 2017). On the other hand,
the SFR derived from photometric surveys throughout Hα measurements needs
to be corrected for the [N ii] and dust extinction, which become the main sources
of uncertainty.

The definition of the SFMS itself might also lead to significant differences
between different works, even though they all trace the SFR through the Hα line.
Some authors (e.g., Vilella-Rojo et al. (2021, z ≤ 0.017) or Shin et al. (2021,
z ∼ 0.07− 0.5)) relied on color-color diagrams. Others selected star-forming (SF)
galaxies based on the BPT diagrams with a cut in the equivalent width (EW) of
Hα or Hβ. For example, Cano-Dı́az et al. (2016, 0.005 ≤ z ≤ 0.03) imposed a
minimum EW in Hα of 6 Å while Duarte Puertas et al. (2017, 0.005 ≤ z ≤ 0.22)
used instead 3 Å and Zahid et al. (2012, z = 0.07, 0.8 and 2.26) adopted a EW of
4 Å in Hβ. In addition, the SFMS has also been defined as the ridge line in the
M⋆-N-SFR- plane where N account for the number of galaxies in every M⋆-SFR
bin (0.02 ≤ z ≤ 0.085, Renzini & Peng 2015).

In essence, there is no unique and homogeneous definition of the galaxies that
belong to the SFMS. Furthermore, any dividing line between star-forming and
quiescent galaxies affects the analysis of the SFMS because it includes or excludes
some of the galaxies in the the so-called ‘green valley’ (GV), that is, galaxies that
are in transition and are interpreted as a crossroads in galaxy evolution (see, e.g.,
Mendez et al. 2011; Gonçalves et al. 2012; Schawinski et al. 2014; Dı́az-Garcı́a
et al. 2019a). Sánchez et al. (0.03 ≤ z ≤ 0.2, 2019) attributed the constancy of
the SFMS slope across galaxy mass to the selection criterion (based on sSFR cut).
There is no drop in the SFR at high masses. In the same vein, Belfiore et al.
(0.03 ≤ z ≤ 0.15, 2018), who also used the Hα line as an SFR tracer, found
that the flattening in the slope of the SFMS only occurs if galaxies with quiescent
central regions (cLIERs) are included in the fit.

In addition, the detection limit and particularities of each study might lead to
a specific bias in the selection criteria. For instance, a photometric survey that



4.1. Introduction 100

selects ELGs based on a minimum contrast would be limited to the minimum EW
that can be measured and would therefore be biased toward highly actively SF
galaxies. As a consequence, it produces an increase in normalization constant
and a shallower slope (Khostovan et al. 2021). Finally, the minimization method
employed in the fitting takes the uncertainties into account in different ways. It
might therefore also have an impact on the shape of the SFMS.

Another important aspect that helps to understand how galaxies assemble their
mass throughout cosmic time is estimating the intrinsic scatter of galaxies in the
SFMS. It is expected that low-mass galaxies are more sensitive to stochastic events
such as starbursts or feedback from supernovae. Theoretical simulations (Hopkins
et al. 2014; Domı́nguez et al. 2015; Matthee & Schaye 2019) and observations
(Salim et al. 2007; Emami et al. 2019; Boogaard et al. 2018; Santos et al. 2020)
have both found an increase in scatter for low-mass galaxies (< 109M⊙ ).

Other studies (Willett et al. 2015; Davies et al. 2019) found that the dispersion
along the SFMS follows a U-shaped distribution, meaning that galaxies with high
and low stellar masses scatter more from the SFMS. Interestingly, the U-shape
depends on the way the SFMS is defined. While selecting SF galaxies based on
u − r colors or morphology causes the SFMS to have higher scatter for galaxies
at high mass, a selection based on a minimum sSFR, which is equivalent to a
minimum EW in Hα, produces a decrease in scatter as the mass of the galaxy
increases (see, e.g., Davies et al. 2019).

It has been proven by the analysis of stellar populations within galaxies through
stellar continuum spectral energy distribution (SED) fitting that the SFMS holds
true at high redshift with an increase in the global SFRs of galaxies (Daddi et al.
2004; Oliver et al. 2010; Karim et al. 2011; Ilbert et al. 2015; Schreiber et al. 2015;
Tasca et al. 2015; Rodighiero et al. 2011). In terms of the SFR density (ρSFR), the
Universe reached a peak at ∼ 3 Gyr after the Big Bang, and it has been decreasing
ever since (Madau & Dickinson 2014; Driver et al. 2018; López Fernández et al.
2018; Sánchez et al. 2019; Leja et al. 2019; Bellstedt et al. 2020). Through Hα
measurements, astronomers are also able to measure ρSFR both in the nearby Uni-
verse and at intermediate redshift, which has confirmed this trend (Gallego et al.
1995; Ly et al. 2007; Shioya et al. 2008; Dale et al. 2010; Westra et al. 2010; Drake
et al. 2013; Sobral et al. 2013; Gunawardhana et al. 2013; Sobral et al. 2015; Stroe
& Sobral 2015; Van Sistine et al. 2016; Khostovan et al. 2020; Vilella-Rojo et al.
2021).

The incredible progress achieved in the past decades would not have been
possible without the construction of large galaxy surveys. Multi-object spec-
troscopy (MOS) surveys such as the SDSS and the the Galaxy And Mass As-
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sembly (GAMA; Driver et al. 2011) or integral field unit (IFU) surveys such as
the Calar Alto Legacy Integral Field Area (CALIFA; Sánchez et al. 2012; Garcı́a-
Benito et al. 2015; Sánchez et al. 2016a) and the survey Mapping Nearby Galaxies
at the Apache Point Observatory (MaNGA; Bundy et al. 2015; Law et al. 2015)
provide a very detailed description of the optical SED of galaxies. However, they
are partially biased through their preselection of samples, which is driven by some
properties such as redshift, fluxes, or a galaxy size that is constrained to a partic-
ular range.

In contrast, narrowband photometric surveys such as HiZELS (Best et al.
2013; Sobral et al. 2013; Matthee et al. 2017), ALHAMBRA (Moles et al. 2008;
Molino et al. 2014), DAWN (Coughlin et al. 2018), J-PLUS (Cenarro et al. 2019),
S-PLUS (Mendes de Oliveira et al. 2019), the Deep and UDeep layers driven by
the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) (Hayashi
et al. 2018, 2020), LAGER (Khostovan et al. 2020), or SHARDS (Pérez-González
et al. 2013; Lumbreras-Calle et al. 2019), experience these effects to a lesser de-
gree. In particular, narrowband photometric surveys are able to detect fainter ob-
jects than their spectroscopic counterpart at a fixed exposure time. Furthermore,
they can fully observe galaxies whose light cannot be captured entirely by IFU-
like surveys (see, e.g., Fig. 19 in Bonoli et al. 2021). However, their SED in
the optical, infrared, or UV is limited by the number of filters and their width.
More importantly, ELGs can only be detected in certain redshift intervals, which
makes contamination from other sources more likely because the emission lines
may be confused; for example, [O iii] emitters may be detected as Hα emission
line objects.

The special design of the Javalambre Physics of the Accelerating Universe As-
trophysical Survey (J-PAS, Benitez et al. 2014) enables overcoming some of the
caveats for spectroscopic and traditional photometric surveys. J-PAS will play a
crucial role in the upcoming years, which will be very competitive compared to
the new generations of spectroscopic surveys such as DESI (DESI Collaboration
et al. 2016), Euclid (Laureijs et al. 2011), or the WHT Enhanced Area Veloc-
ity Explorer-Stellar Population at intermediate redshift Survey (WEAVE-StePS;
Costantin et al. 2019).

The unprecedented area that J-PAS will cover (∼ 8000 deg2 of the northern
sky) is perhaps one of the main advantages compared to previous and current
surveys. J-PAS will observe the sky with 56 bands: 54 narrowband filters in
the optical range, plus two medium-band filters, one in the UV and another in the
near-infrared. Separated by 100 Å, each narrowband filter has a width of ∼ 145 Å,
which provides a resolving power of R ∼ 60 (J-spectrum hereafter). These unique
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characteristics make J-PAS an ideal survey for galaxy evolution studies (Bonoli
et al. 2021), superseding the scientific impact achieved by other previous medium-
band imaging surveys, such as ALHAMBRA (R ∼ 20). The narrowband setup of
J-PAS allows the detection and measurement of galaxies with emission lines in a
continuous range in redshift within a nonsegregated area (Martı́nez-Solaeche et al.
2021). J-PAS observations will be carried out with the 2.55 m telescope (T250)
at the Observatorio Astrofı́sico de Javalambre, a facility developed and operated
by the Centro the Estudios de Fı́sica del Cosmos de Aragón (CEFCA, in Teruel,
Spain) using JPCam, a wide-field 14 CCD-mosaic camera with a pixel scale of
0.2267 arcsec/px and an effective field of view (FoV) of ∼ 4.6 deg2 (Taylor et al.
2014; Marin-Franch et al. 2015; Bonoli et al. 2021).

The pathfinder camera of J-PAS started its observations using 60 optical bands
in four fields of the sky that overlap with the All-wavelength Extended Groth Strip
International survey (AEGIS; Davis et al. 2007), amounting to 1deg2 with more
than 60 000 objects2; hereafter, this is referred to as the miniJPAS survey (Bonoli
et al. 2021). The pathfinder instrument used by the J-PAS collaboration is a single
CCD direct imager (9.2k×9.2k, 10µm pixel) located at the center of the T250 FoV
with a pixel scale of 0.23 arcsec pix−1, vignetted on its periphery. This provides
an effective FoV of 0.27 deg2.

The goal of this chapter is to identify the ELG population in the AEGIS field
and characterize them through their SFR and the stellar population properties.
This work shows the potential of J-PAS data in this regard. We apply a method
based on artificial neural networks (ANN) described in chapter 3 to obtain the EW
of the main emission lines in the optical range: Hα, Hβ, [O iii], and [N ii]. Af-
terward, we analyze the main ionization mechanisms in galaxies through WHAN
and BPT diagrams, and we compare the nebular properties of the gas with the
properties of the stellar populations of their host galaxies derived in González
Delgado et al. (2021). We characterize the SFR-M∗ relation derived from the flux
of Hα, and we compute the cosmic evolution of ρSFR up to z = 0.35.

This chapter is organized as follows. In section 4.2 we present the galaxy
sample taken from miniJPAS, which is the subject of this study. In section 4.3 we
summarize the method we employed, which is based on chapter 3 and González
Delgado et al. (2021). In section 4.4 we identify the ELG population by means
of the EWs of the emission lines and their relations with the stellar population
properties: stellar mass, intrinsic colors, luminosity-age, and so on. We derive the
fraction of AGN, quiescent, and star-forming galaxies in miniJPAS. In section 4.5

2http://www.j-pas.org/
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we characterize the star-forming galaxy population. We derive their SFR through
Hα emission, and we fit the SFMS. In section 4.6 we discuss the implications of
our results in detail and compare them with previous works. We derive the ρSFR

up to z = 0.35. Finally, we provide the outlook for J-PAS in section 4.7, and we
summarize in section 4.8. Throughout this chapter, we adopt aΛCDM cosmology
with H0 = 70 km s−1 Mpc−1, ΩM = 0.3, and ΩΛ = 0.7. All magnitudes are
presented in the AB system (Oke & Gunn 1983), and a Chabrier (2003) initial
mass function (IMF) was employed.

4.2 Sample and data
The galaxy sample studied in this chapter is a subsample of the galaxies analyzed
in González Delgado et al. (2021, see section 2.3). We selected all the objects de-
tected in miniJPAS with a photometric redshift (photo-z) lower than 0.35, which
is the highest redshift at which Hα can be observed in miniJPAS. The photo-
z was estimated with the JPHOTOZ package developed by the photo-z team at
CEFCA. This package is a customized version of the LePhare code (Arnouts
& Ilbert 2011), which has a new set of stellar population synthesis galaxy tem-
plates that were optimized for the miniJPAS filter system (Hernán-Caballero et al.
2021). At the depth of miniJPAS (5σ limits between ∼ 21.5 and 22.5 mag for
the narrowband filters and ∼ 24 mag for the broadband filters in a 3′′ aperture),
there are 17 500 galaxies per deg2 with valid photo-z estimates (rSDSS < 23), of
which ∼ 4 200 have |∆z| < 0.003. The typical error for rSDSS < 23 galaxies is
σNMAD = 0.013 with an outlier rate of η = 0.39. The target photo-z accuracy
σNMAD = 0.003 is achieved after imposing odds > 0.82 (see Hernán-Caballero
et al. 2021, for details).

We imposed a maximum CLASS STAR probability of 0.1, as defined in SExtractor,
in order to select only extended sources. We discarded galaxies with an S/N lower
than 1.8 in the filters to capture the flux of the emission lines. The estimates of
the EWs with the ANN for galaxies with a very low S/N yield large errors. There-
fore, these errors indicate the limit to which galaxies can be analyzed. For this
reason, we favor a more conservative approach by setting a very low constraint on
the S/N of the filters with which the flux of the emission lines is captured. Thus,
we can exclude galaxies a posteriori if their EW predictions are not reliable. The
magnitude limit cut of the sources was set at 22.5 mag in the rSDSS band. This is
near the completeness limit for miniJPAS extended sources (Bonoli et al. 2021).
Finally, the sample is composed of 2154 galaxies in total.
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Figure 4.1: Relation between the apparent magnitude in the rSDSS band and redshift for all
galaxies in the parent sample. We used the MAG AUTO photometry. Dots are color-coded according
to the median S/N of the J-PAS narrowband filters.

In Fig. 4.1 we show the relation between the apparent magnitude in the rSDSS
band and the redshift for the galaxies in the parent sample. The color bar indicates
the median S/N measured in the J-PAS narrowband filters. In this chapter, we
made use of the MAG AUTO photometry from the miniJPAS dual-mode catalog
because it captures the entire light from the galaxy. Most of the galaxies in this
sample (∼ 68 %) are higher than 0.205 in redshift and have an S/N lower than 10.

In Fig. 4.2 we show some examples of galaxies in this sample at different
redshift and magnitude bins. Emission lines such as Hα or [O iii] are clearly
visible in most of them. Some lines are captured by more than one filter (see, e.g.,
2241-6186). This is caused by the overlapping adjacent filters, whose separation
(100 Å) is smaller that their width (∼ 145 Å).

4.3 Method

4.3.1 Artificial neural networks
This section is a summary of the previous chapter. Thus, the reader can skip it if
he/she already read it.
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Figure 4.2: J-spectra in magnitudes (MAG AUTO photometry) for a set of galaxies within the
AEGIS field observed by miniJPAS. Stars correspond to broadband filters (uJPAS , and SDSS g,
r, and i). Black dots are the best fit obtained with BaySeAGal to the stellar continuum. Filters
including the wavelength of Hα and [O iii] emission lines within their bandpass are marked with
dashed vertical lines. The images of these galaxies in the rSDSS band are attached in the lower
left inset. The miniJPAS ID and the photo-z are shown in black in the left corner of each figure.
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The analysis of the emission lines was carried out with a machine-learning
code based on ANN. Different ANNs were trained with the J-PAS synthetic pho-
tometry extracted from CALIFA, MaNGA, and SDSS galaxies after convolving
the spectra with the J-PAS photometric system. The ANNs learned to perform
different tasks. First, an ANN was trained to estimate the EW values for the main
emission lines in the optical range: Hα, Hβ, [O iii], and [N ii]. This ANN is re-
ferred to as ANNR. As inputs, the ANNs used photometry colors measured with
respect to the J-PAS filter, in which the Hα flux dominates. As outputs, the ANNs
received the values of the EWs that were measured directly in the spectrum. We
estimated the uncertainty in the EWs with a Monte Carlo approach. We considered
the error in the photo-z and the error in photometric fluxes. Second, another ANN
was trained to distinguish galaxies with emission lines from those without them.
This classifier (ANNC) relies on the EWs, but it is independent of the prediction
from the ANNR. Galaxies were previously classified as class 1 or class 2 depend-
ing on whether they exceeded a preselected EW threshold in any of the emission
lines. Several ANNC with different thresholds (EWmin = 3, 5, 8, 11, and 14 Å)
were trained in order to better study the regime of low emission, in which the
ANNR is less sensitive.

As we discussed in chapter 3, there are many ways of combining the CAL-
IFA, MaNGA, and SDSS surveys to build up a training set. Each survey has
its own observational biases, and the emission lines were measured with differ-
ent approaches. In this chapter, we made use of the CALMa training set for the
ANNR, which performs better in unseen data (SDSS test sample). The CALMa
training set employs both CALIFA and MaNGA spectra from spatially resolved
regions over many diverse physical states, including AGN emission and SF re-
gions. With the CALMa training set, we are able to fully reproduce the position
of SF galaxies in the BPT diagram. We reached a precision of 0.092 and 0.078
dex for log ([N ii]/Hα) and log ([O iii]/Hβ), respectively, assuming an average S/N
in the photometry of 10. We can predict an EW of 10 Å in the Hα, Hβ, [N ii], and
[O iii] lines with a median S/N of 5, 1.5, 3.5, and 10, respectively.

