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ABSTRACT 

This paper presents an axiomatic system for propagating uncertainty in Pearl's causal 
networks, (Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer- 
ence, 1988 [7]). The main objective is to study all aspects of knowledge representation 
and reasoning in causal networks from an abstract point of view, independent of the 
particular theory being used to represent information (probabilities, belief functions or 
upper and lower probabilities). This is achieved by expressing concepts and algorithms 
in terms of valuations, an abstract mathematical concept representing a piece of 
information, introduced by Shenoy and Sharer [1, 2]. Three new axioms are added to 
Shenoy and Shafer's axiomatic framework [1, 2], for the propagation of general 
valuations in hypertrees. These axioms allow us to address from an abstract point of 
view concepts such as conditional information (a generalization of conditional probabil- 
ities) and give rules relating the decomposition of global information with the concept of 
independence (a generalization of probability rules allowing the decomposition of a 
bidimensional distribution with independent marginals in the product of its two 
marginals). Finally, Pearl's propagation algorithms are also developed and expressed in 
terms of operations with valuations. 

K E Y W O R D S :  causal network, uncertainty, hypertrees, PULCINELLA system, 
marginalization, combination, conditional information 

1. INTRODUCTION 

Shenoy and Shafer [1, 2] have given an axiomatic f ramework for the 
propagat ion  of uncer ta in ty  in hypergraphs.  In this work the propaga t ion  
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algorithms are abstracted from the particular theory being used to repre- 
sent information. They introduce the primitive concept of valuation, which 
can be considered as the mathematical representation of a piece of 
information. A valuation may be particularized to a possibility distribution, 
a probability distribution, a belief function, etc. Then they develop and 
express propagation algorithms in terms of operations with valuations. 
These algorithms may be particularized to any concrete theory by translat- 
ing valuations and operations to their special interpretation in this theory. 
These general algorithms have been implemented in the PULCINELLA 
system [3]. 

The notation used in this paper, and examples of what is a valuation in 
Probability Theory and Theory of Belief Functions, are as follows: 

NOTATION Assume that we have an n-dimensional variable, (X~ . . . . .  Xn), 
each dimension, X i, taking values on a finite set U~. The following conven- 
tions will be followed: 

• If  I ___ {1 . . . .  , n}, we shall denote by X I the I/L-dimensional variable 
(lI[ is the number of elements of set I) ,  (Xi ) i~  1, and by UI the 
cartesian product l--[ i E 1 Ui ,  that is the set in which X i takes its values. 

• If u ~ U~, then we shall denote by u i the ith coordinate of u, that is 
the element from U/. 

• If u ~ U 1 and J ___ I, we shall denote by u + g the element from Uj 
obtained from u by dropping the extra coordinates; that is, the 
element given by u)  J = u j, Vj ~ J. 

• If  A ___ U 1 and J __. I, we shall denote by A + J the subset of Uj, given 
by 

A *J = ( r E  UjIv= u +J,u c a l .  

EXAMPLE 1 In Probability Theory a valuation is the representation of a 
probabilistic piece of information about some of the variables, X 1, I 
{1, . . . ,  n}. More concretely, if we have three variables (X1, X2, X 3) taking 
values on U 1 × U 2, x U3, where U/= {uil, ui2}, i = 1, 2, 3, then a valuation 
may be a probability distribution about X1, 

p(u11 ) = 0.8 

p(u12 ) = 0.2. 

It may also be a conditional probability distribution about X3 given 2(2, 

p(U31[U21 ) = 0.9 P(U32]U21 ) = 0.1 

p(U31[U22 ) = 0 . 6  P(U32[U22 ) = 0 . 4 .  
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From a mathematical point of view, a probabilistic valuation about 
variables X~ is a non-negative mapping, 

p : Ul --, ,~¢ ~, 

where ~ denotes the non-negative reals. 
These mappings are not considered normalized, but are considered 

equivalent upon multiplication by a positive constant; that is, two valua- 
tions pl ,  P2 defined on the same frame /3/ are considered equivalent if 
there exists a constant a > 0, such that 

V u  ~ U~, p ~ ( u )  = , ~ . p 2 ( u ) .  