For the the ANNC classifier, we employed the CALIFA set, which is a subset
of the CALMa set, but only includes CALIFA galaxies. The two training sets
performed very similarly in the SDSS test sample. For the sake of simplicity, we
therefore employed the CALIFA set.
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4.3.2 Stellar population analysis

The stellar population properties of the galaxies in this sample were analyzed
with BaySeAGal (Amorim et al. in prep., González Delgado et al. 2021). This is
a Bayesian parametric code that fits stellar metallicity (Z⋆), dust attenuation (τV),
and the parameters related to the star formation history of galaxies. We assumed
a delayed-τ model of the form

Ψ(t) = ϕ
t0 − t
τ

exp [−(t0 − t)/τ] , (4.1)

where t is the lookback-time, t0 is the starting point of star formation in lookback-
time, τ is the SFR e-folding time, and ϕ is the normalization constant related to the
total mass formed in stars. t0 and τ are sampled uniformly in logarithmic scale,
which can vary between 1.4 and the maximum age at the redshift of the galaxy
(13.7 Gyr at z = 0), and between 0.1 and 10 Gyr, respectively. For the present
chapter, we chose the attenuation law proposed by Calzetti et al. (2000), which
adds a unique foreground screen with a fixed ratio of RV = 4.05 (the average
value for the Milky Way).

The code used the 2017 version of the Bruzual & Charlot (2003) stellar pop-
ulation (SSP) synthesis models (hereafter CB17). The SSP covers the metallicity
range log Z⋆/Z⊙ = -2.3, -1.7, -0.7, -0.4, 0, and +0.4, and the ages span from 0
to 14 Gyr. The CB17 models follow the PARSEC evolutionary tracks (Marigo
et al. 2013; Chen et al. 2015) and use the Miles (Sánchez-Blázquez et al. 2006;
Falcón-Barroso et al. 2011; Prugniel et al. 2011) and IndoUS (Valdes et al. 2004;
Sharma et al. 2016) stellar libraries in the spectral range observed by J-PAS.

It is important to emphasize that filters capturing the nebular emission lines
are masked and were not used in the SED fitting. Therefore, the galaxy properties
are only based on the stellar continuum, and it does not include the emission
of nebular regions or the result of the AGN activity. The stellar continuum is
derived from the ensemble of best fits and allows us to determine stellar masses
(M∗) , metallicities (Z∗), the amount of dust attenuation (AV), or the luminosity-
weighted age (< log t >L) of galaxies. Furthermore, it is also used to extrapolate
the photometry in the filters that lack a measurement or have a very low S/N (lower
than 1.8). Because the ANN (as we designed it) cannot work with missing data,
these extrapolations allow the ANN to access all the inputs needed (photometric
fluxes). This does not apply to the filters containing emission lines at each redshift
and the filters that are immediately next to them. For instance, the Hα emission
line is captured by the J0660 filter for a galaxy in the local Universe (z = 0).
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Therefore, the fluxes in filters J0650, J0660, and J0670 are never extrapolated.
When problems in the photometry with these filters occurred, we did not include
the corresponding galaxies in our sample.

The use of alternative SED fitting codes to derive stellar population properties
of miniJPAS galaxies does not affect the main results in this chapter. González
Delgado et al. (2021) analyzed in detail how the main properties derived for galax-
ies might change with different SED fitting approaches. The results are consis-
tent between each other: nonparametric codes such as MUFFIT (Dı́az-Garcı́a et al.
2015), Alstar (the algebraic version of starlight Cid Fernandes et al. 2005), or
TGASPEX (Magris C. et al. 2015) and BaySeAGal all obtained similar distributions
of rest-frame (u − r) color, stellar mass, age, and metallicity up to z = 1.

A summary of the stellar population properties of the galaxies we analyzed is
shown in Fig. 4.3. The distributions of the galaxy ages and the τ/t0 ratio are bi-
modal. BaySeAGal provides rest-frame colors and extinction-corrected colors. In
particular, (u − r)int is very useful for distinguishing between red and blue galax-
ies. We followed the criterion of Dı́az-Garcı́a et al. (2019a, hereafter the color
criterion) in order to distinguish them. This criterion was adapted to match the
miniJPAS photometric system. For a galaxy to be part of the red sequence, this
criterion establishes a limit in (u − r)int from the galaxy stellar mass and redshift,

(u − r)lim
int = 0.16 × (log M⋆ − 10) − 0.3 × (z − 0.1) + 1.7. (4.2)

Galaxies with (u−r)int above (u−r)lim
int are classified as red galaxies, otherwise, they

are considered to be blue. Furthermore, BaySeAGal provides the probability dis-
tribution function (PDF) for the model parameters. The uncertainty on the derived
stellar population properties is defined as the standard deviation. As expected, the
uncertainty depends on the S/N of the photometry. The median errors are lower
in the red sequence than in the blue cloud. That is, ⟨σ(log M⋆)⟩ = 0.16 ± 0.03
dex, ⟨σ(⟨log t⟩L)⟩ = 0.19± 0.05 dex, ⟨σ(AV)⟩ = 0.19± 0.07 mag, and ⟨σ(τ/t0)⟩ =
0.10 ± 0.04 for galaxies in the red sequence, and ⟨σ(log M⋆)⟩ = 0.28 ± 0.04 dex,
⟨σ(⟨log t⟩L)⟩ = 0.25 ± 0.05 dex, ⟨σ(AV)⟩ = 0.33 ± 0.05 mag, and ⟨σ(τ/t0)⟩ =
0.5 ± 0.19 for those in the blue cloud.

4.4 Identification of ELGs
In this section, we show the potential of our methods to identify ELG in the
AEGIS field and determine their main ionization mechanism. The EW of Hα,
Hβ, [O iii], and [N ii] and their relative strengths allow us to distinguish between
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Figure 4.3: Distributions of mean stellar luminosity-weighted age (top left panel), galaxy stellar
mass (lower right panel), extinction (lower left panel), and τ/t0 ratio (bottom right panel) obtained
by BaySeAGal for the sample of galaxies described in section 4.2.
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as obtained with the ANNR.
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different types of ELGs and derive the fraction of star-forming, Seyfert, and qui-
escent galaxies in miniJPAS.

4.4.1 Identification with ANNR: EW distributions
First, we show the EW distribution of the Hα, Hβ, [O iii], and [N ii] lines in
Fig. 4.4 derived with the ANNR. We excluded from the histograms galaxies where
the EWs are below zero. Even though the ANNR was not trained with absorption
lines, certain configurations can indeed lead to negative values of the EWs. If
the fluxes in the filters in which the emission lines are expected to appear are
suppressed or are highly uncertain, or if they mimic the shape of an absorption
line, the ANNR might predict EWs that are below zero. We find 20, 2, 299, and
23 galaxies with negative EWs in Hα, Hβ, [O iii], and [N ii], respectively. The
median S/N in the EWs for these galaxies is below one, which indicates that these
values are compatible with positive and null values.

Generally, blue galaxies are star-forming galaxies, while red galaxies are qui-
escent. However, a galaxy might appear to be part of the red sequence due to the
presence of dust, which absorbs a fraction of the total radiation more efficiently on
the blue side of the spectrum. Therefore, it is important to correct for dust extinc-
tion in order to distinguish between red and dust-reddened star-forming galaxies.

Figure 4.5 shows as expected that blue galaxies contain young populations
of stars with high values of EW(Hα), while red galaxies are older and lack Hα
emission or have very low values of EW(Hα). Between the red sequence and the
blue cloud, we observe galaxies in the GV with intermediate ages and moderate
values in the EWs of Hα.

4.4.2 Identification with the ANNC: Strong and weak ELGs
In addition to the color-criterion, we can also make use of the predictions of the
ANNC to distinguish between galaxies above and below a certain threshold limit
in the EW. The EW of Hα quantifies the relative intensity of the emission line
flux with respect to the stellar continuum, and therefore it is a good indicator of
the sSFR in the galaxy (Mármol-Queraltó et al. 2016; Khostovan et al. 2021). In
Fig. 4.6 we plot the log EW(Hα) as a function of the stellar mass. In the left
panel, we indicate in blue (red) the galaxies that belong to the blue cloud (red
sequence) following the color criterion. On the right panel we show a similar
scheme but galaxies are separated according to the class defined by the ANNC

with EWmin = 3 Å. In other words, galaxies are considered strong ELs if any
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Figure 4.5: Color–mass diagram for our sample of galaxies. The (u – r) color-corrected for dust
extintion vs. stellar mass. Galaxies are color-coded with the EW of Hα (the luminosity-weighted
stellar age) on the left side (right side). The intrinsic color, stellar mass, and luminosity-weighted
age are obtained via BaySeAGal. Dashed black lines separate blue and red galaxies following
Eq. 4.2, where we considered the median redshift of the sample (z = 0.25). Density contours are
drawn in black at the top.

of the emission lines present an EW greater than 3 Å and weak ELs if all lines
are below this limit. For a threshold of 0.1 in the ANNC probability, strong ELs
represent 83 % of the sample, while weak ELs are the remaining 17 %. With the
color criterion, 82 % of the galaxies in the parent sample are classified as red and
the remaining 18 % are blue.

The dashed line in Fig. 4.6 illustrates the EW(Hα) = 3 Å limit. As expected,
most of the galaxies below this limit are classified as weak ELs. However, we de-
tect a non-negligible number of weak ELs or red galaxies above this limit in both
panels. We have to take into account that the ANNR is less accurate at low EWs
and has a tendency to overestimate their values. Moreover, the relative errors in
this regime are higher. Therefore, it is not surprising to find a fraction of weak
EL galaxies above this limit. Moreover, although Hα leads the ANNC classifica-
tion, the algorithm includes other emission lines in addition to Hα, which might
occasionally overcome this limit. At high EWs, the number of weak EL galaxies
decreases significantly, and the discrepancy between the ANNR and the ANNC

can be explained by the high uncertainty found in the photo-z or a low S/N in the
photometric fluxes.

In two panels in Fig. 4.6, the two methods of classifying galaxies present a
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Figure 4.6: Equivalent width of Hα as a function of the stellar mass of the galaxy. In the left
panel, we used Eq. 4.2 to distinguish between red and blue galaxies. In the right panel, we relied
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galaxies. Strong ELs were defined as those with EWs greater than 3 Å in any of the following
emission lines: Hα, Hβ, [O iii], or [N ii], and weak ELs are all others. The dashed horizontal lines
mark the 3 Å limit in the EW(Hα). Density contours are drawn in black at the top.

consistent picture. Most of the blue galaxies are strong ELs, and red galaxies
are weak ELs. Nevertheless, we found some disagreement between the last two
populations. While the ANNC is trained to separate galaxies as a function of the
EW, Eq. 4.2 depends mainly on the global color and the mass of the galaxy. Thus,
it is expected to find some galaxies with red intrinsic colors and a low level of star
formation reflected on the nebular emission with EWs greater than 3 Å.

Finally, it is clear from these diagrams that galaxies are less efficient at form-
ing new stars as the mass of the galaxy increases at z < 0.35. At some point
around M∗ = 1011M⊙, the EW of Hα falls sharply, with most galaxies above this
mass showing red colors and low values in the EW(Hα), suggesting that the main
sequence of star-forming galaxies has already ended.

4.4.3 Identification of star-forming galaxies and AGNs: BPT
and WHAN diagrams

The BPT diagram (log[O iii]/Hβ versus log[N ii]/Hα) provides a means to unveil
the main ionization mechanism of galaxies. It involves four emission lines, and
galaxies are classified into four groups by three dividing lines: star-forming, com-
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posite, Seyfert, and LINERs. The Kauffmann et al. (2003a, hereafter Ka03,) curve
is derived empirically using the SDSS galaxies and defines the region populated by
SF galaxies. Usually referred to as the SF wing, galaxies evolve from high (low) to
low (high) [O iii]/Hβ ([N ii]/Hα) ratios, increasing their mass (Maiolino & Man-
nucci 2019). The Kewley et al. (2001, hereafter Ke01,) curve is determined using
both stellar population synthesis models and photoionization. It defines the AGN
wing that is dominated by AGN (including LINER or LINER-like emission, and
shocks). Between these two lines lies the composite region, which might be pop-
ulated by galaxies with a composite spectrum, that is, the ionization mechanism
is a mix of star-formation processes and AGN activity or galaxies with very weak
emission lines that are leaving the SFMS. Finally, the Schawinski et al. (2007,
hereafter S07,) line is an empirical division that distinguishes between Seyfert
and LINER galaxies.

We show the BPT diagram for the galaxies in the parent sample with error
lower than 0.2 dex in [O iii]/Hβ and [N ii]/Hα in the left panel of Fig. 4.7. In
the right panel, we relax this threshold to 0.5 dex. These thresholds are arbitrary,
and they have been chosen to show how the BPT diagram changes when galaxies
with a high uncertainty in the predicted emission lines are included. However,
they are not used for the final selection of SF galaxy sample. The stellar mass
distribution of galaxies in the BPT is consistent with expectations: galaxies grow
in mass while they evolve through the SF wing. However, as the error increases
(right panel), some galaxies populate regions that are less likely to be occupied
(the narrowest wedge at the top left within the composite region).

Galaxies with very faint emission lines may be misclassified as LINERs from
a BPT diagnostic. Sometimes called fake AGN (Cid Fernandes et al. 2011), one
of the advantages of the WHAN (log EW(Hα) versus log ([N ii])/Hα)) diagram is
that it can identify these galaxies. Even more important is the fact that the WHAN
diagram provides a simpler way of determining the main ionization mechanism
of galaxies.

Fig. 4.8 we show the WHAN diagram for the galaxies in the parent sample.
The solid and dashed vertical lines represent the optimal projection of Ka03 and
Ke01 onto the log EW(Hα) versus log ([N ii])/Hα) space, that is, the dividing lines
that better distinguish galaxy types in the WHAN diagram as they are defined
in the BPT (Cid Fernandes et al. 2010, 2011). Similarly, the division between
Seyferts and LINERs at EW(Hα) = 6 Å corresponds to the optimal projection
of S07. Finally, the area below the dashed horizontal line at EW(Hα) = 3.16 Å
is composed of galaxies with highly uncertain line predictions that are therefore
compatible with quiescent galaxies. We did not distinguish between retired and



4.4. Identification of ELGs 114

1.5 1.0 0.5 0.0
log([NII]/H )

-1.0
-0.8
-0.5
-0.2
0.0
0.2
0.5
0.8
1.0

lo
g (

[O
III

]/H
)

SF: 80.3± 0.7%

Comp.: 13.9± 1.0%

Seyfert: 5.3± 0.5%

LINER: 1.0± 0.2%

Ngal = 255

1.5 1.0 0.5 0.0
log([NII]/H )

SF: 70.5± 0.6%

Comp.: 20.4± 0.6%

Seyfert: 8.7± 0.3%

LINER: 0.8± 0.2%

Ngal = 958
9.2

9.4

9.6

9.8

10.0

10.2

10.4

10.6

10.8

log
M

*[M
]

Figure 4.7: BPT diagram for the galaxies in the sample with an error of 0.2 dex (0.5 dex) in
the [O iii]/Hβ and [N ii]/Hα ratios in the left (right) panel. The errors are not plotted in the right
panel for clarity. The color bar indicates the stellar mass of the galaxy. The solid (Ka03), dashed
(Ke01), and dotted lines (S07) define the regions for the four main spectral classes. The relative
percentage of each galaxy type in each subsample is indicated in the figure. In each panel, the
number of galaxies is specified in the lower left corner. The parent sample contains 2154 galaxies.

passive galaxies as in Cid Fernandes et al. (2011) because our precision is not high
enough to predict values of the EWs in the range of a few Å.

In the left panel of Fig. 4.8 we show galaxies with an error smaller than 0.2
dex in both the EW(Hα) and the [N ii]/Hα ratio, while in the right panel, we relax
this requirement to 0.5 dex. The percentage of each galaxy type is indicated in the
legend. Galaxies with lower EW(Hα) have higher relative errors. Furthermore,
many red galaxies do not appear in this diagram.

The color gradient in Fig. 4.8 indicates that galaxies are more massive as the
EW(Hα) decreases and the [N ii]/Hα ratio increases. Therefore, star-forming
galaxies are on average less massive than Seyferts, while LINERs and passive
galaxies are the most massive galaxies.

By comparing the position of each galaxy (i.e., their values with errors) in both
diagrams, it is noticeable that the values of a given galaxy in the BPT convey more
uncertainties than in their counterpart spot in WHAN. The reason is that the error
in the y-axis of the BPT diagram stems from two sources: the error in the [O iii]
and Hβ emission lines. However, in the WHAN diagram, the only error source is
the Hα emission line. As a consequence, with a maximum error of 0.2 dex, we
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Figure 4.8: WHAN diagram for galaxies with an error smaller than 0.2 dex (0.5 dex) in both
the EW(Hα) and the [N ii]/ Hα ratio in the left (right) panel. The errors are not shown in the
right panel for clarity. The color bar indicates the stellar mass of the galaxy. The inset shows the
relative percentage of each galaxy type in each subsample. Dashed and solid vertical lines define
the optimal projections of the Ke01 and the Ka03 lines in the WHAN diagram (Cid Fernandes
et al. 2010, 2011). Similarly, the dash-dotted horizontal line at EW(Hα)= 6 Å is the optimal
transposition of the S07, and the dotted line at log EW(Hα)= 0.5 Å defines the limit of ELGs. In
each panel, the galaxy counts are specified in the lower left corner. The parent sample contains
2154 galaxies. Density contours are drawn in black at the top.

can estimate the position of only 255 galaxies of the sample in the BPT and 753
galaxies in the WHAN. The median S/Ns of these subsamples in the narrowband
filters are 10.7 and 11.4.

4.4.4 Fraction of galaxy types in miniJPAS

We identify 83 % of the galaxies (1787) from the parent sample (2154 galaxies)
in the AEGIS field as strong ELGs, and the remaining 17% (367 galaxies) are
weak ELGs. In Table 4.1 we show the percentages of each galaxy type according
to the WHAN diagram for all galaxies with an error smaller than 1 dex in the
EW(Hα) and [N ii]/ Hα ratio. This criterion is fulfilled by 2000 galaxies, which
leaves 154 galaxies from the parent sample unclassified. We eliminate the com-
posite population, but we indicate the percentage of SF and Seyfert galaxies in
the different separation curves: Ka03, Ke01, or Stasińska et al. (2008, hereafter
S08). Although we showed in Fig. 4.8 the percentages for LINERs and passive
galaxies, we grouped both classes together in this table. The emission lines for
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LINER galaxies are at the limit of what we can detect with the ANN given the
S/N in the photometry. Hence, it is more challenging to distinguish them in the
low S/N regime. We estimated the percentages and the errors of each galaxy type
with a Monte Carlo (MC) method using the position of each galaxy in the diagram
and its errors. Then, we computed the median and the standard deviation.

[N ii]/ Hα Star-forming [%] Seyfert [%] Quiescent [%]

≤ 0.79 (S08) 89.8 ± 0.2 3.5 ± 0.2 6.7 ± 0.2

≤ 0.48 (Ke01) 72.8 ± 0.4 17.7 ± 0.4 9.4 ± 0.2

≤ 0.40 (Ka03) 62.4 ± 0.3 27.5 ± 0.4 10.1 ± 0.2

Table 4.1: Percentage of each galaxy type according to the WHAN diagram. Quiescent galaxies
include LINERs and passives.

Finally, we studied how the fractions of SF, Seyfert, and quiescent (passive
or LINER) galaxies varied when we imposed brighter flux limit constraints. For
this purpose, we generated new samples of galaxies that are below 20.5, 21.5, and
22.5 mag in the rSDSS band and computed the fraction of each galaxy type. The
results are shown in Fig. 4.9. We do not observe a strong correlation with the
rSDSS apparent magnitude. The fraction of each galaxy type is more uncertain
when one or another of the separation curves is chosen.

4.5 Characterization of star-forming galaxies

In this section, we characterize the star-forming galaxy population in miniJPAS.
We traced the SFR through the Hα emission line. First, we selected a suitable
sample of star-forming galaxies with the identification tools we presented in the
previous section. Then, we corrected the Hα flux from nebular extinction and
derived the position of SF galaxies in the SFMS. We also analyzed the correlation
between nebular and stellar extinction and the relation between the star formation
history (SFH) of galaxies obtained with the SED fitting and their position in the
SFMS.
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Figure 4.9: Fraction of SF, Seyfert, and quiescent (passive or LINER) galaxies as a function of
the maximum rSDSS apparent magnitude of each subsample. Solid, dashed, and dotted lines rep-
resent the fraction of each galaxy type according to the Ka03, Ke01, and S08 curves, respectively.

4.5.1 Selection of star-forming galaxies

Our sample of star-forming galaxies was obtained from the parent sample (sec-
tion 4.2) by imposing different constraints. We relied on the WHAN diagram to
exclude the galaxies in which the main ionization mechanism is not driven by star
formation (AGN-like galaxies). We chose the Ka03 curve. In order to consider
a galaxy as a member of the main sequence, we therefore imposed a maximum
[N ii]/Hα of 0.48. We also discarded galaxies with very low emission in the di-
agram (LINER and passive galaxies). Finally, galaxies must be classified as blue
with the color criterion and the ANNC to be part of our sample. We found 1178
galaxies in total (SF sample hereafter).

In Fig. 4.10 we show the relation between the total stellar mass and the redshift
for all galaxies in the parent sample. The solid black line indicates the limit at
which galaxies cannot be observed in our flux-limited sample (see section 4.2).
In order to be complete in mass, we would need to discard a large fraction of
galaxies and risk to loose statistical reliability. Furthermore, the mass dynamical
range would be significantly reduced at high redshift. Therefore, we fit the SFMS
in two cases: using the whole SF sample, or using only galaxies in the SF sample
that are above the stellar mass detection limit (see section 4.5.3). We will also
study how stronger flux limit constraints affect the shape of the SFMS. As soon as
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Figure 4.10: Relation between galaxy stellar mass and redshift for all galaxies in the parent
sample. The solid black line is the limit at which galaxies can no longer be observed with the
criteria we used to select the sample (see section 4.2). Dashed black lines represent the uncertainty
limit (±σ.) Galaxies are color-coded according to their (u–r) rest-frame color.

J-PAS observes larger areas of the sky, we will be able to be more conservative in
the mass limit of the selected sample.

4.5.2 Dust correction
In order to account for the extinction of dust, we followed the empirical extinction
relation described in Calzetti et al. (1994). The intrinsic luminosity of galaxies
(Lint) is attenuated by interstellar dust through the following equation:

Lint(λ) = Lobs(λ)100.4Aλ = Lobs(λ)100.4k(λ)E(B−V), (4.3)

where Lobs is the observed luminosity, Aλ is the extinction at wavelength λ, and
k(λ) is the reddening curve. We considered the reddening curve of Calzetti et al.
(2000) with RV = 4.05. The nebular color excess E(B − V) can be obtained from
the Balmer decrement assuming regular gas conditions in star-forming galax-
ies (for a detailed description, see, e.g., Domı́nguez et al. 2013, and references
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Figure 4.11: Distribution of the nebular (E(B−V)Hα/Hβ) and stellar (E(B−V)S ED) color excess
(left). Nebular extinction at the Hα wavelength as a function of stellar mass (right). Galaxies
are color-coded with the EW of Hα and belong the SF sample described in section 4.5.1. Black
squares are the median obtained in the following stellar mass bins: 8 < log M∗ ≤ 9, 9 < log M∗ ≤
9.5, 9.5 < log M∗ ≤ 10, 10 < log M∗ ≤ 10.5, and 10.5 < log M∗ ≤ 11. The error bars on the y-axis
represent the standard deviation, gray contours represent the density of sources for 1 σ, 2 σ, and
3 σ derived from SDSS galaxies in Duarte Puertas et al. (2017). Red stars are the values obtained
by Sobral et al. (2016) by means of spectroscopy measurements in SF galaxies within the cluster
Cl0939+4713 at z = 0.41. The dashed blakc line is the best polynomial fit obtained by Garn &
Best (2010) in a sample of SDSS galaxies.

therein) as follows:

E(B − V) = 1.97 log10

[
(Hα/Hβ)obs

2.86

]
, (4.4)

where Hα and Hβ stand for the emission line fluxes. As the ANNR provides the
values of the EWs, we used the stellar continuum derived from BaySeAGal at the
Hα and Hβ wavelengths to compute the total flux of the emission lines.

In the left panel of Fig. 4.11 we show the distribution of the nebular (E(B −
V)Hα/Hβ) and stellar (E(B − V)S ED) color excess. A fraction of galaxies in the SF
sample (∼ 15 %) have a Balmer decrement below the theoretical value (2.86),
but very close to it. Furthermore, its errors indicate that nebular extinction for
these galaxies is compatible with null or very low values. Either way, we set the
E(B − V)Hα/Hβ to zero for these galaxies. E(B − V)S ED is 0.017 mag higher on
average than E(B − V)Hα/Hβ with a dispersion of 0.072 mag. The median error
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on the E(B − V)Hα/Hβ and E(B − V)S ED is 0.089 and 0.015, respectively. Some
authors reported that E(B − V)Hα/Hβ is twice E(B − V)S ED on average (Calzetti
et al. 2000; Qin et al. 2019; Koyama et al. 2019). However, other studies found
similar levels of nebular and stellar extinction (Kashino et al. 2013; Puglisi et al.
2016). In particular, we found agreement with the results of Kouroumpatzakis
et al. (2021, see Fig. 8 and Table 1,) who argued that nebular extinction is much
more pronounced in the nuclear regions, affecting the relations found by single
spectroscopic surveys such as the SDSS, which cannot capture the whole light
produced in galaxies.

The right panel of Fig. 4.11 shows the nebular extinction at the Hα wavelength
(AHα) as a function of the galaxy stellar mass. We found a similar trend as in
other studies. Red stars are the values obtained by Sobral et al. (2016) by means
of spectroscopy measurements in SF galaxies within the cluster Cl0939+4713 at
z = 0.41. Gray contours represent the density of sources for 1 σ, 2 σ, and 3 σ
derived from all SDSS SF galaxies in Duarte Puertas et al. (2017). Finally, the
dashed black line is the best polynomial fit obtained by Garn & Best (2010) in a
sample of SDSS galaxies. Applying aperture correction to the Hα/Hβ ratio as in
Duarte Puertas et al. (2017) lowers the extinction 0.2 mag in average.

4.5.3 Fitting the star formation main sequence

The SFR was obtained from the Hα luminosity using the Kennicutt et al. (1994)
relation converted to employ a Chabrier IMF (Chabrier 2003) and assuming case
B recombination,

SFR[M⊙ yr−1] = 4.9 × 10−42LHα[erg/s]. (4.5)

We used this relation to derive the SFR from the corrected Hα luminosity. Then,
we fit the SFMS for the galaxies in the SF sample assuming a power-law relation
between the stellar mass (M∗) and the SFR,

log SFR = α × log M∗ + β. (4.6)

We assumed that galaxies deviate from this relation with a scatter perpendicular to
the line that we parameterized in terms of the scatter along the y-axis (σy), often
called σint. We employed a Bayesian approach to derive the posterior distribu-
tion of σy, α, and β. We followed Robotham & Obreschkow (2015) in order to
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construct the likelihood function,

ln L = −
1
2

Ngal∑
i=0

(log SFRi − α log M∗,i − β)2

σ2
i

+ lnσ2
i

− ln(α2 + 1), (4.7)

where σ2
i reads

σ2
i = σ

2
y + σ

2
log SFRi

+ α2σ2
log Mi
. (4.8)

We assumed that the errors in the SFR and stellar mass of the galaxies are not
correlated. This hypothesis is justified because both quantities are derived inde-
pendently from each other. Although the flux of stellar continuum at Hα wave-
length is used to estimate the total Hα flux, its error is negligible compared to the
error in the EW. The errors are considered Gaussian and heteroscedastic, that is,
each data point is drawn from a different Gaussian distribution. The last term in
Eq. 4.7 ensures that the data are rotationally invariant. In other words, data have
no defined predictor or response variable, and therefore we can predict the SFR
from the stellar mass of the galaxy and vice versa.

The posterior distribution was sampled with the Markov chain Monte Carlo
(MCMC) method, using the emcee Python implementation (Foreman-Mackey
et al. 2013), with 250 walkers and 5000 steps per walker. We used a burn-in
phase of 3500 steps.

Figure 4.12 shows the SFMS for the galaxies in the SF sample; in black we
plot the ensemble of best fits obtained with the Bayesian routine. Galaxies are
color-coded with the τ/t0 ratio, which is an indicator of the SFH (see Eq. 4.1).
High values of τ/t0 indicate an SFH with almost constant SFR throughout cosmic
time, while low values are related to galaxies with a burst of star formation long
ago with a decreasing SFR ever since.

On the one hand, the color gradient observed in Fig. 4.12 suggests that galax-
ies with higher values of τ/t0 are more likely to be found above the SFMS and
preferentially have stellar masses below 1010M⊙. On the other hand, lower values
of τ/t0 are associated with massive galaxies that lie below the SFMS.

We investigated how the parameters of the SFMS are affected when we in-
cluded only the galaxies in the SF sample that lie above a certain flux limit. Ad-
ditionally, we generated a new sample of galaxies that were selected from the SF
sample with stellar masses above 109M⊙ (SF0 sample). This is the stellar mass
detection limit for the redshift between 0 and 0.35 (black line in Fig. 4.10). Sub-
sequently, we studied again how the flux limit cut affects the parameters of the
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rSDSS α β σy

≤ 22.5 0.90+0.02
−0.02 −8.85+0.19

−0.20 0.20+0.01
−0.01

≤ 21.5 0.93+0.02
−0.02 −9.15+0.21

−0.21 0.21+0.01
−0.01

≤ 20.5 0.93+0.03
−0.03 −9.27+0.26

−0.27 0.22+0.01
−0.01

≤ 22.5 0.93+0.03
−0.03 −9.17+0.29

−0.29 0.21+0.01
−0.01

≤ 21.5 0.95+0.03
−0.03 −9.37+0.30

−0.33 0.21+0.01
−0.01

≤ 20.5 0.97+0.04
−0.04 −9.66+0.30

−0.30 0.23+0.02
−0.01

Table 4.2: Parameters of the SFMS with different selection cuts in the rSDSS band for the SF
(SF0) sample at the top (bottom).

Figure 4.12: SFR vs. stellar mass for the galaxy sample described in section 4.5.1. Galaxies
are color-coded with the τ/t0 ratio (see section 4.3.2). Black lines are the best fits obtained with
the Bayesian routine. The median posterior value and 1σ confidence interval are shown for each
of the parameters.
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Figure 4.13: SFR vs. stellar mass for galaxies in different redshift bins color-coded with their
the τ/t0 ratio (see section 4.3.2.) Black lines are the best fits obtained with the Bayesian routine.
The median posterior value and 1σ confidence interval are shown for each of the parameters. The
number of galaxies within each redshift bin is also indicated.

SFMS. The results are summarized in Table 4.2. We conclude that the selection
function that depopulates the SFMS below mAB = 22.5 in the rSDSS band does not
affect the shape of the SFMS. The results for the SF and SF0 sample are consistent
(compatible within the errors).

4.5.4 SFR at different redshift

The relation of the SFR and the stellar mass is expected to change as a function of
the redshift due to changes in the cosmic gas accretion rates and the gas depletion
timescales. Some authors modeled this relation with a power law (SFR ∝ (1+ z)a,
Boogaard et al. 2018; Schreiber et al. 2015), others assumed that the evolution
takes place in the zeropoint (log SFR ∝ βz, Shin et al. 2021). Another common
approach is to split the sample into redshift bins and fit them independently (e.g.,
Davies et al. 2016; Thorne et al. 2020). Because the redshfit range of the SF
sample is limited, we decided to employ the latter approach and fit the SFMS in
three different redshift bins: 0 < z ≤ 0.15, 0.15 < z ≤ 0.25, and 0.25 < z ≤ 0.35.
We removed all galaxies in each sample that lay below the stellar mass limiting
value (solid black line in Fig. 4.10).

We show the results in Fig. 4.13. A small flattening of the relation is seen
at intermediate redshifts, but it may not be significant. As expected due to the
anticorrelation between the slope and the zeropoint, the latter becomes higher in
the 0.15 < z ≤ 0.25 bin. Most likely, these discrepancies are caused by the effect
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of fitting the SFMS within a smaller dynamical range of mass and by the lower
statistics. The intrinsic scatter of galaxies along the SFMS decreases at higher
redshifts. This may be caused by a dependence on stellar mass rather than on
redshift. Galaxies below 1.6 × 108M⊙, 5 × 108M⊙, and 109M⊙ for 0 < z ≤ 0.15,
0.15 < z ≤ 0.25, and 0.25 < z ≤ 0.35, respectively, cannot be detected with fluxes
brighter than 22.5 in the rSDSS band. We discuss the implication of this result in
more detail in section 4.6.1.

4.5.5 Turnover mass hypothesis
Several studies have shown evidence that the relation between the SFR and the
stellar mass turns over at a mass of M∗ ∼ 1010 M⊙ (Whitaker et al. 2014; Lee et al.
2015; Schreiber et al. 2015; Tomczak et al. 2016). In this section, we investigate
this scenario by fitting a quadratic power law (Eq. 4.9) and a broken power law
(Eq.4.10) to the SF sample,

log SFR = α × log M∗ + γ × (log M∗)2 + β (4.9)

log SFR = β − log
[
1 + (M∗/M0)−α

]
. (4.10)

We obtained a turnover mass (log M0 = 10.93+0.22
−0.17) that is very close to the highest

mass that we have in the SF sample (log Mmax
∗ = 11.2). Furthermore, only 14

out of 1178 galaxies have a mass higher than M0. For the quadratic model, we
obtained a quadratic term near zero (γ = −0.08+0.02

−0.02). In Table B.1 (see next
section) we show the best-fitting parameters for different separation curves. We
employed the Bayesian information criterion (BIC) to determine the model that
better describes the observed SMFS. The BIC is defined as BIC = nparam ln Ngal −

2 ln L, where nparam is the number of parameters in the model, Ngal is the number
of galaxies, and L is the likelihood function. The linear model (Eq. 4.6) obtained
the lowest value. Therefore, it is the most likely model.

4.5.6 AGN selection criteria
The exclusion of AGN-like galaxies from the SF sample is based on the [N ii]/Hα
ratio and the EW of Hα. We chose the curve of Ka03 to select SF galaxies, but we
could have relied on other separation curves, such as Ke01 or S08. In this section
we study how these choices can impact our result.

In Table B.1 we show the best-fit parameter values as a function of the separa-
tion curves, the redshift bin, and the fitting equation used to model the SFMS. The
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results are marginally consistent, meaning that the retrieved parameter does not
change the main conclusion of the previous sections. Nevertheless, we observed a
trend in the slope, the quadratic term, and in the turnover mass as we relaxed the
maximum [N ii]/Hα ratio allowed to be part of the SFMS. Galaxies at the border
of the dividing lines populate the high-mass end. As a consequence, the quadratic
terms and the turnover mass increase as the slope of the SFMS flattens. Nonethe-
less, the intrinsic scatter exhibits little variation, except for the highest redshift bin,
where higher-mass galaxies increase the scatter. This exercise demonstrates that
the SFMS can be affected by AGN contamination, which is only one ingredient in
the definition of the SFMS. Other criteria based on color cuts or sSFR thresholds
are also important and can have a non-negligible impact on the derived parameters
of the SFMS (Belfiore et al. 2018; Sánchez et al. 2019; Khostovan et al. 2021).

4.6 Discussion

In the following sections, we compare the results of the SFMS with the literature.
We derive the cosmic evolution of the star formation rate density up to z = 0.35,
and we discuss the differences we found with respect to other studies that did not
trace the SFR with Hα emission line.