From strict mathematical point of view, a valuation should be considered 
an equivalence class on the set of non-negative mappings from U I on ,~ 0-, 
under the above equivalence relation; however, to simplify the language 
and notation, we shall consider that a valuation is a mapping, but that two 
mappings are considered identical if they are equivalent. 

EXAMPLE 2 For Belief Functions [4-6], a valuation about X t is a non- 
necessarily normalized mass assignment on U~, that is, a mapping 

m: 9 ( U t )  ~ ,~c~, 

where ~ ( U  I) is the set of all the subsets of U1, and m(Q) = 0. 
Two basic operations are assumed to be defined among valuations: 

combination and marginalization. Combination is an operation to summa- 
rize in a single valuation the information of two valuations. If the two 
valuations to be combined are V 1 and V 2 defined on U t and Uj, respec- 
tively, their combination will be denoted V t ® V2 and will be defined on 

UIuj" 
Marginalization is an operation to calculate the information induced by 

a valuation defined on a frame U/, on a less fine frame: Uj, where J c I. If 
V is the valuation defined on U~, its marginalization to Uj is denoted by 
V +g 

EXAMPLE 3 In the particular case of probabilistic valuations, combination 
is defined by point-wise multiplication. If p~ and P2 are non-negative 
functions defined on U I and Uj, respectively, then p~ ® P2 is a mapping 
defined on U/g g to ~ -  given by, 

Pl @P2(u) = P l ( u s ' ) ' p 2 ( u l g ) ,  Vu E UIu J. 

This operation is used in probability to combine a marginal distribution 
with a conditional one to produce a bidimensional distribution, or used to 
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calculate conditional information. Remember  that as we are not concerned 
about normalization, conditioning to a set A may be considered as the 
multiplication with the likelihood associated to A (its characteristic func- 
tion: lA(u)  -- 1, if u ~ A ;  lA(u)  = 0, otherwise). 

Manginal izat ion is defined in the usual way: If p is a valuation defined on 
U t and J c_ I, then 

p J(v) = Y'. p ( u ) ,  v , , c  
u~J=l) 

EXAMPLE 4 In Belief Functions [4, 5] combination is carried out by 
means of Dempster 's rule: 

m I ® m 2 ( A  ) = y '  ml(B1) "m2(B2).  
BIOB2=A 

We do not normalize because two valuations are considered as equivalent 
if one is obtained from the other by multiplying by a positive constant. 

If m is defined on U t and J c_ I, then the marginalization of m to Uj is 
given by, 

m ~ J ( A )  = • m ( B )  

B~J=A 

Shenoy and Shafer [1, 2] show that if these two operations verify a 
system of three axioms, then the calculus with valuations may be done by 
means of propagation algorithms. More specifically, they show that if we 
have n valuations, V~,. . . ,  V n, and we want to calculate (V 1 ® V 2 ® -.. ® 
Vn) ~ oil for each variable Xi, then we can do so without explicitly calculat- 
ing the global valuation V 1 ® V 2 ... ® V~, but by doing local computations 
among the initial valuations, arranged in an appropriate way. The advan- 
tage of avoiding the calculation of V~ ® V 2 -.. ® V, is that, in general, this 
calculation is very inefficient. For example, in the case of probabilities, if 
each variable X i appears at least on a valuation ~ and we have m 
variables, then I/1 ® V 2 ... ® V~ will be defined on U 1 × .. .  × U m. If each 
U~ has k i elements, we will need l-I m,=~ k i values to specify this valuation. In 
the best case (all the k i equal to 2) this number is 2 m. 