4.6.1 SFMS: Comparison with the literature

We have modeled the SFMS in the mass range from 108 up to 1011M⊙ in the
redshift range 0 < z < 0.35. We employed a Bayesian approach (section 4.5.3)
that considers the intrinsic scatter of the SFMS and the heteroscedastic errors on
the stellar masses and the SFRs. We derived the SFRs from the Hα emission line,
and we corrected for dust extinction through the Balmer decrement. We relied
on the [N ii]/Hα ratio to remove from the sample galaxies hosting an AGN. The
linear model explains the relation between the log SFR and log M∗ for the sample
of SF galaxies better. Our selection criteria combine color-cut and emission line
diagnostics and consequently favour a pure rather than a complete sample of SF
galaxies. Most probably, we also excluded most of the GV population, and this
might explain why the turnover-mass scenario is not compatible with our results.
We compare our results with the literature below. We focus our attention on the
slope of the SFMS and on the intrinsic scatter.
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Slope

We find a result very similar to those of Sánchez et al. (2019) (MaNGA) and
Cano-Dı́az et al. (2016) (CALIFA), but our slope is steeper than those of Belfiore
et al. (2018) and Cano-Dı́az et al. (2019), who used MaNGA data. Our results are
also consistent with the recent work of Vilella-Rojo et al. (2021), who studies the
SFR of galaxies in the nearby Universe with J-PLUS data. SDSS galaxies have
also been used to analyze the SFMS. The slopes found by Zahid et al. (2012) and
Renzini & Peng (2015) are flatter than our results. Nevertheless, Duarte Puertas
et al. (2017) applied aperture correction based on CALIFA data (Iglesias-Páramo
et al. 2016) to recover the total flux from SDSS fiber spectroscopy and found a
slope of 0.935, which is very close to our slope, which we obtained with the SF
sample in the 0 < z ≤ 0.35 redshift range (see Fig. 4.14). Shin et al. (2021)
obtained a flatter slope than we did based on galaxies from the Subaru Deep Field
at intermediate redshift (0.1 < z ≤ 0.5). However, we recovered a slope that is
marginally consistent with the one found by Boogaard et al. (2018), who used
data from the Multi Unit Spectroscopic Explorer (MUSE) and employed the same
method as we used to fit the SFMS.

Intrinsic scatter

The amount of intrinsic scatter is hard to constrain because the scatter caused by
the measurements errors in both the stellar masses and the SFRs needs to be ac-
counted for. As pointed out by Boogaard et al. (2018), this is one of the advantages
of using the fitting model of Robotham & Obreschkow (2015). We obtained an
intrinsic scatter of 0.20 dex for the SF sample (0 < z ≤ 0.35). This is consistent
with previous works, which found values ranging from 0.15 up to 0.5 dex (see,
e.g., Whitaker et al. 2012; Salmi et al. 2012; Speagle et al. 2014; Schreiber et al.
2015; Ilbert et al. 2015).

Many factors than can impact the amount of intrinsic scatter. First of all,
different SFR indicators account for variations in the SFH on different timescales
(see, e.g., Davies et al. 2016, and references therein). For instance, while Hα
provides a direct measure of the current SFR in galaxies (< 10−20 Myr), UV-like
tracers can detect changes in the SFH in only the last 100 Myr and are therefore
less sensitive to recent episodes in the SFH that enhance or suppressed the star
formation in the galaxy. Secondly, the selection criteria that defined the SFMS
can boost or decrease artificially the scatter by excluding or including a fraction
of galaxies that ‘belong’ or not to the SFMS.
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Figure 4.14: Slope of the SFMS derived from the Hα emission line by different works as a
function of the redshift. The bars on the x-axis represent the redshift range of the galaxies involved
in each study. Our best fit of the SFMS is shown with large blue stars for the lowest redshift range
(0 < z ≤ 0.15) and the SF sample (0 < z ≤ 0.35). The results of the literature are from Boogaard
et al. (2018) (B18), Vilella-Rojo et al. (2021) (V21), Duarte Puertas et al. (2017) (D17), Renzini
& Peng (2015) (R&P15), Zahid et al. (2012) (Z12), Shin et al. (2021) (S20), Belfiore et al. (2018)
(Be18), Cano-Dı́az et al. (2019) (C19), Sánchez et al. (2019) (S19), and Cano-Dı́az et al. (2016)
(C16). We also include the results derived by GALFROM (a semianalytical model) (Mitchell et al.
2014) (Mi15), and from hydrodynamical simulations, Sparre et al. (2015) (Sp15) and Furlong et al.
(2015) (F15).
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The results obtained in each redshift bin show a decrease in intrinsic scatter
for galaxies with higher redshift. The MC approach predicts σy to be compatible
with zero in the last redshift bin. This might be the effect of the method. When
we averaged over all galaxies in Eq. 4.8 and solved for σy , we found σy = 0.19,
0.09, and 0.17 dex for 0 < z ≤ 0.15, 0.15 < z ≤ 0.25, and 0.25 < z ≤ 0.35,
respectively. However, we found a very similar value for the SF sample of galaxies
(0.22 dex). As we pointed out in section 4.5.4, the selection function in the SF
sample together with the low statistics in each redshift bin might affect the results.

SFMS with BaySeAGal

The SED fitting performed by BaySeGal yields the SFH of galaxies, and therefore
we can estimate the current SFR in each galaxy by summing all the mass that
formed stars in the last 30 Myr. Since tau-delayed models cannot account for
a bursty SFH, any value between 10 to 200 Myr provides essentially the same
SFR. A comparison of the results of the SFMS derived from the flux of Hα with
a different and independent technique provides valuable information about the
potential inaccuracies and strengths of our method.

In Fig. 4.15 we show the SFMS for the same sample of galaxies described in
section 4.5.1 that is plotted in Fig. 4.12. The color code now represents the EW of
Hα. As expected, galaxies with higher values in the EW of Hα are placed above
the main sequence. This suggests that the two methods are consistent overall.
Nevertheless, we obtained a zeropoint that is higher, meaning that the SFR de-
rived from the analysis of the stellar populations gives higher values on average.
This discrepancy later translates into the cosmic SFR density and the number of
ionizing photons. In section 4.6.3, we discuss the possible origin of this difference
in detail.

We obtain a slope that is slightly flatter, but still closer to what we retrieved
with Hα. The different assumptions made by each method mean that this differ-
ence is expected. While the Hα flux is very sensitive to recent changes in the
star formation activity of a galaxy, the SFR derived from the SED fitting traces
the SFR on longer timescales. As a consequence, recent episodes that enhance
or suppress the SFR might result in a global change in slope with respect to an
SFMS derived from the average SFR over the last 200 Myr.
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Figure 4.15: SFR vs. stellar mass for the galaxy sample described in section 4.5.1. SFRs are
derived from BaySeGal. Galaxies are color-coded with the EW of Hα. Black lines are the best
fits obtained with the Bayesian routine. The median posterior value and the 1σ confidence interval
are shown for each of the parameters.

4.6.2 Cosmic evolution of the star formation rate density

The star formation rate density of the universe has been estimated by different
means. Galaxy redshift surveys found that ρSFR peaks at ∼ 3.5 Gyr after the Big
Bang (z ∼ 2) and has decreased ever since (e.g., Gunawardhana et al. 2013; Sobral
et al. 2013; Madau & Dickinson 2014; Driver et al. 2018). A similar trend was
confirmed with galaxies in the nearby Universe using the so-called fossil record
method (López Fernández et al. 2018; Sánchez et al. 2019; Bellstedt et al. 2020).
Very recently, González Delgado et al. (2021) employed this method to derived the
ρSFR from a subsample of galaxies in miniJPAS (0.05 ≤ z ≤ 0.15). The agreement
with cosmological surveys is remarkable, even though different SED-fitting codes
were used. In this section, we estimate the ρSFR from the SFR derived with the
flux of Hα at the same redshift bins as described in section 4.5.4.

The miniJPAS area comprises only 0.895 deg2 of the central regions of the
AEGIS field. Therefore, our cosmological volume is somewhat limited, especially
at low redshift. In this regard, a study of the ρSFR using miniJPAS data maybe
affected by cosmic variance effects (Driver & Robotham 2010; Moster et al. 2011).
The main source of uncertainty of ρSFR comes from this effect. We followed Eq. 4
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in Driver & Robotham (2010) to quantify the cosmic variance of miniJPAS at
different redshift bins,

ζCos. Var.(per cent) = [1.00 − 0.03
√

A/B − 1]
× [219.7 − 52.4 log(AB × 291.0)]

+3.21 log(AB × 291.0)2/
√

NC/291.0,

(4.11)

where N is the number of fields observed by miniJPAS (simply one), A and B are
the median transverse lengths, and C is the radial depth. We obtained a cosmic
variance for the comoving number density of galaxies of 37% (0.16 dex), 27%
(0.12 dex), and 21% (0.09 dex) for the volumes within 0 < z ≤ 0.15, 0.15 < z ≤
0.25, and 0.25 < z ≤ 0.35, respectively. In the future, J-PAS will scan ∼ 8000
deg2 in the northen sky, and the effect of cosmic variance will be negligible (less
than 1%).

In order to estimate ρSFR , we computed the total sum of the SFR for the
galaxies in our sample and divided it by the volume contained in each redshift bin
(Vint). We selected them from the parent sample with the same criteria as we used
in section 4.5.1 to generate the SF sample. However, we relied on the Ke01 curve
to exclude AGNs. We found a total of 1361 galaxies. In this way, we ensured
that we did not underestimate ρSFR by excluding objects that lie between the Ke01
and Ka03 lines, which might contribute much to the flux of Hα through ionized
interstellar gas. In any case, the difference between selecting SF galaxies with the
Ka03 or the Ke01 line is only 0.05 dex in log ρSFR.

The photometric depth of miniJPAS prevents us from detecting a fraction of
galaxies below a certain mass limit. This effect becomes stronger for galaxies
at higher redshift. Therefore, we have to apply volume corrections to reduce the
impact of the lack of low-mass galaxies in the highest resdshift bins in this chapter.
We used the classical Vint/Vmax technique described originally in Schmidt (1968)
and Huchra & Sargent (1973), (see Appendix C in Vilella-Rojo et al. 2021, for a
detailed discussion of this correction). This is formally expressed as:

ρint
SFR =

∑
i∈ j

SFRi

Vint
wi, (4.12)

where wi = Vint/Vmax
i is the weight that each galaxy has in the total ρint

SFR , and
Vmax is the maximum volume occupied by a galaxy assuming that it cannot be
observed at a magnitude fainter than 22.7. For galaxies with Vint ≤ Vmax

i , the
weight is simply one, but galaxies with Vint > Vmax

i will contribute more.
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A direct comparison of ρSFR with the results obtained in González Delgado
et al. (2021) also requires applying a correction to account for the galaxies that
are detectable in the rSDSS band and are consequently fitted by the SED-fitting
codes, but their emission lines cannot be measured because of the low S/N ratio.
From the galaxies that belong to this group, we took those that were classified as
blue by the color criterion and used their mass to place them in SFMS derived in
section 4.5.3. In this way, we can estimate their SFR with Eq. 4.6 and add their
contribution to ρSFR. These corrections are indeed minor, as shown in Fig. 4.16
(red stars are the corrected values, and empty stars represent the uncorrected stars),
but become slightly stronger at higher redshift.

In Fig. 4.16 we also show the values obtained by several studies that used the
Hα flux to estimate the ρSFR at different redshift bins (squares, see references in
Table 4.3). It is remarkable that most of them predict lower values of ρSFR than
works that used the stellar continuum (solid line). Finally, black circles show the
values obtained with the fossil record method by González Delgado et al. (2021)
for miniJPAS galaxies in the range 0.05 < z ≤ 0.15.

Our results reproduce the ρSFR well that was found with other studies using
Hα as a tracer to measure the SFR. Nevertheless, we found a non-negligible
difference with respect to the results found by studies based on the stellar popula-
tions (Madau & Dickinson 2014; Driver et al. 2018; López Fernández et al. 2018;
Sánchez et al. 2019; Leja et al. 2019; Bellstedt et al. 2020; González Delgado et al.
2021). Our estimation of ρSFR does not take the SFR into account that is ongoing
in galaxies hosting an AGN.

4.6.3 Differences between the SFR derived through Hα and the
SED fitting

The star formation rate density derived in this work is compatible with previous
studies that used the Hα luminosity to determine its evolution with cosmic time
in the nearby Universe. Nevertheless, our predictions are lower than those ob-
tained with other methods based on the SED fitting of the stellar continuum. Even
though ρSFR might be lower in the miniJPAS field, meaning we are affected by the
large cosmic variance, our results differ from those derived with the analysis of
the stellar populations in González Delgado et al. (2021).

In order to shed light on this difference, we compared the ionizing photon rates
expected from Hα luminosity and from the SED fitting. When we assume that
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Figure 4.16: Star formation rate density at z < 0.35. Red stars show the values obtained in this
chapter from the luminosity of Hα. Empty stars are uncorrected values that do not take galaxies
with undetectable nebular emission lines or with very low S/N (see text in section 4.6.2) into
account. Black circles are the values obtained by González Delgado et al. (2021) applying the
fossil record method to a sample of miniJPAS galaxies in the range 0.05 < z ≤ 0.15. Squares
are studies based on Hα (see references in Table 4.3). Solid lines represents the trends obtained
by different studies based on the stellar continuum: Madau & Dickinson (2014, M&D14) , López
Fernández et al. (2018, LF18), and Bellstedt et al. (2020, B20). All values are scaled to the
Chabrier (2003) IMF.
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References Redshift log ρ⋆

Gallego et al. (1995) 0.022 -2.14 ± 0.04

Ly et al. (2007) 0.08 -2.01 ± 0.29
0.24 -2.34 ± 0.24
0.4 -2.02 ± 0.20

Shioya et al. (2008) 0.24 -1.97 ± 0.12

Dale et al. (2010) 0.16 -2.23 ± 0.20
0.24 -2.11 ± 0.21
0.32 -1.92 ± 0.23
0.40 -1.89 ± 0.25

Westra et al. (2010) 0.05 -2.41 ± 0.10
0.15 -2.15 ± 0.09
0.25 -2.05 ± 0.05
0.34 -2.04 ± 0.03

Drake et al. (2013) 0.25 -2.52 ± 0.12
0.4 -2.18 ± 0.19
0.5 -1.74 ± 0.05

Sobral et al. (2013) 0.40 -1.75 ± 0.15

Gunawardhana et al. (2013) 0.05 -1.92 ± 0.06
(GAMA) 0.125 -1.95 ± 0.06

0.205 -1.97 ± 0.09
0.295 -1.75 ± 0.09

Gunawardhana et al. (2013) 0.05 -2.01 ± 0.06
(SDSS) 0.15 -2.37 ± 0.09
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Stroe & Sobral (2015) 0.2 -2.03 ± 0.09

Van Sistine et al. (2016) 0.015 -1.98 ± 0.06

Khostovan et al. (2020) 0.47 -1.86 ± 0.04

Vilella-Rojo et al. (2021) 0.012 -2.34 ± 0.11

This work 0.09 -2.28 ± 0.16
0.216 -2.02 ± 0.11
0.292 -1.98 ± 0.09

Table 4.3: Compilation of star formation rate densities derived from Hα. All values are scaled
to Chabrier (2003) IMF. log ρ⋆ is in units of M⊙yr−1Mpc−3.

no photons escape from H ii regions, the relation between the dust-corrected lu-
minosity of Hα and the ionizing photon rates is

QHα
H = xHα

LHα

hνHα
, (4.13)

where xHα = 2.206 for case B hydrogen recombination.

In the case of the SED fitting, BaySeAGal provides the mass fraction (µ j) of each
SSP that better describes the observed spectrum. In other words, for each galaxy,
we can reproduce the SFH. Therefore, we can retrieve the ionizing photon rates
by weighting the number of H ionizing photons emitted per unit time and initial
mass for the jth SSP (qH, j = qH(t j,Z j)),

QS FH
H = M⋆

221∑
j=1

µ jqH, j. (4.14)

We compare the two quantifies in Fig. 4.17. QS FH
H is 0.54 dex higher than QHα

H on
average. We observe a clear trend with the nebular extinction (color bar) and the
EW of Hα. Galaxies where we estimated low values of the nebular extinction lie
farther away from the 1:1 line. On the same line, the differences between QS FH

H
and QHα

H become smaller as the EW of Hα increases.
Interestingly, QS FH

H and QHα
H are closer at higher values. This trend has also

been found in comparisons between the SFR derived from Hα and from the UV
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Figure 4.17: Comparison of the ionizing photon rates computed from Hα emission line and
from the fit obtained with the analysis of the stellar populations with BaySeAGal (left; see text
in section 4.6.3). The dashed black line represents the 1:1 relation. µ and σ are the bias and the
standard deviation. The right panel shows the difference between these quantities as a function of
the EW of Hα. Density contours are drawn in black. In both cases, the galaxies are color-coded
with the extinction of the interstellar gas calculated from the Balmer decrement.

both in the integrated spectrum and in spatially resolved galaxies (Lee et al. 2009,
2016; Byun et al. 2021). Specifically, Byun et al. (2021) concluded that deficient
Hα fluxes in the extended disks of galaxies are tightly correlated with recent star-
bursts, which are being rapidly suppressed over the last 10 Myr. This phenomenon
can explain the difference found in the slope of the SFMS in section 4.6.1. Be-
cause galaxies with a low Hα luminosity have higher SFRs according to the SED
fitting, the slope becomes flatter.

QS FH
H might also be overestimated if the mass fraction attributed to young stel-

lar populations (YSP) were higher than it should be. This might happen if the SFH
in the last 20 Myr were different from the global SFH that accounts for the forma-
tion and growth of mass in galaxies on scales of billion years and/or because our
parametric code overestimated the fraction of mass that formed in recent epochs
with respect to nonparametric codes that are more flexible to varying the fraction
of the young stellar population on a shorter timescale. In order to determine how
our result might be affected by different assumptions of the SFH, we used the
SFH from ALSTAR and computed QS FH

H . We found that there is a bias of 0.81
dex, which is even higher than the results found with BaySeAGal.
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Studies that retrieved the stellar population properties of a sample of galaxies
based on optical spectra (either form SDSS or CALIFA) and based on photometry
from the GALEX survey showed that when the UV part of the spectrum is not in-
cluded in the SED fitting, a brighter YSP contribution is found (López Fernández
et al. 2016; Werle et al. 2019). However, this excess of light in the UV does not
have a strong impact on the mass content of YSP because the mass is dominated
by older stars.
BaySeAGal does not yet include a model of nebular emission lines. Therefore,

the SED fitting only accounts for the emission of the stellar continuum and masks
the filters in which the emission lines peak. We do not know how this might
affect the shape of the SFH and the mass fraction attributed to the young stellar
population. Moreover, a delta-delayed model might not be sufficient to describe
SFHs with a recent burst of SFR. In the future, we expect to explore this aspect
further.

Furthermore, other hypotheses need to be taken into account to explain this
discrepancy. First, we should consider whether we underestimate the nebular ex-
tinction. Certainly, we would expect that galaxies with very low S/N show this
effect more. When we rebuild Fig. 4.17 and include only galaxies with an error
in Hα luminosity smaller than 0.25 dex, the bias decreases by 0.17 dex. Addi-
tionally, when we assume for the SF sample that the nebular extinction is under-
estimated by a factor of two, which would mean E(B − V)Hα/Hβ ∼ 2E(B − V)S ED

, as some studies reported (Qin et al. 2019; Koyama et al. 2019), the difference
would only be reduced by 0.22 dex. In other words, it is plausible that we did
not properly estimate the nebular extinction for a fraction of galaxies in the SF
sample, but in the worst scenario, this effect alone cannot explain the difference
between QS FH

H and QHα
H .

Another effect that might also contribute to this difference is the ionizing radi-
ation that leaks from the H ii regions. In this case, Eq. 4.13 would underestimate
the Hα ionizing photon rates. Several studies have shown precisely that there is a
fraction of ionizing photons that escapes, and they are therefore unable to ionize
the interstellar gas (Giammanco et al. 2005; Otı́-Floranes & Mas-Hesse 2010; Pel-
legrini et al. 2012; Anderson et al. 2015). Nevertheless, the average fraction is still
debated and can vary from galaxy to galaxy and from region to region within the
same galaxy. Unfortunately, there is no means to quantify this effect with the data
employed in this work. Nonetheless, when we assume that 30 % of the ionizing
radiation leaks from H ii regions, the difference could be reduced 0.16 dex.

Most probably, the difference that we observe between QS FH
H and QHα

H is a
combination of all these factors. Certainly, fitting the SED of miniJPAS galaxies
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Figure 4.18: Relation between the SFR derived from Hα and redshift for the galaxy sample
described in section 4.5.1. The blue dotted line is the approximate SFR completeness limit for
GAMA and SDSS galaxies (Gunawardhana et al. 2013), and the dotted black line is the 95 %
completeness limit from blue galaxies in miniJPAS. Galaxies are color-coded with their (u-r) rest-
frame color.

with information from the UV from GALEX or HST-UV observations and/or the
IR from SPITZER would be very useful to unveil the origin of the discrepancy and
test some of the previous hypotheses. However, this analysis is not the main goal
of this chapter.

4.7 Outlook for J-PAS
The results presented in this chapter prove that the main properties of ELGs can be
studied with J-PAS data. The miniJPAS Pathfinder instrument allowed us to test
and combine different methods of analysis to fully exploit the scientific potential
of the data and draw the baseline for the prospect of J-PAS.

The vast amount of data to be collected by J-PAS will allow us to perform
a more comprehensive research, exploring other aspects that remained elusive or
were limited within the area covered by miniJPAS. For instance, we will be able
to derive the properties of blue and SF galaxies in groups and clusters, the fraction
of AGN, and their role in the quench of SF galaxies within dense and very low



4.7. Outlook for J-PAS 138

Figure 4.19: Comoving number density of galaxies in miniJPAS as a function of redshift. The
total galaxy population (black star) is broken into star-forming (blue stars), AGN-like (green stars),
and quiescent galaxies (red stars). We used the WHAN diagram with the Ka03 dividing line to
separate AGN and SF galaxies. Quiescent galaxies include LINERs and passive galaxies. The
uncertainty due to the cosmic variance is not included in the error budget.

density environments.
For instance, if in 1 deg2 we were able to estimate the position of 255 galaxies

in the BPT with an error smaller than 0.15 dex, the ionization mechanism of about
two million galaxies in the Universe (z < 0.35) could be studied at the end of the
J-PAS survey. With this amount of data, we will be able to determine the SFMS
parameters better and place constraints on the evolution of ρSFR at least up to 0.35
in redshift. Thus, it will be possible to further explore the discrepancies found in
section 4.6.2.

The SFR coverage of J-PAS will be at least as competitive as that of the SDSS
or GAMA surveys. In Fig. 4.18 we show the SFR as a function of the resdshift for
our SF galaxy sample. The dotted blue line is the approximate SFR completeness
limit assuming a flux limit of FHα = 10−18Wm−2 for GAMA and SDSS galaxies
(Gunawardhana et al. 2013). The dotted black line represents the 95 % complete-
ness limit of miniJPAS for blue galaxies (Dı́az-Garcı́a et. al. in prep). We used
the best fit obtained in section 4.5.3 to transform the completeness limit in mass
into SFR.
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Finally, in Fig. 4.19 we show the comoving number density of galaxies in
miniJPAS as a function of redshift for the total galaxy population (black stars) for
the star-forming galaxies (blue stars), for AGN-like galaxies (green stars), and for
quiescent galaxies (red stars). Error bars represent the variation in the number
density when a different division line in the WHAN diagram is considered, for
example, k03, Ke01, or S08.

4.8 Summary and conclusion
We analyzed a subsample of galaxies (a total of 2154) from the AEGIS field ob-
served by miniJPAS with redshift below 0.35 in detail. The method we developed
make used of ANN trained with CALIFA and MaNGA in order to predict and
detect the main emission lines in the J-spectrum: Hα, Hβ, [O iii], and [N ii].

We used a criterion based on the mass and color of the galaxy. We estimated
that 83 % and 17 % in the sample are blue and red galaxies, respectively. With
the ANN classifier, which is based on the EW of the emission lines, we found that
82 % of the sample are strong ELs amd 18 % are weak ELs.

We employed the BPT and WHAN diagrams to classify galaxies according
to the main source of ionization and to select star-forming galaxies. We obtained
that of the galaxies with reliable EW values (2000 galaxies in total), 72.8± 0.4 %,
17.7 ± 0.4 %, and 9.4 ± 0.2 % are SF, Seyfert, and passive or LINER galaxies,
respectively, using the WHAN diagram and the Ka03 separation line. One hun-
dred and fifty-four galaxies from the parent sample remain unclassified because
of high uncertainties in the predictions of the emission lines. Ninety-four percent
of the SF galaxies and 97 % of the LINER or passive galaxies are classified with
the color criterion as blue and red, respectively.

The analyses of the properties of the stellar population performed in González
Delgado et al. (2021) allowed us to compare and complement the information of
the emission lines. For instance, we showed in color-mass diagrams that blue (red)
galaxies are composed of a younger (older) stellar population, respectively, and
present stronger (weaker) emission lines. This synergy between the properties
of the gas and the stellar populations also appears in the BPT diagram, where
galaxies become more massive as they evolve through the SF-wing.

We derived the SFR from the flux of Hα and relied on the Balmer decrement
to correct for the extinction produced by interstellar dust. Subsequently, we fit
the slope, zeropoint, and the intrinsic scatter of the SFMS, obtaining 0.90+0.02

−0.02,
−8.85+0.19

−0.20 and, 0.20+0.01
−0.01, respectively. We tested the turnover-mass hypothesis
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by fitting a quadratic and a broken power law. However, we did not observe a
flattening of the slope at high mass. We argue that this is likely produced by
our selection criteria of SF galaxies together with the limitation of the method to
detect very weak emission lines in comparison with spectroscopic surveys. The
results we obtained are compatible with those of other studies.

Finally, we computed the cosmic evolution of the ρSFR within three redshift
bins: 0 < z ≤ 0.15, 0.15 < z ≤ 0.25, and 0.25 < z ≤ 0.35. We found agreement
with previous measurements based on the Hα emission line. Nevertheless, we
found an offset compared to the studies that derived ρSFR from the SED fitting of
the stellar continuum. We discussed the origin of this discrepancy in detail, which
is most probably a combination of several factors, such as the correction for dust
attenuation, the SFR tracer, or the escape of ionizing photons.

The work presented in this chapter builds the foundation upon which the anal-
ysis of ELGs in J-PAS will be conducted as soon as hundreds of squares degrees
are mapped in the northern sky in the next years.
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Quasar selection in the AEGIS field
with artificial neural networks and
hybridisation
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5.1 Introduction
The new era in modern astronomy goes hand in hand with the era of big data.
Astronomical observations produce increasingly larger amounts of data. The new
generation of surveys such as the Dark Energy Spectroscopic Instrument (DESI,
Levi et al. 2013), the Large Synoptic Survey Telescope (LSST, Ivezić et al. 2019)
or the Square Kilometer Array (SKA, Dewdney et al. 2009) will observe of the
order of millions or even billions of objects. In particular, the Javalambre Physics
of the Accelerating Universe Astrophysical Survey (J-PAS, Benitez et al. 2014)
will observe in 54 narrow-band filters thousands of deg2 in the northen sky in
the upcoming years, detecting more than 40 million objects. Consequently, it is
necessary to automatise as much as possible all the tasks so as to process faster and
more efficiently the astronomical information. Certainly, the identification and
classification of astronomical objects is the first step prior to any further scientific
analysis.

Traditionally, photometric surveys identified galaxies and stars based on their
morphological structure and colour properties (see e.g. Baldry et al. 2010; Henrion
et al. 2011; Saglia et al. 2012; López-Sanjuan et al. 2019). Typically, galaxies are
extended objects while point-like sources are mainly either stars or quasi-stellar
objects (quasars). Nevertheless, the lack of spatial resolution for the most dis-
tant and faint galaxies makes them look very similar to point-like sources. Fur-
thermore, the colour space in multi-band photometric surveys becomes more and
more complex as the number of filters increases, which makes it necessary to em-
ploy more sophisticated algorithms to fully exploit all the information encoded in
it.

In the last years, machine learning (ML) algorithms have been used in plenty
of applications within the astronomical field. From the estimation of photometric
redshifts (Cavuoti et al. 2017; Pasquet et al. 2019; Ramachandra et al. 2022), the
identification of low-metallicity stars (Whitten et al. 2019), the determination of
the star formation rate (Delli Veneri et al. 2019; Bonjean et al. 2019), the clas-
sification of morphological types in galaxies (Domı́nguez Sánchez et al. 2018),
the identification of causality in galaxy evolution (Bluck et al. 2022) to the mea-
surement of the equivalent widths of emission lines in photometric data (Martı́nez-
Solaeche et al. 2021). The problem of source identification in photometric surveys
has also been addressed by ML either to distinguish between point-like and ex-
tended sources (Vasconcellos et al. 2011; Kim et al. 2015; Kim & Brunner 2017;
Burke et al. 2019; Baqui et al. 2021) or even between galaxies, stars and quasars
(Krakowski et al. 2016; Bai et al. 2019; Logan & Fotopoulou 2020; Xiao-Qing &
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Jin-Meng 2021; He et al. 2021).
The goal of the this chapter is to classify the objects detected with the mini-

JPAS survey (Bonoli et al. 2021) into stars, galaxies, quasars at high redshift
(z ≥ 2.1), and quasars at low redshift (z ≤ 2.1) by using artificial neural net-
works (ANN). The threshold at z = 2.1 corresponds to the limit at which quasars
show the Lyman-α emission line within the J-spectra. The miniJPAS survey is
part of the J-PAS project1, which detected more than 60 000 objects within the
All-wavelength Extended Groth Strip International survey (AEGIS; Davis et al.
2007) using 56 narrow-band J-PAS filters (∼ 145 Å) and the four ugri broad-band
filters. The separation of 100 Å among filters makes the J-PAS filter system equiv-
alent to obtaining a low resolution spectrum with R ∼ 60 (J-spectrum hereafter).
Such unique characteristics make possible to observe and analyse galaxies and
quasars in continuous redshift ranges, 0 ≲ z ≲ 1 and 0.5 ≲ z ≲ 4, respectively
(Bonoli et al. 2021). In fact, different studies proved the capability of J-PAS to ad-
dress several topics within the astrophysical field, e.g. the evolution of the stellar
population properties of galaxies up to z ∼ 1 (González Delgado et al. 2021), the
properties of the nebular emission lines of galaxies down to z ≤ 0.35 (Martı́nez-
Solaeche et al. 2022), the measurement of black hole virial masses for the quasar
population (Chaves-Montero et al. 2021) or the study of galaxy properties within
galaxy clusters (Rodrı́guez Martı́n et al. 2022) and groups (González Delgado
et al. 2022). Unfortunately, the data available for spectroscopically confirmed
sources in the miniJPAS area are not sufficient to train and test ML algorithms for
the present purpose. Therefore, we employ mock data developed by Queiroz et al.
(2022), and use as a truth table the sources identified spectroscopically within the
AEGIS field by the Sloan Digital Sky Survey (SDSS, York et al. 2000) in the
DR12Q superset catalogue (Pâris et al. 2017).

Modern deep ANN are generally showing better performance than traditional
methods. Still, most of the time they remain poorly calibrated (Goodfellow et al.
2014; Guo et al. 2017). The probabilities associated with the predicted label
classes may suffer from overconfidence, as they do not correspond to true like-
lihoods. Consequently, objects are classified as part of one class or another with
high probability regardless of the prediction accuracy. Realistic probability dis-
tributions are particularly important for spectroscopy follow-up programs which
typically prioritise the observation of high probability objects of some particular
class. Furthermore, some objects are indeed dual in its nature. Although we con-
sider as quasars only those galaxies with an extremely luminous active galactic

1http://www.j-pas.org
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nucleus (AGN), there are objects in which a significant fraction of the detected
light comes from the stars in the host galaxy. In this scenario, ML algorithms
should ideally provide a high probability in both classes.

In a recent paper, Zhang et al. (2017) proposed an original idea called mix up
to enlarge the dataset and improve the generalisation of the trained model, thus
increasing the robustness to adversarial examples. Latter on, Thulasidasan et al.
(2019) showed that mix up or hybridisation, as we prefer to call it, also improves
the calibration and predictive uncertainty of deep neural networks. In this work,
we enlarge our training set by mixing features from stars, galaxies and quasars
and we study the effect of hybridisation in both the performance and the calibra-
tion of the models. The ML classifiers used in this chapter will be combined with
other ML algorithms. In Rodrigues et al. (in prep.) we trained convolutional
neural networks (CNNs) proposing different approaches to incorporate photom-
etry uncertainties as inputs in the training phase. Furthermore, we compare the
performance of the CNNs with respect to decision tree algorithms. While in this
work we focus our attention on the galaxy-quasar degeneracy and the ability of
ANN to estimate realistic probability density distributions (PDF), in Rodrigues et
al. we study other relevant aspects, e.g. the stellar types that are more frequently
confused with the quasar population, the J-PAS feature importance or the stability
of the CNNs predictions with respect to minor changes in the training set. Be-
sides, in Pérez-Ràfols et al. (in prep. a) we adapt SQUEZE (Pérez-Ràfols et al.
2020) to work with J-PAS data, a code based on optical emission line identifica-
tion to separate between quasars and non-quasars that also estimates the redshift
of quasars. Ultimately, all these codes will be merged in a combined algorithm
(Pérez-Ràfols et al. in prep. b) so as to classify more efficiently the miniJPAS
sources and provide a high-redshift quasar target list for a spectroscopic follow-
up with the WEAVE multi-object spectrograph survey (Dalton et al. 2014), which
is planning to carry out a Lyman-α forest and metal line absorption survey (Pieri
et al. 2016).

This chapter is organised as follows. In section 5.2, we present miniJPAS
data, and we briefly summarise the processes employed in the construction of the
mock catalogue. In section 5.3, we describe in detail the main characteristics of
the classifiers, and how data augmentation is employed through hybridisation. We
indicate the performance metrics used for testing purposes along the chapter in
section 5.3.4, and we show the main results obtained in this chapter in section 5.4
and section 5.5. Finally, we summarise and conclude in section 5.6. Throughout
the chapter, all magnitudes are presented in the AB system (Oke & Gunn 1983).
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5.2 The miniJPAS survey and mocks

The miniJPAS survey includes data from four pointings scaning ∼ 1 deg2 along
the AEGIS field. The photometric system includes 56 bands, namely 54 narrow-
band filters in the optical range plus two medium-bands – one in the near-UV
(uJAVA band) and another in the NIR (J1007 band). With a separation of ∼ 100
Å, each narrow-band filter has a full width at half maximum (FWHM) of ∼ 145
Å, whereas the FWHM of the uJAVA band is 495 Å and J1007 is a high-pass filter.
Additionally, four broad-bands u,g,r, and i were used to complement the observa-
tions. These were carried out with the 2.55 m telescope (T250) at the Observatorio
Astrofı́sico de Javalambre, a facility developed and operated by CEFCA, in Teruel
(Spain). The data were acquired using the pathfinder instrument, a single CCD di-
rect imager (9.2k× 9.2k, 10µm pixel) located at the centre of the T250 FoV with a
pixel scale of 0.23 arcsec pix−1, vignetted on its periphery, providing an effective
FoV of 0.27 deg2. The r band has been chosen as the detection band and the refer-
ence image in the ’dual-mode’ catalogue. This image is used to define the position
and sizes of the apertures from which the rest of the photometry is extracted. The
miniJPAS survey is 99% complete up to r ≤ 23.6 mag for point-like sources, and
detected more than 60 000 objects2 (Bonoli et al. 2021). In this chapter, we only
analyse objects with FLAGS= 0 and MASK FLAGS= 0 (46441 in total), i.e. they
are free from detection issues such as contamination from bright stars, light re-
flections in the telescope or in its optical elements, etc. We refer the reader to
Bonoli et al. (2021) for details on the flagging scheme. Removing flagged sources
from the catalogue decreases our sample size but it does not introduce any bias,
since the fraction of sources that are flagged is independent of their magnitude
(Hernán-Caballero et al. 2021).