Although Shenoy and Sharer, [1, 2], focus their work on the problem of 
calculus, there are other important aspects in the process of problem 
modeling and resolution that have not been considered. If we have two 
pieces of information represented by valuations V 1 and V2, then their 
combination, V a ® V 2 does not always give rise to a meaningful or valid 
information for the problem. Consider, for example, two probabilistic 
valuations about variables X 1 and X2: p, a bidimensional probability 
about (X1, X2), and Pl, a probability about X 1. The combination p ® p~ 
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makes no sense from a probabilistic viewpoint. It is not a valid probability 
for the two variables; however, if p is a conditional probability about X 2 
given X 1, then Pl ® P is valid probability distribution about (X 1, )(2). It is 
a bidimensional probability. The concept of independence plays an impor- 
tant role in this kind of rules: If Pl and P2 are probability distributions 
for X 1 and X2, respectively, and these variables are independent, 
then, Pl ® P2 is a valid probability for (X~, X2). If X I and X 2 are not 
independent, then this is not true. 

Pearl [7] uses these rules in Probability Theory to show that in a causal 
network (directed acyclic graph), giving a conditional probability for each 
node given its parents determines one and only one global probability 
distribution for all the variables. In other words, the initial pieces of 
information are complete and coherent. These important issues are the 
main topics of the present paper. Shenoy, [8], also studies conditional 
independence for valuations in terms of factors of the joint valuation. In 
this paper, it is not assumed the existency of a joint valuation. We give 
rules to build more complex valuations from elemental ones using the 
given independence relationships. We also give conditions to determine 
one and only one joint valuation. 

The graphical structures used to represent relationships among variables 
in our work are Pearl's causal networks, not Shenoy and Shafer's hyper- 
graphs, because the former are more appropriate to represent indepen- 
dence relationships among variables in a direct way. 

In the second section we introduce three new axioms for operations with 
valuations, and define, in an abstract way, the concepts of conditional 
valuation, obser~'ation, and 'a posteriori' information. We then introduce 
rules to build new valuations from initial ones. In the third section we 
show that in a directed acyclic graph, having a valuation for each node, 
given its parents, determines one and only one global valuation valid for all 
the variables. In the fourth section, we obtain general propagation algo- 
rithms in directed acyclic graphs. These are a generalization of Pearl's 
algorithms, [7], but now are expressed in terms of operations with valua- 
tions, and, therefore, applicable to different uncertainty theories. Finally, 
in the last section we relate propagation algorithms with the independence 
relationships associated with the graph. 

2. VALUATION-BASED SYSTEMS 

In this section we describe how to represent information with valuations 
and how to do calculations with them, giving a method analogous to Bayes 
Theorem. 

Let X = (X1 , . . . ,  X n) be an n-dimensional variable such that each X i 
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takes its values on a finite set U v A valuation is a primitive concept 
meaning the mathematical representation for a piece of information in a 
given uncertainty theory. We will assume that for each I ___ {1 . . . . .  n} there 
is a set V /o f  valuations defined on the cartesian product, U 1. V will be the 
set of all valuations V = U i c{l . . . . . .  }VI. 

Two basic operations are necessary (see Zadeh [9]; Shenoy, Shafer [1, 
2]): 

• Marginalizat ion.  If J c_ I and V 1 e VI, then the marginalization of V l 
to J is a valuation Vl + 1 in Vj. 

• Combina t ion .  If V 1 ~ V/ and V 2 ~ Vj, then their combination is a 
valuation V l ® V 2 in V l u ]- 

Shenoy and Shafer [1, 2], consider the following three axioms for these 
operations on valuations: 

Axiom l Vl ® V2 = V2 ® V1, (VI ~ V2) ~ V3 = VI ~ (V2 ~ V3). 
Axiom 2 l f  l c J c K ,  and V ~ VK , t h e n  ( V + g ) +1= V ~ I 

Axiom 3 If V 1 ~ V/, V 2 ~ Vj, then (V 1 ® 1/2) ; 1 =  V l ® V2 "L(J•I). 
We assume three more axioms, 
Axiom 4 Neutra l  E l emen t .  There exists one and only one valuation V 0 

defined on U 1 x ... x U, such that V V  ~ V~, ~¢J c_ I ,  Vo ~ ] ® 

V = V .  

Axiom 5 Contradict ion.  There exists one and only one valuation, V c, 
defined on U 1 x -.. x U n, such that VV E V, V~ ® V -- V~. 