The algorithms presented in this chapter are trained and tested on mock data
(Queiroz et al. 2022). The J-spectra of galaxies, stars and quasars are simulated
by convolving SDSS spectra included in the SDSS DR12Q Superset catalogue
(Pâris et al. 2017) with the transmission profiles of J-PAS photometric system
(synthetic fluxes). The SDSS DR12Q Superset contains all objects targeted as
quasars from the final data release of the Baryon Oscillation Spectroscopic Sur-
vey (BOSS, Dawson et al. 2013). Therefore, it contains also galaxies and stars
whose broad-band colours are compatible with those from quasars. Since the
SDSS sample is complete only up to r ∼ 20.5, fainter objects are generated by
adding random fluctuations (noise) to the synthetic fluxes. The mock catalogue

2http://archive.cefca.es/catalogues/minijpas-pdr201912
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Sample Galaxies Stars Quasars All

Training 105 105 105 3 × 105

Validation 104 104 104 3 × 104

Test 104 104 104 3 × 104

1-deg2 6410 2190 510 9110

Table 5.1: Number of objects in each data set contained in the mock catalogue.

includes several noise models that mimic the observed S/N in miniJPAS for the
APER 3 magnitude aperture3. We use model 1, which assume the noise distribu-
tion of miniJPAS point-sources in each filter is well described by a single Gaus-
sian distribution (Queiroz et al. 2022). Nevertheless, the main results presented
in this chapter are not affected by the noise model choice. In Pérez-Ràfols et al.
in prep. b we will compare the performance of each algorithm in the mock test
sample with different noise models and we will classify sources in miniJPAS for
each one of them. Galaxies follow the magnitude-redshift distribution of SDSS
and DEEP3 (Cooper et al. 2011, 2012) found in miniJPAS. Quasars follow the lu-
minosity function of Palanque-Delabrouille et al. (2016), and stars are distributed
according to the Besançon Model of stellar population synthesis of the Galaxy
(Robin et al. 2003) and the SDSS miniJPAS spectroscopic sample.

The number of stars, galaxies and quasars are balanced to prevent biases in the
classifiers towards over-represented classes. The same applies for the test set and
the validation set, which is used to fine tune the hyper-parameter of the classifiers.
Additionally, another test sample with the expected number of point-like sources
within the miniJPAS area is generated to provide a more direct comparison. In
Table 5.1 we summarise the number of objects contained in the mocks. Further
details on how these synthetic data have been created can be found in Queiroz
et al. (2022).

3This is the magnitude obtained within a three arcsec-aperture.
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5.3 Star/galaxy/quasar classifier
In this section we describe in detail how the ANN classifiers were developed.
These have been designed to distinguish between four different classes: stars,
galaxies, quasars at high redshift (z ≥ 2.1), and quasars at low redshift (z < 2.1)
referred to as QSO-h and QSO-l, respectively.

5.3.1 Artificial neural networks
In this chapter, we used ANN coded with Tensorflow (Abadi et al. 2015) and
Keras libraries (Chollet et al. 2015) in Python. The ANN has eight hidden layers
with 200 neurons each. As a regularisation technique, we use weight constraints
and impose a maximum value of two in each neuron (kernel constraint). We also
drop out 15 % of the neurons in each layer. We use the Rectified Linear Unit
(ReLU) as our activation function (Nair & Hinton 2010). Weights are initialised
with the He initialisation strategy (Géron 2019). The loss function employed is
the cross entropy.

We trained two models that use two different sets of inputs, dubbed as ANN1

and ANN2. The inputs of ANN1 (59 in total) are relative fluxes, i.e. the flux in
each filter is divided by the flux in the r band. Since the miniJPAS dual-mode
catalogue used the r-band for detections, this normalisation is well defined for all
the objects. The inputs of ANN2 are the colours measured with respect to the mAB

in the r band plus the normalised magnitude in this band (60 inputs in total):

ANN j
1 =

f j
λ

f r
λ

ANN j
2 = m j

AB − mr
AB, ANNr

2 =
mr

AB −max(mr
AB)

min(mr
AB) −max(mr

AB)

(5.1)

where mAB and fλ stand for the magnitude and the flux in the j-th filter, respec-
tively, and min(mr

AB) and max(mr
AB) are the minimum and maximum values of

the magnitude in the r-band within our training set. Both sets of inputs capture
the shape of the spectrum but the ANN2 has also information about the observed
luminosity of each source, which anchors the SED to a particular magnitude.

Objects in the dual mode catalogue might be undetected in some bands (non-
detection). This happens when the S/N values for these bands are very low and the
measured fluxes are null or negative after the sky background subtraction. In the
mock catalogues non-detection (ND) follows the pattern observed in miniJPAS.
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For specific details to see how ND are modelled we refer the reader to Queiroz
et al. (2022). We set to zero the inputs of the ANN2 if the fluxes are negative
because colours are otherwise undefined. However, we allow the inputs of the
ANN1 to be below zero. Such small differences might help the ANN1 to better
modelling the sky background.

5.3.2 Data augmentation via hybridisation

Data augmentation has been proven to be an excellent tool to increase the size
of the training sample and consequently the performance of ML algorithms when
only a limited training sample are available (Shorten & Khoshgoftaar 2019). Ro-
tation, translation or scaling are among the most popular techniques for image
classification (Yang et al. 2022). In the case of non-image features such as the
J-spectra, the most common manner to perform data augmentation is via Gaus-
sian noise. However, the benefit of this technique in our training sample would
be limited because it was already used to generate objects at different magnitudes
bins in the construction of the mock catalogue. Thus, we adapt the mix up tech-
nique proposed in Zhang et al. (2017) to our classifiers that aim to distinguish
between four classes. This technique allows us to enlarge the training set by mix-
ing features from different classes generating a new training set composed only of
hybrid objects. The new set of hybrid objects (yH

i ) and their respective fluxes are
generated as a linear combination of individual objects in the original training set:

yH
i = αiyi +

4∑
j=1

ci j(1 − α j)(1 − δi j)yj (5.2)

fH
i (λ) = αifi(λ) +

4∑
j=1

ci j(1 − α j)(1 − δi j)fj(λ) (5.3)

where y1 (f1(λ)), y2 (f2(λ)), y3 (f3(λ)) and, y4 (f4(λ)) are the vectors (fluxes) of
each one of the classes (stars, galaxies, QSO-l, QSO-h, respectively), α j is the
mixing coefficient which varies between zero and one according to an exponential
distribution function which depends on beta, the scale parameters that control the
level of mixing ( f (x; β) = 1 − (1/β) exp(−x/β)). Finally, δi j is the Kronecker
delta, and ci j = N j/(Ntot−Ni) where Ni is the number of objects belonging to class i
within each magnitude bin in the original training set, and Ntot = N1+N2+N3+N4.
For instance, if we generate an hybrid galaxy (yH

2 ) at magnitude mr
AB = 22.5,
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Eq. 5.3 becomes:

fH
2 (λ) = α2f2(λ) + (1 − α2)(c21f1(λ) + c23f3(λ) + c24f4(λ)). (5.4)

For low values of β, α2 is near one with a high probability. Therefore, the new
hybrid galaxy is still a galaxy but it has some of level of contamination from the
other classes. The probability of not being a galaxy (1 − α2) is distributed among
the other classes taking into account their relative amounts at mr

AB = 22.5. Since
stars are less frequent at such magnitude c21 is near zero and the new hybrid galaxy
is mixed mainly with QSO-l and QSO-h. In order to compute the ci j coefficients,
we split the training set in rSDSS magnitude bins that contain roughly 20 000
objects. In this way, only objects with similar brightness are mixed together. We
enlarge the training set five times with β = 0.1 (we will discuss later this choice in
Sec. 5.4.1). We warn the reader that hybridisation does not mix objects following
a physical recipe but it is rather a mathematical transformation of the data. The
resulting hybrid fluxes are normalised following Eq. 5.1.

5.3.3 Training strategy

Usually, the intrinsic randomness of the training procedure leads to solutions that
are not optimal. Weights and biases are drawn from a distribution function that
generates the initial state. Therefore, each time that the training is performed, the
algorithm converges to a different local minimum of the loss-function. Further-
more, the training set itself is augmented in a random manner via hybridisation.
The ’hybrid’ space is filled in a slightly different way in each realisation. In the
limit case where the hybrid set is much larger than the original one such effect
would be negligible. However, a huge training set is less practical to handle and
more difficult to train than a smaller one. For all these reasons, we followed the
committee approach (Bishop 1995), i.e. we train several ANNs and compute the
median to provide a final classification. Then, we renormalise the output probabil-
ities to ensure that the sum is one. In order to find the optimal number of ANN or
committee members needed, we started with two and we added an additional one
at each step until the results did not improve for the validation sample in terms of
the f1 score (see section 5.3.4 for a definition of this metric). We dertermined that
eight members are enough to reach convergence.
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5.3.4 Performance metrics

We discuss here the metrics used to evaluate the performance and robustness of
the classifiers.

Confusion matrix

The confusion matrix is especially useful in the context of a multi-label classifica-
tion problem. The actual classification of each object is shown in the columns of
the matrix while the predicted ones lie in the rows. Therefore, in the best (ideal)
case scenario the matrix would be purely diagonal with every prediction coincid-
ing with the actual classification. Non-diagonal terms indicate which classes are
confused between each other, and provide a valuable information so as to improve
the training set and fine tune the hyper-parameters of the model.

f1-score

Unlike the confusion matrix, the f1-score yields one single scalar for each one of
the classes. It finds a compromise between purity (precision) and completeness
(recall):

Purity =
T P

T P + FP
, Completeness =

T P
T P + FN

(5.5)

f1 score =
2 · Purity · Completeness
Purity + Completeness

(5.6)

where T P, FP and, FN are the true positive rate, the false positive rate and, the
false negative rate, respectively. FP appears as non-diagonal terms in the columns
of the confusion matrix, while TN lies on the rows. In the case of an unbalanced
test set with one or more classes underrepresented, the average performance of the
model can be estimated using the weighted f1 score, i.e.

f W
1 score =

Nclass∑
i=0

ni f i
1 score
nobj

(5.7)

where ni is the number of objects belonging to the i-th class in the test set, and nobj

is the total number of objects.
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Expected Calibration Error

A well calibrated probabilistic classifier is able to predict probabilities that co-
incide on average with the fraction of objects that truly belong to a certain class
(accuracy). Let us suppose we take one hundred objects with probability 10% of
being a star, if the classifier is well calibrated, about ten of them should actually
be stars. If there are more, that means our classifier is under-confident, if there
are less, then the classifier is over-confident. Probability calibration curves are
normally employed to display this relationship, where we bin the probability esti-
mates and plot the accuracy versus the mean probability in each bin. Let Bm j be
the set of objects whose predicted probabilities of being class j fall into bin m.
The accuracy and confidence of Bm j are defined as:

acc(Bm j) =
Nm j

|Bm j|
(5.8)

con f (Bm j) =
1
|Bm j|

∑
i∈Bm j

Pi j (5.9)

where Pi j is the probability of being class j for the i-th object, and Nm j is the
number of objects of class j within bin m. The Expected Calibration Error (ECE)
is then defined as:

ECE =
1
Nc

Nc∑
j=0

Nb∑
m=0

|Bm j|

Nb
|acc(Bm j) − con f (Bm j)| (5.10)

where Nc is the number of classes and Nb the number of bins. The lower the
value of the ECE, the better is the calibration of the model. However, the output
of the ANN only represent true probabilities under the assumption that there is
not essential difference between our mock sample and miniJPAS observations.
In order to have a better estimate of the ECE of the model we would need to
compute this metric in sufficiently large true table which is not possible yet. In the
future, when more data will be gather, we will be able to employ this metric on
observations and evaluate properly the ECE of the ANN. In the remaining of this
chapter we will refer to the outputs of the ANN as probabilities keeping in mind
they are simply a proxy of the true probabilities.

Entropy

The entropy is a measurement of disorder. In the context of ML, the entropy of
a classifier’s prediction can tell us how uncertain the classifier is. The entropy of
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the i-th object can be written as follow:

S i = −

Nc∑
j=0

Pi j log2(Pi j + ϵ) (5.11)

where Pi j is the probability that the i-th object is class j, Nc is the number of
classes, and ϵ is an arbitrary small number (10−14) to avoid the divergence of the
logarithm in case the probability for a given class is zero. The entropy is maximum
(log2 Nc) if each class has a probability of 1/Nc and zero if the probability of
belonging to a particular class is one.

5.4 Results
In this section we test the performance of the algorithms on the mock test sample
(section 5.4.1). We discuss in detail the effect of augmenting the data through
hybridisation and we compare the differences between classifiers. Finally, we
evaluate the classification obtained with SDSS objects observed by miniJPAS in
the AEGIS field.

5.4.1 Test sets
The performance of a classifier changes as a function of the magnitude of the
objects. Fainter objects are more difficult to classify because of their lower S/N.
Hence, in order to quantify the potential bias of the classifiers at different mag-
nitudes we split both the validation and the test samples in three different bins
according to the r-band magnitude:

BIN 0 : 17 < r ≤ 20
BIN 1 : 20 < r ≤ 22.5 (5.12)
BIN 2 : 22.5 < r ≤ 23.6

The number of objects in the test sample for BIN 0, 1, and 2 are 5002, 13376, and
9436, respectively. In Fig. 5.1 we show the f W

1 score for each of the magnitude
bins defined above including the average performance for the full sample (ALL
BIN). We compare the score of the ANN trained with the hybrid set (ANN1 mix
and ANN2 mix) and with the original training set (ANN1 and ANN2). In Fig. 5.2
the f1 score is also shown for each of the classes. Overall, both classifiers (ANN1
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Figure 5.1: f W
1 score for different magnitude bins as defined in Eq. 5.12, and for the full sample

(ALL BIN). Dashed (solid) lines represent the models trained with the hybrid (original) training
set. ANN2 and ANN2 mix are trained with colours while ANN1 and ANN1 mix are trained with
fluxes (see section 5.3.1).

and ANN2) are very similar with small differences in each magnitude bin for each
class. The fact that the ANN1 classifier is slightly better might be related not
only to the representation of the data (relative fluxes) but with the fact that it can
capture better the sky background.

As expected, the accuracy of the classifiers decreases for fainter objects. The
performance obtained with the hybrid set is very similar compared to the original
training set, suggesting that the latter already contains all the variance needed,
and more examples do not necessarily imply a better performance (but see the
next section for a more detailed discussion).

In Fig. 5.3 we show the weighted fW
1 -score as a function of the median S/N ra-

tio in the observed filters for the ANN1 and the ANN2. Each bin contains roughly
1000 objects. It is remarkable that even with a median S/N of 5 the fW

1 -score
reaches 0.9.

The confusion matrices as a function of the magnitude bin for the ANN1 model
are shown in Fig. 5.4. Those from the remaining models are provided in Appendix
C. QSO-l and galaxies are more difficult to distinguish between each other, espe-
cially at the faint end, where data are noisier. In fact, these objects do not belong
to independent classes. Sometimes, the host galaxy of an AGN might have an
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Figure 5.2: f1 score for each of the classes: galaxies, QSO-h, QSO-l and, stars as a function of
the magnitude bins defined in Eq. 5.12, and for the full sample (ALL BIN). Dashed (solid) lines
represent the models trained with the hybrid (original) training set. ANN2 and ANN2 mix are
trained with colours while ANN1 and ANN1 mix do with fluxes (see section 5.3.1)
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important contribution to the SED. In Seyfert galaxies, the observed spectrum is
usually a combination of thfe light coming from the AGN and the stellar popula-
tions within the galaxy. Therefore, we expect to have confusion between QSO-l
and galaxies more often than between any of the other classes. Finally, in the
faintest magnitude bin, 31.4 % of QSO-h are classified as QSO-l, and 18.9 % of
the stars are confused with QSO-l.

In Fig. 5.5 we show examples of the most common missclassifications. The
first row is composed of QSO-l that were classified as galaxies. In the second
row we show galaxies that were identified as QSO-l, the third row corresponds to
QSO-h confused with QSO-l, and the last row shows Stars classified as QSO-l.
Despite of being unable to correctly predict the class of these objects, the second
most likely class usually coincide with the actual class. Furthermore, it is impor-
tant to emphasise that objects shown in Fig. 5.5 would be very difficult to identify
via visual inspection even for a human expert. ML algorithms are indeed pushing
the limits beyond the human capability.

It it expected that the ANN predictions for low S/N objects is more uncertain
than the ones with high S/N. In Fig. 5.6 we show the median entropy as a function
of the median S/N in bins of 1000 objects. While the predictions are very certain
in the high S/N limit with the ANN1 and ANN2 classifiers, the entropy obtained
by the ANNs trained in the hybrid sets remains almost constant from a S/N of
25 to 10 with a value of ∼ 0.4 and then it increases slightly. In fact, the lowest
entropy obtained with the ANN1 mix and ANN2 mix classifiers is governed by
the mixing coefficient (α) used to generate the hybrid set in Eq. 5.3 and coincides
with the median entropy of the hybrid classes in the training set.

In Fig. 5.7 we show the fraction of positive for each one of the classes as a
function of the mean probability obtained with the ANNs in the mock test sample
(r ≤ 23.6). On the top (bottom) left panel we show the results of the ANN1 (ANN2)
predictions trained with the original training set while on the right panel we show
the predictions obtained with the hybrid set. The ECE for galaxies, QSO-h, QSO-
l, and stars are shown on the top-left. Training with hybrid classes has a negative
impact on the calibration. Once again, the ECE is a function of the mixing co-
efficient: as α increases the ECE increases. Overall, the ANN1 is slightly better
calibrated than the ANN2, but ANN2 mix is better than ANN1 mix.

Finally, It is worth considering whether hybridisation improves the perfor-
mance of the ANNs when the training set is smaller in size. The original training
set in the mock catalogue is composed of 300 000 objects, and the hybrid set is five
times larger. Now, let us assume that we have a training set ten times smaller than
the original one (reduced set). After applying hybridisation we generate two new
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Figure 5.5: Examples of the most typical miss classification (mock test sample). First row
shows QSO-l classified as galaxies, second row galaxies classified as QSO-l, third row QSO-h
classified as QSO-l, and fourth row Star classified as QSO-l. From left to right objects are fainter.
We indicate the AB magnitude in the r-band, the redshift (top-left) and the probabilities yielded
by the ANN1 classifier for each one of the classes (top-right).
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Figure 5.6: Median entropy as a function of the median S/N in bins of 1000 objects..

training sets that are five and ten times larger than the reduced set, respectively,
known as the ’reduced hybrid set x5’ and the reduced hybrid set x 10. Then, let us
compare the performance of ANN1 in the mock test sample. In Fig. 5.8 we show
the difference between the fW

1 -score in each one of the mentioned training sets and
the fW

1 -score obtained in the original training set as a function of the median S/N.
We do not observe a significant improvement that might justify the use of hybridi-
sation, at lest in the form we implemented in Eq. 5.3 for this particular data set.

5.4.2 SDSS versus miniJPAS

In this section we test the ANN classifiers on the SDSS test sample. Fig. 5.9
shows the f1 score for each class and the f W

1 score. The performance of the al-
gorithms trained with the hybrid set (ANN1 mix and ANN2 mix) are compared
with the original training set (ANN1 and ANN2). Due to the limited number of
objects we did not separate these samples in magnitude bins. Most of the objects
(75%) belong to BIN 1 and only three are at the faint end (BIN 2). Therefore,
the f1 score is mostly representative of BIN 1. The results on the SSDS test sam-
ple are compatible with those obtained in the mock data (∼ 0.9), suggesting that
the simulations are reproducing fairly well the miniJPAS observations at least for
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magnitudes brighter than 22.5. Unfortunately, we do not have enough labeled ob-
jects fainter than 22.5 within the miniJPAS field, thus we need to rely on the mock
results to give an expectation of the performance. As soon as WEAVE starts to
observe the quasar target list provided by the J-PAS collaboration we will be able
to fully asses the performance of the algorithms for the full range of magnitudes.

In Fig. 5.10 we show the confusion matrix obtained with ANN1 for the SDSS
test sample. The confusion matrices for the remaining models can be consulted in
Appendix C. The sample of quasars predicted by the ANN and especially the sub-
sample of QSO-h contain very few false positives (QSO columns in the confusion
matrix), meaning the algorithms favour a pure rather than a complete sample.
However, the sample of galaxies is more complete because ∼ 19 % of them are
classified as QSO-l but only few SDSS galaxies are missing. Finally, stars are
identified with very high accuracy with only five false positives and eight true
negatives. We recall that these results are partially biased due to the small number
of objects in it and the selection criteria that were used by the SDSS team to select
the sample of quasar targets. Hence, it can only give us a a glimpse of the actual
performance of the ANN in real data.
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Figure 5.9: f W
1 score and f1 score for each one of the classes obtained within the miniJPAS

field observed and labeled by SDSS observations (see text in 5.4.2). Dashed (solid) lines represent
the models trained with the hybrid (original) training set. ANN2 and ANN2 mix are trained with
colours while ANN1 and ANN1 mix are trained with fluxes (see section 5.3.1). Note that the scales
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Figure 5.10: Confusion matrix obtained with ANN1 in the SDSS test sample.
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In Fig. 5.11 we show some examples of objects observed simultaneously by
SDSS and miniJPAS below redshift 1 that might present a spectrum composed
of mixed features. In other words, the light coming from these objects has con-
tributions from both the AGNs and the stellar populations within the galaxies.
All the objects except 2470-3341 are classified in SDSS as QSO-l. However,
SExtractor identified them as extended sources with a class-star value below
0.35 (CL in Fig. 5.11). Following the SDSS classification criterion, only 2470-
3341 and 2241-1234 are correctly classified by the ANN1. Nevertheless, 2406-
15603 is rather a Seyfert 1 galaxy with broad emission lines such as Hα and Hβ.
It also has a reddish spectrum and the extended structure of the galaxy can be
seen very clearly in the image. Furthermore, while SDSS spectrum detects the
broad emission line of Hα, the miniJPAS observation do not capture such emis-
sion, which is probably the most relevant feature to classify this object as a quasar.
2241-18615, 2406-2560, and 2406-7300 are classified as galaxies but the second
preferred class is QSO-l. Indeed, those objects are not very different from 2470-
3341, which is a Seyfert 2 galaxy according to the SDSS pipeline. Once again,
the J-spectra miss two relevant features in 2241-18615 and 2406-2560, the Hα,
and Hβ emission lines, respectively. Finally, 2241-1234 is correctly classified.
Although it is an extended source according to SExtractor, the emission of the
AGN dominates the spectrum. The high S/N obtained in this object makes the
classification more certain.

5.5 miniJPAS quasar catalogue
We now focus our attention on the classifier predictions on miniJPAS data. In
Fig. 5.12 we show the distribution of the confidence (probability) levels yielded
by ANN1 and ANN2 classifiers for each class and each magnitude bin. We only
predict the class for the objects that are considered point-like sources according
to SExtractor. Both ANN classifiers predict roughly the same number of ob-
jects but they exhibit differences in the faintest magnitude bins, which are useful
to build afterwards a combined algorithm that uses information from several clas-
sifiers (Pérez-Ràfols et al. in prep. b).

The total number of quasars predicted by ANNs for miniJPAS is compatible
with previous estimates. Abramo et al. (2012) expected ∼ 240 quasars per square
degree with the J-PAS photometric system for a limiting magnitude of g=23 as-
suming that quasars follow the luminosity function found by Croom et al. (2009)
and the quasar selection is perfect. With the ANN1 (ANN2) we detect 163 (177)
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Figure 5.11: Seyfert galaxies observed both with miniJPAS and SDSS (see text in section 5.4.2).
The SDSS spectra is scaled to match the miniJPAS r-band. Grey solid line represents the ac-
tual SDSS observation while blue line is a model developed by the SDSS team. We indicate in
the legend the miniJPAS ID, the spectroscopic redshift of the object, the class-star yielded by
SExtractor (CL), and the AB magnitude in the r-band. We also show the probabilities obtained
by the ANN1 for each one of the classes, and we attach a multi-colour RGB image centred on the
object covering 6.5 arcsec across. All objects except 2470-3341 are classified by SDSS pipeline
as quasars.
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quasars with a probability greater than 0.5 and g < 23 in the point-like source cat-
alogue (CL > 0.5). Even though 0.25 is the threshold to have an object classified
as one particular class, we impose that the probabilities of being a quasar have
to be greater than the contrary (P(QSO-h) + P(QSO-l) > P(Galaxy) + P(Star)),
which implies P(QSO-h) + P(QSO-l) > 0.5. However, this is a conservative ap-
proach since we are only considering high probability objects. If instead we sum
all over the probabilities of being quasar, we obtain 182.1 and 195.1 quasars with
the ANN1, and ANN2, respectively.

In Fig. 5.13 we show the observed (g − r) vs. (u − g) colour-colour diagram
for all the objects presented in the 1-deg2 mock sample (first row) and in the
miniJPAS observations (second row). The positions of quasars, stars and galaxies
are consistent in each magnitude bin. We include all objects in miniJPAS with
FLAGS= 0 and MASK FLAGS= 0. There is a population of stars in the 1-deg2 mock
sample that are not present in miniJPAS observations (bottom left side in BIN
0 and 1). Those stars correspond to the most massive and bluest ones (O-type)
which are usually found in regions of high activity of star-formation. The lumi-
nosity functions for O and B stars are estimated by extrapolating the prediction of
the Besançon Model together with the stars within the miniJPAS SDSS Superset
sample. Therefore, those populations might be overestimated in the 1-deg2 mock
sample. However, even if that were the case, the fraction of these stars is still low
compared with those in the main sequence. Therefore, the impact that this effect
has on a classifier whose main goal is to identify quasar candidates is very limited.

In the last row of Fig. 5.13 we colour-coded the miniJPAS observations with
the CL probability. Quasars and stars predicted by the ANN1 are classified by
SExtractor as point-like sources (CL> 0.5) while galaxies are predicted as
extended-sources (CL< 0.5). In the faintest magnitude bin extended and point-
like sources are more difficult to distinguish in the colour space since they both
overlap. The ratio between the number of point-like sources according to the
CL and the ANN1 (Rpoint = Npoint (CL) / Npoint (ANN1) for BIN 0, 1, and 2 are
Rpoint = 0.93, 0.72, 0.18, respectively, and the ratio between the number of ex-
tended sources are Rext = 1.12, 1.06, 1.49, respectively. We assume point-like
sources to be quasars and stars while galaxies are considered extended sources. In
summary, our predictions are in agreement with SExtractor considering that the
performance of both classifiers decrease as a function of the observed magnitude.
What is more, we are predicting on a sample (miniJPAs observations) that include
extended sources while our training sample exclude these type of objects.
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Figure 5.12: Confidence (probability) yielded by the ANN1 (top) and ANN2 (bottom) classifiers
for each class and magnitude BIN in miniJPAS observations for point-like sources (CL > 0.5). The
numbers of classified objects are shown in the legend.
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Figure 5.13: Observed (g−r) vs. (u−g) colour-colour for the 1-deg2 mock sample (first row) and
miniJPAS observations (second and third rows). Stars, galaxies and quasars are predicted classes
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The dots in the third row are colour-coded according to the SExtractor probability developed
to separate between point-like sources (CL > 0.5) and extended ones (CL < 0.5). Each column
includes objects at different magnitude bins.
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5.6 Summary and conclusions
In this chapter we present a method based on ANN to classify J-spectra in four
categories: stars, galaxies, quasars at high redshift (z ≥ 2.1), and quasars at low
redshift (z < 2.1). The algorithms are trained and tested in mock data developed
by Queiroz et al. (2022). We employ two different representations of miniJPAS
photometry in order to train the algorithms. The ANN1 uses as input photometric
fluxes normalised to the detection band (r) while ANN2 employs colours plus the
magnitude in the r-band. Therefore, ANN1 only has information of the shape of
the spectrum while ANN2 also has access to the observed luminosity.

We enlarge the training set by mixing features from four different classes
adapting the mix up technique. We do not observe significant differences in the
performance of the algorithms when an hybrid set is used for the training. A fun-
damental difference between other works where mix up has been employed with
success and this work is probably the complexity of astronomical data. Observa-
tions have errors associated to them that depend at first order on the luminosity
of the observed objects. Therefore, features do not encode the same information
if objects are brighter or fainter. In other words, mixing between classes appear
as a natural outcome in the feature space as the errors increase, which make faint
objects indistinguishable from hybrid bright objects. Thus, hybridisation has an
impact on the probabilities yielded by the ANN as they becomes less realistic if
the level of mixing is increased in the training set. Having well calibrated al-
gorithms is as important as obtaining a high performance, otherwise the outputs
cannot be interpreted as a probability estimation.

We test the algorithm in the SDSS test sample, and we obtain a performance
compatible with the prediction in the mock test sample. The main source of con-
fusion appears between galaxies and low redshift quasars. We argue that there
is an inherent physical mixing between these two classes, and we provide some
examples with SDSS spectra where the host galaxy of the quasar has a non-
negligible contribution to the total observed light, showing its dual nature. In
such cases, most of the time the classifiers yield quasar and galaxy as the two pre-
ferred classes. Nevertheless, the SDSS test samples is relatively small set and it
is only representative of objects brighter than 22.5, therefore the results should be
treated with caution. The actual performance for fainter objects is still unknown
and the estimation we provided are based on our current physical knowledge about
quasars, galaxies and stars together with our capability to generate simulated J-
spectra that mimic miniJPAS observation in the best possible way.

In the last section of this chapter, we estimated the number of quasars, galax-
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ies and stars in the miniJPAS observations, and we showed that our predictions
are compatible with previous estimates as well as with SExtractor, which sep-
arates between point-like and extended sources. The algorithms presented in this
chapter are part of a combined algorithm that unifies the outcomes of several clas-
sifiers (Pérez-Ràfols et al. in prep. b). In the future, we will provide a quasars
target list for a spectroscopic follow-up with the WEAVE survey. This will give
us a valuable information of the strengths and weakness of our classifiers. In-
deed, WEAVE and J-PAS collaboration will enter a feedback phase, where the
knowledge acquired by one survey would be transfer to the other in an interactive
process. A natural extension of this work when enough spectroscopic confirmed
sources are available is to use transfer learning and retrained the algorithms with
observations in order to capture better the structure of J-PAS data.



Chapter 6

Conclusions and future works

During the course of the present thesis we have developed new techniques based
on machine learning (ML) in order to identify and characterise emission lines
objects in J-PAS. By making use of legacy data from spectroscopic surveys we
generated mock J-spectra for training and testing purposes. When it comes to
galaxies, we trained artificial neural networks (ANN) with synthetic J-PAS fluxes
from CALIFA and MaNGA spectra to first identify emission line galaxies (ELG)
and second provide predictions of the EWs of their main optical emission lines
such as Hα, Hβ, [O iii], and [N ii]. Traditional methods to measure emission lines
with photometric surveys are limited in many aspects. Firstly, they cannot disen-
tangle the contribution of several emission lines that are very close to each other to
the total flux observed in one single filter. This is specially important for the case
of Hα and [N ii] lines because the ratio [N ii]/Hα can be used to distinguish the
main ionisation mechanism of galaxies. Secondly, the minimum EW measurable
is limited by the photometric contrast of the filter measuring the line. Instead, ML
algorithms are able to find complex relations between features. Thus, the EW of
one particular line is a function of the flux in the filter tracing the line (the photo-
metric contrast) but also depends on any other information provided as inputs to
the algorithms such as the color of the galaxy or the fluxes of other emission lines.
Therefore, the accuracy of the ANN developed in chapter 3 outperform previous
estimates.

With the data observed by the J-PAS-pathfinder camera, the miniJPAS survey,
we have conducted a preliminary study (chapter 4) to test our tools and prove that
these techniques can be used to understand better the properties of ELGs. We were
able to make a clean selection ELG with little contamination of AGN, estimate the
SFR in galaxies via the flux of Hα, recover the star formation main sequence or
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constrain the evolution of the cosmic star formation density down to redshift 0.35.
Finally, in chapter 5, we focused on the source classification problem with spe-

cial attention to distinguish quasars from galaxies and stars. Simulated J-pectra of
quasars, stars and galaxies obtained from the SDSS survey were used to train and
test the ANN. We investigated the effect of data augmentation via hybridisation.
This technique consists in mixing features from different astronomical sources in
order to generate hybrid objects with mixing probabilities. Nevertheless, we did
not observe a global improvement in the performance of the algorithms. Unlike
other works outside the astronomical field where hybridsation have been proven
to have a positive impact for calibrating the probability estimates, we observed
that the ANN becomes under-confidence in their prediction. We believe this is
likely due to the nature of astronomical data where errors are intrinsic to observa-
tion, therefore ‘hybridsation’ appears as natural outcome as the S/N of the objects
decreases.

ML algorithms have been proven to be very useful to address many different
problems where traditional methods are either inefficient because of their compu-
tational cost or unable to provide satisfactory solutions. Nevertheless, ML algo-
rithms require large data sets to be trained and these data should be representative
of the target population. In this thesis, we made used of simulated J-PAS data to
train the algorithms either with galaxies from the nearby universe to estimate the
EWs of the emission lines or with more distance objects to classify sources. Thus,
our capability to success predicting in unseen data lies in two non-negligible as-
sumptions. Firstly, we assume that the generated synthetic J-spectra are a fairy
representation of future J-PAS observations. To a lesser extend this is not com-
pletely true. For instance, the JPCam will take pictures of galaxies with trays of 14
CCDs that will remain unchanged for a given period of time during the observing
campaign. Therefore, the final reduced SED of any galaxies will be the results
of correcting the effect of different observational conditions. The residual of such
corrections might lead to small variation of the SED that are difficult to account
in the error budget. Furthermore, the error estimates of photometric fluxes might
deviate from a Gaussian behaviour under some particular conditions, for exam-
ple in the low S/N regime. Secondly, although we have trained the ANNs with
millions of spaxels from CALIFA and MANGA galaxies, which include plenty of
diverse physical states, i.e. regions with different gas-phase metallicity, high and
low star-formation activity or different dust distributions, by construction peculiar
objects are always underrepresented. Consequently, it is very unlikely that we will
be able to predict well the EW or any other physical quantity for these objects. For
example, the EWs of extreme emission lines galaxies or very metal-poor galaxies
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will be underestimated as very few are presented in the training sample.
The main conclusion of this thesis are listed below.