Axiom 6 VV E Vo, if V ~ Vc ;¢, then V = V0 ~°. 
The three first axioms provide the necessary conditions to deduce 

propagation algorithms. The third axiom is of particular importance to the 
development of propagation algorithms, as it allows us to calculate (V 1 ® 
1/'2) ~1 without explicitly calculating (V 1 ® V2), a valuation defined on 
Ut u ]. This can be done by calculating I/2 ~ (g n 1) and combining the result 
with V 1. In this last case we need only handle valuations on Uj, U I n ], and 
UI, which is much more efficient. Remember  that, in general it is ineffi- 
cient to handle valuations defined for a large number of variables. 

The fourth axiom deals with the existence of the neutral element. This 
neutral element is considered by Shafer and Shenoy [1], but its existence is 
not postulated by an axiom. This axiom is essential in the present study to 
define the concept of conditional information in an abstract way. In the 
case of Probability Theory, the neutral element is a constant (non-zero) 
valuation: 

p o ( U )  = 1, V u  ~ U1 X "" x U, 

The constant value is not important because probabilistic valuations are 
equivalent upon multiplication by a positive constant. In the case of B e l i e f  
Func t ions ,  the neutral element is the so-called vacuous belief, [5, 6], given 
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by 

i f A  =U~ × . . ' ×  Un. 

otherwise 

In the Axiom 4, the existence of the neutral element is postulated on the 
flame corresponding to all the variables, U t × ... × U n. In smaller frames, 
the neutral element is obtained by marginalization. Therefore, V~j ~K will 
be called the neutral element of V~, and when there is no chance of 
confusion, it will be denoted simply by V 0. 

The contradiction is characterized in Axiom 5 as a valuation such that if 
it is combined with any other valuation, it produces the contradiction. In 
Probability Theory it is given by the zero-valued function 

p , ( u )  = O, V u  ~ U~ x ... × U,, 

In Belief Functions Theory, the contradiction is the zero valued mass 
assignment, 

m~,(A) = O, VA c U~ x ... x U,, 

These valuations are obtained by combining two contradictory valua- 
tions. For example, in the case of Belief Functions, it can result from 
combining the masses, m~ and m 2, defined on (uE, u2, u d and given by 

rnl({ul} ) = 1; m l ( A  ) = 0, otherwise 

rnz({U2} ) = 0.5; m2((u2,u3} ) = 0.5; m2(A ) = 0, otherwise. 

In Shenoy and Shafer [2], the contradiction is considered from a differ- 
ent standpoint: They define a subset of the set of valuations called the 
family of  proper ualuations. The elements of this set are the valuations 
different from the contradiction. 

As in the case of the neutral element, Vc ~ ~ will be called the contradic- 
tion of V K, and will sometimes be denoted by V,.. 

According to Axiom 6, in the frame corresponding to the empty set of 
variables, U~, all valuations are the contradiction or the neutral element. 
To better appreciate this, let us show its meaning in Probability Theory. 
The cartesian product U~ has one element: {e}. A valuation, p, in this set 

~, + is, therefore, a mapping from {e} on ,R0, that is, a number, p(e). If this 
number is zero, then we have the contradiction; if it is different from zero, 
then we have the neutral element: combination with this valuation pro- 
duces an equivalent valuation. Its meaning and consequences will be 
discussed below when we consider the relationships of the calculus with 
valuations and the concept of independence. 
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The following propositions illustrate some additional properties of valu- 
ations. We assume that Axioms 1-6 are verified. 

PROPOSITION 1 V V  E VK, V ® Vc ~ K = Vc~ K 

Proof On the basis of Axioms 5 and 3, 

v~. ~K = (V~ ® V )  ~ = v ®  Vc *K 
Q.E.D. • 

PROPOSITION 2 VV ~ V / being I _ K, we have V ® Vc+ K = V+ 

Proof On the basis of Axioms 4, 1, and Proposition 1, 

v ®  v~ ~K = v ®  (K. ~K ® v~ ~K) = ( v  ® Vc ~ )  ® V~ ~ = V~ ~ 

Proposition 1 has been applied in the last equality. • 
The following proposition is quite natural: if a valuation is marginalized 

on the variables in which it is defined, we obtain the same valuation; 
however, proof of this requires invocations of Axiom 4. 