• Mock J-PAS data can be generated from surveys such as SDSS, CALIFA
or MaNGA and ML codes can be trained for different purposes: identifying
ELG galaxies, estimating the EWs of the main emission lines in the optical
spectrum or distinguishing between stars, galaxies, and quasars.

• With a simulated J-PAS training set based on MaNGA and CALIFA spectra
(the CALMa training set) we are able to predict the EW of Hα, Hβ, [N ii],
and [O iii] in a testing set based on SDSS spectra with a relative standard
deviation of 8.4 %, 13.7 %, 14.8 %, and 15.7 %,, respectively. The Hα, Hβ,
[N ii], and [O iii] lines present a relative bias of 0.03 %, 5.0 %, 4.8 %, and
−6.4 % respectively.

• The [N ii]/Hα can be constrained within 0.092 dex and a bias of −0.02
dex and the [O iii] Hβ ratio with no bias and a dispersion of 0.078 dex
predicting with the CALMA training set in the SDSS testing set. The O 3N 2
is recovered within 0.108 dex and a bias of 0.04 dex.

• According to our simulation, the minimum S/N that we need in the photom-
etry to measure an emission line with an EW of 10 Å in Hα, Hβ, [N ii], and
[O iii] is 5, 1.5, 3.5, and, 10 respectively. However, methods based on the
photometry contrast need for the same EW a S/N in the photometry of at
least 15.5.

• A comparison of our predicted EW of Hα, Hβ and, [N ii] with miniJPAS
data and direct measurements of the same lines with SDSS spectra in ∼ 50
galaxies show an overall agreement. Although, the correlation in the EW of
[O iii] is less strong, more data need to be gathered to unveil the origin of
such discrepancy.

• A sample of 2154 galaxies observed by miniJPAS in the range 0 < z < 0.35
has been studied both from the point of view of the stellar populations and
the properties of the ionized gas. Our results show that blue (red) galaxies
are composed of a younger (older) stellar population and present stronger
(weaker) emission lines as it has been found in previous studies. With a
criterion based on the mass and color of the galaxy we estimated that 83 %
and 17 % in the sample are blue and red galaxies, respectively. With the
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ANN classifier, which is based on the EW of the emission lines, we found
that 82 % of the sample are strong ELGs and 18 % are weak ELGs.

• By means of the BPT and WHAN diagrams we are able to classify galax-
ies according to the main source of ionization and make a selection of SF
galaxies. We obtained that galaxies with reliable EW values (2000 galax-
ies in total), 72.8 ± 0.4 %, 17.7 ± 0.4 %, and 9.4 ± 0.2 % are SF, Seyfert,
and passive/LINER galaxies, respectively. Among the SF galaxies, 94 % of
them are blue while and 97 % of the LINER/passive galaxies are red.

• We are able to retrieve the SFMS by predicting the SFR with the Hα lu-
minosity corrected from extinction with the Balmer decrement. We fit the
SFMS with a power law and we obtained a slope of 0.90+0.02

−0.02 [yr−1], a zero-
point of −8.85+0.19

−0.20 [M⊙ yr−1], and intrinsic scatter of 0.20+0.01
−0.01. Our results

do not show a flattening of the SFR at high mass.

• We estimated the cosmic evolution of the ρSFR within three redshift bins:
0 < z ≤ 0.15, 0.15 < z ≤ 0.25, and 0.25 < z ≤ 0.35 founding agreement
with previous measurements based on the Hα emission line. However, we
found an offset compared to the works that derived ρSFR from the SED fit-
ting of the stellar continuum. The origin of this discrepancy is still unknown
but it is most probably due to a combination of several factors, the assump-
tions regarding the SFH, the correction for dust attenuation or the escape of
ionizing photons among others.

• We developed a method based on ANN to classify J-spectra in four cate-
gories: stars, galaxies, quasars at high redshift (z ≥ 2.1), and quasars at low
redshift (z < 2.1). The algorithms are trained and tested in mock data devel-
oped by Queiroz et al. (2022). We enlarge the training set by mixing features
from four different classes. Our results suggest that hybridisation does not
improve or worsen the performance. However, training with hybrid objects
has a negative impact on the probabilities estimated by the algorithms.

• We test the ANN classifiers in a small subset of miniJPAS data of which
SDSS spectra of galaxies, quasars, and stars are available (a true table). The
performance that we obtained is compatible with the predictions performed
in the mock test sample. The main source of confusion appears between
galaxies and low redshift quasars.
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• We estimated that J-PAS will be able to detect ∼ 450 quasars per deg2 with
r < 23.6 mag and redshift 0.4 ≤ z ≤ 4.

As as soon as observations of the JPCam are completed for tens or hundreds
of deg2, we might be in a position to conduct a number of different studies. As
we pointed out, there is a unavoidable distance between the simulated data used
to train ML codes and observations, which might bias our predictions to a cer-
tain extend. One possible way to reduce this gap is to retrain the algorithms with
J-PAS data of galaxies already observed by other spectroscopic surveys that con-
tain information that we are interested in, e.g. the type of source or the EW of
the emission lines. As it was proven in Domı́nguez Sánchez et al. (2019), using
transfer learning one can reduce the size of the training size by one order of mag-
nitude so we do not need to train the models from scratch. Thus, for the problem
of source classification we might need the order of ∼ 30 000 sources with spec-
troscopic information to make this possible. This might seem like a lot. However,
the miniJPAS survey observed ∼ 5 000 galaxies that had a spectroscopic counter-
part in only 1 deg2. Therefore, is not unthinkable that we can reach such a number
soon. When it comes to the predictions of EWs of ELG, using transfer learning
might be more challenging as we need different training for each redshift range.
Nevertheless, well resolved galaxies observed by IFU-like surveys such as CAL-
IFA or MaNGA contains hundred of spaxels each which reduce significantly the
number of objects needed.

For now we can only characterize ELGs that are below z = 0.35. However,
J-PAS will be able to detect galaxies up to z ∼ 1. Other emission lines, such as the
[O ii] λλ 3726,3729 doublet, are visible in the optical range up to redshift z < 1.6
and can be used to trace the star formation (Kewley et al. 2004; Sobral et al.
2012). In the future, we would like to include this line in our model. Although
this might be challenging for galaxies in the nearby universe because the [O ii] line
is at the edge of the wavelength coverage of MaNGA and CALIFA, it is feasible
elsewhere. In particular, we might train an ANN with galaxies above z = 0.35 in
order to predict the EW of [O ii] but also the EW of Hβ, and [O iii] emission lines.

It is important to remember that we do not use all J-PAS filters to predict the
EW of the emission lines, thus the information of the SED is limited to a shorter
wavelength range. Since synthetic J-spectra were generated with a collection of
MaNGA, CALIFA, and SDSS spectra which have different wavelength coverage,
this choice was the most straightforward way to proceed. Alternatively, we might
rely on semi-empirical models of galaxy spectra anchoring the SED beyond the
observational wavelength coverage of the aforementioned surveys. Nevertheless,
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this is not a simple task as we would need to model the UV and far UV emission,
which is not yet fully constrained from optical observations (López Fernández
et al. 2016).

In chapter 4 we found discrepancies in the number of ionising photons that
are derived from the Hα luminosity and the ones from the analysis of the stellar
populations. We argue that this might be caused by a combination of several
factors. Briefly, we might be underestimating the nebular extinction or perhaps
a significant fraction of ionizing photons are escaping from the H ii regions, thus
being unable to ionize the interstellar gas. It is also possible that the delayed-
τ model of the SFHs that we assumed may need to over-shoot to account for
a SFH that is instead exponentially rising, at least for an important fraction of
the galaxies in our sample. Are the results more consistent if other SFHs are
used to fit the SED of galaxies? What is more, is a model that fit the stellar
populations and the emission lines simultaneously more in agreement with the
results we obtained with the ANN? If instead, there is ionizing radiation that leaks
from the H ii regions or in fact there are more interstellar dust around the gas, is
the radiation at IR wavelength enhanced? Certainly, all these possibilities need
to be investigated further. Multi-wavelength data of galaxies will be available for
many in galaxies in J-PAS, therefore we will be able to shed light on this issue.

The ML techniques used in this thesis belong to a branch of artificial intelli-
gence called supervised learning. Nonetheless, many works in astronomy are us-
ing now unsupervised learning to address many different problems. One concept
that I find particularly interesting to explore in the future is the notion of similar-
ity distance. In principle, objects that are similar according to observations should
share the same physical properties. Of course, the observations might be incom-
plete and therefore the physical differences between these two objects might be
hidden in some unobserved variable. This is what we call a degeneracy. Physical
models deal differently with a degeneracy. For example, a SED fitting code that
fit the stellar populations of galaxies might estimate more dust to explain the red-
dening of the observed spectrum or it might assume that the stars are indeed more
metal-rich. Be that as it may, we make use of our preferred physical model in the
market from which we draw the conclusions about what is the most likely physical
phenomena that govern the observations we are analyzing. So the question lies in
whether we are able to come to the same conclusions with only a data-driven ap-
proach. With current and upcoming surveys such as J-PAS we might answer this
question as we could make use of large astronomical data to find the set of features
that better define a similarity distance. Certainly, two population of galaxies that
are the result of different formation scenarios should have different physical prop-
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erties but they should also be distanced in the ‘similarity space’. Nevertheless, we
should pay special attention to the dissimilarity produced by non-physical differ-
ences (Sarmiento et al. 2021). For instance, galaxies that share the same physical
properties might look different not because they are intrinsically different but be-
cause of instrumental effects. Furthermore, this concept might be useful to define
regions (spaxels or pseudo-spaxels) within galaxies that can be grouped together.
This is specially useful if we need to increase the S/N or if we want to analyze an
H ii region.

The future is exciting, certainly J-PAS will change our view of the cosmos.
However ‘as our circle of knowledge expands, so does the circumference of dark-
ness surrounding it’.





Appendix A

SDSS training set

In this section, we show how the SDSS training set scores in the SDSS testing
sample. This represents the ideal situation where the testing set is included within
the parameter space of the training set. In other words, the testing sample is a
subset of the training set and consequently the only uncertainties found in the
targets variables (EWs) area associated to the capability of the ANNR algorithm
to decode the information provided by the inputs (J-spectrum). Nonetheless, we
cannot infer from that the actual potential of the ANNR to predict in J-PAS data.
As we discussed in Sect. 3.3.2, herein lies the reason why the ANNR must be
tested with data with different observational setup and calibrations.

In Fig. A.1, we show the EWs predicted by the ANNR versus the EWs pro-
vided by the SDSS testing sample from the MPA-JHU DR8 catalog. This plot
follows the same scheme of Fig. 3.4. We are able to constrain better the EW of
Hα followed by Hβ, [O iii] and [N ii]. However, the [N ii] line is recovered with
no bias and it does not saturate at high values. This is an important difference
respect to what we found training with the CALMa training set.

In Fig. A.2, we show the comparison between the logarithmic ratios of [N ii]/Hα,
[O iii]/Hβ and O 3N 2 in a similar way as we did in Fig. 3.5. The [N ii]/Hα ratio is
predicted within 0.089 dex and a bias of 0.019 dex and the [O iii]/Hβ ratio within
0.08 dex and a bias of 0.027 dex. As a result, the O 3N 2 is recovered within 0.12
dex and a bias of 0.014.

Finally, we show in Fig. A.3 a comparison of the BPT diagram recovered by the
ANNR (left plot) and the one obtained from the SDSS testing sample (right plot)
following, once again, the same scheme of Fig. 3.6. The similarity between those
diagrams is remarkable. We are not only able to recover properly the SF-wing but

177



178

Figure A.1: EWs of Hα, Hβ, [N ii] and [O iii] predicted by the ANNR compared to SDSS
testing sample.The ANNR is trained with the SDSS training set. The color-code represents the
density in arbitrary units (right panel) and the redshift (left panel). The grey histograms show
the relative difference between both values. The blue histograms are the ones in Fig. 3.4 and are
shown for a visual comparison. Black and blue numbers are the median and the median absolute
deviation of the difference. Black and blue numbers are the median and the MAD of the difference.
Black line is the 1:1 relation and grey dashed lines represents the best linear fit. The red dashed
line represents the median.
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Figure A.2: Comparison between [N ii]/Hα, [O iii]/Hβ and O 3N 2 ratios estimated by the
ANNR and SDSS testing sample. The ANNR is trained with the SDSS training set Same scheme
of Fig. A.1.



180

Figure A.3: BPT diagram obtained with the ANNR and SDSS MPA-JHU DR8 catalog where the
color-code indicates the density of points. The ANNR is trained with the SDSS training set. The
solid (ka03), dashed (Ke01) and dotted lines (S07) define the regions for the four main ionization
mechanism of galaxies. The percentage for each group is shown in black.

also the AGN branch, obtaining similar percentages of galaxies in all the regions.



Appendix B

AGN selection criteria

In Table B.1 we show the best-fitting parameter as a function of the separation
curves, the redshift bin, and the fitting equation we used to fit the SFMS. The
results are discussed in the main text (Sect. 4.5.6)
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Sample Size [N ii]/ Hα Eq. α β σint γ M0

0 < z ≤ 0.35

1361 ≤ 0.79
PW 0.88+0.02

−0.02 −8.69+0.18
−0.18 0.20+0.01

−0.01 - -
BPW 0.84+0.03

−0.03 −0.89+0.09
−0.07 0.20+0.01

−0.01 - 10.75+0.18
−0.14

QPW 2.49+0.34
−0.35 −15.50+1.71

−1.76 0.20+0.01
−0.01 0.09+0.02

−0.02 -

1178 ≤ 0.48
PW 0.90+0.02

−0.02 −8.85+0.19
−0.20 0.20+0.01

−0.01 - -
BPW 0.82+0.03

−0.03 −0.99+0.12
−0.09 0.20+0.01

−0.01 - 10.93+0.22
−0.17

QPW 2.21+0.33
−0.33 −14.18+1.61

−1.61 0.20+0.01
−0.01 0.08+0.02

−0.02

1026 ≤ 0.40
PW 0.92+0.02

−0.02 −8.99+0.20
−0.20 0.20+0.01

−0.01 - -
BPW 0.82+0.03

−0.04 −1.08+0.18
−0.13 0.20+0.01

−0.01 - 11.01+0.32
−0.21

QPW 2.11+0.37
−0.36 −13.80+1.75

−1.75 0.19+0.01
−0.01 0.07+0.02

−0.02 -

0 < z ≤ 0.15
220 ≤ 0.79

PW
0.84+0.04

−0.03 −8.40+0.33
−0.34 0.20+0.02

−0.02 - -
197 ≤ 0.48 0.85+0.04

−0.04 −8.54+0.34
−0.38 0.21+0.02

−0.02 - -
171 ≤ 0.40 0.90+0.04

−0.04 −8.97+0.41
−0.42 0.21+0.02

−0.02 - -

0.15 < z ≤ 0.25
461 ≤ 0.79

PW
0.77+0.04

−0.04 −7.52+0.36
−0.37 0.18+0.02

−0.02 - -
384 ≤ 0.48 0.77+0.04

−0.03 −7.54+0.36
−0.37 0.17+0.02

−0.02 - -
336 ≤ 0.40 0.81+0.04

−0.04 −7.88+0.39
−0.42 0.17+0.02

−0.02 - -

0.25 < z ≤ 0.35
641 ≤ 0.79

PW
0.81+0.04

−0.04 −7.94+0.35
−0.38 0.06+0.04

−0.06 - -
561 ≤ 0.48 0.85+0.03

−0.03 −8.26+0.35
−0.36 0.00+0.06

−0.00 - -
488 ≤ 0.40 0.82+0.04

−0.04 −7.98+0.41
−0.42 0.00+0.01

−0.00 - -

Table B.1: Parameters of the SFMS derived in different redshift bins with the models described
in Sects. 4.5.3 and 4.5.5 using different selection criteria (see Sect. 4.5.6). PW, BPW, and QPW
stand for power law, broken power law, and quadratic power law, respectively.



Appendix C

Confusion matrices

In this section, we show the confusion matrices obtained in the test sample with
the ANN1 mix (C.4), ANN2 (C.2), and ANN2 mix (C.3), and the confusion matri-
ces obtained in the SDSS test sample with the ANN1 mix (C.1), ANN2 (C.2), and
ANN2 mix (C.3).
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Figure C.1: Confusion matrices obtained with the ANN1 mix in the test sample.
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Figure C.2: Confusion matrices obtained with the ANN2 in the test sample.
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Figure C.3: Confusion matrices obtained with the ANN2 mix in the test sample.
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Figure C.4: Confusion matrix obtained with ANN1 mix in the SDSS test sample.

Figure C.5: Confusion matrix obtained with ANN2 mix in the SDSS test sample.
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Figure C.6: Confusion matrix obtained with ANN2 in the SDSS test sample.
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Dı́az-Garcı́a, L. A., Cenarro, A. J., López-Sanjuan, C., et al. 2019a, A&A, 631,
A156, [1711.10590].

Dı́az-Garcı́a, L. A., Cenarro, A. J., López-Sanjuan, C., et al. 2015, A&A, 582,
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A27, [1802.10118].
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Peng, Y.-j., Lilly, S. J., Kovač, K., et al. 2010, ApJ, 721, 193, [1003.4747].

Penny, S. J., Masters, K. L., Smethurst, R., et al. 2018, MNRAS, 476, 979,
[1710.07568].
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trophysics, ed. C. Reylé, J. Richard, L. Cambrésy, M. Deleuil, E. Pécontal,
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