PROPOSITION 3 VV ~ V/, V ~ l = V 

Proof By applying Axioms 4, 3, 2, and 4, 

V ~1 = ( V ®  V o ~ )  ~I = V ®  ( V o ~ )  ~ = V ®  V0 ~ =  V. 

The following is a technical proposition that will be used in later 
propagation algorithms. 

PROPOSITION 4 If 1/1,V 2 ~ V , I _ { 1 , 2  . . . . .  n}, VI E V ] , V  z ~ V K with 
I__c_J u K, J n K c_ I, then 

(1/1 ~ v~) ~' = v ,  . 1 ~ ]  ~ v2 ~ ' n ~  

Proof On the basis of Axiom 2, 

(V, ® V2) $ '  = ( ( V  1 ® V2)$Ju') j'l 
As (V 1 ® V 2) is a valuation on J u K and we know that I c J u K, then 
by using Axiom 4, we obtain 

( V  1 ® V2) +1 = (((V, ~ V2) ® Vo$1)$JUl) $1 

On the basis of Axioms 1 and 3, 

( V  1 ® g2) $I = ( (V 1 ® V 2 ~ Vo$l)J'Jul) $1 

= (((V1 ® goJ, I) ® V2)J'Jt)l) j'' 

= ( ( V  1 * Vo ,[,I) ® V2J~(jUl)nK) $1 

= (1/1 ® v® +I * V~+'~K) z~ 
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The last equality is derived from the fact that if ( J  n K ) _  I, then 
( J U I )  A K = I A K .  

Now, using Axioms 1, 3, and 4 we get, 

( V  1 ~ r e )  "LI = ( (Vo  ,L1 ~ V2 "LINK) ~ V i )  ~'I ~__ (Vo ,~1 (~ V2 S INK ~ Vl"~ lnJ) .  

As the valuation I/2 * t n K ®  V1 ~l~J is defined on ( I  N K)  U ( I  N J )  = 
I n (K  U J),  which--because I ___ J u K- - i s  equal to I, this valuation is 
defined on I. Therefore,  applying Axiom 4 we get 

( V  1 ~ V2) "tl = (V2 $1oK ~ Vl"/oJ) ,  

Q.E.D. [] 

Note that in this proof, multiplication by the neutral valuation on Vt, 
V0 ~* is used, in general, to extend a valuation V ~ V~ to the set V K u I. 
This method will be used several times throughout the article. 

An immediate consequence of above proposition is the following one, 
which we give without proof. 

PROPOSITION 5 If V 1,V 2 ~ V,I___{1,2 . . . . .  n},V 1 ~ Vj, V 2 ~ V K 
J n K = I, then 

( 7  I ~ V2) *l = pl $1 ~ V2 $1 

The following proposition can be deduced using Axiom 6. 

with 

PROPOSITION 6 If V 1, V 2 ~ 1,1, V 1 ~ V~, V 2 ~ V K with J • K = • and 
V2 ~ 4= V~ +e then 

(V 1 ~ V2) SJ ~- Vl " 

According to this proposition, if we have two valuations, V 1 and V 2, 
given for disjoint sets of variables, J and K, and we combine t h e m - -  
obtaining a valuation for the set J u K - - a n d  if we then marginalize on the 
first set, then we obtain the same valuation V]. This is not necessarily 
verified if Axiom 6 is not postulated as true. In that case, the combination 
of a valuation with a disjoint valuation, followed by marginalization, may 
affect this valuation. This may produce some incoherence between the 
concept of independence and the calculus with valuations to be given 
below. We shall consider this problem in more detail in section 5. 

The main definitions relative to the calculus with valuations are given 
below. 

DEFINITION 1 A valuation V ~ V/ is said to be absorbent if  and only if  it 
is not the contradiction in V/ and (VV' ~ VIX(V ® V' = V)  or (V  ® 
v '  = v~)) .  
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If a valuation from V~ represents a piece of information about the values 
of variables X~, then an absorbent valuation represents perfect knowledge 
about these values: it cannot be consistently refined by combination with 
other valuation: We can obtain only the same information or the contra- 
diction. 

EXAMPLE 5 In Belief Functions, absorbent valuations are mass assign- 
ments with a positive value on an unitary set only: 

m({u0} ) = 1, m ( A )  = 0 otherwise. 

If one of these valuations is combined with another mass assignment, 
m',  we then obtain the contradiction (if m ' ( A )  = O, VA,  such that u 0 ~ A), 
or an equivalent mass assignment. 

DEFINITION 2 I f  V ~ V I u J, then it is said that V is a valuation on U I 
conditioned to I./i, i f  and only i f  V ; J = V o ~ V~, the neutral element on Vj. 
The subset o f  V I u J given by the valuations on U I conditioned to Uj will be 
denoted by VII J. 

This is an abstract definition of conditional valuation. If V is a valua- 
tion on /_/i conditioned to U~, then it may give some information 
about variables X I and their relationships with variables X~, but 
not about variables Xj. It is thus defined as a valuation such that 
marginalizing it on Uj gives the neutral element; that is, it does not say 
anything about )(1. 

EXAMPLE 6 Assume that we have two variables, X 1 and X2, taking values 
on U 1 and 1_/2, where U/= {uil, ui2} , i = 1, 2. A probabilistic conditional 
valuation on U 2 given /_/1, is a mapping 

p : U  1 × U 2 ~  [0,1] 

such that, marginalized on U 1, we get the neutral valuation (a constant 
valuation). For example, 

p ( u l l , u 2 1  ) = 0.8 p(Ull,U22 ) = 0.2 

p(Ul2,U21 ) = 0.3 p(Ulz,U22 ) = 0.7 

Marginalizing on U 1, we get the neutral element 

p+°}(ull  ) = 1; p + { 1 } ( U 1 2  ) = 1. 

If we consider p(ul i ,  u2i) as P ( X  2 = u2ylX 1 = Uli), then the condition 
of marginalization is equivalent to the condition that all the conditional 
probability distributions have the same normalization factor. 
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E X A M P L E  7 Consider the same variables and sets as in Example 6, but 
with mass assignments as valuations. A conditional valuation on U 2 given 
U~ is a mass assignment in U1 x U 2 such that if it is marginalized on /21, 
then we get the neutral element. As the neutral element is given by a 
valuation with a positive mass only on set U~, and taking into account the 
definition of marginalization (see Example 4), a conditional valuation, m, 
is characterized by the following: 

I f A  c_U l x U 2 and m ( A )  > 0, Then A ; 0 1 =  U 1, 

that is, the projection of all the subsets with positive mass is equal to the 
whole set /21. As an example, consider the mass assignment given by 

m({(u l l ,Uze) , (u12 ,u22)} )  = 0.3; 

m({(UH,U21),(UI2,U22)} ) = 0 . 5 ;  

m({(ul l ,u21) ,  (u12,u21) , (ulz ,u22))  ) = 0.2 

We base our definitions of dependence and conditional independence, 
on Pearl's assumption, [7, 10, 1 1], that they are primitive concepts. Given a 
set of variables, then they have an associated set of (in)dependence 
relationships among them. These relationships are of the type: 'X 1 and X 2 
are independent, but they are dependent if we know X3', '(X1, X 2) is 
dependent  of ( X  4, Xs), but they are independent if we know X6', etc . . . .  
This is knowledge of a qualitative nature. It may be deduced from 
numbers, if for example, we know a global probability distribution for all 
the variables of the problem, or we have a sample of the population in 
which statistical tests of independence can be carried out. However, this is 
not always the case. We may know the (in)dependencies of very well- 
structured problems, in which we know the relationships among the 
variables of the problem before any numerical value. Below we give Pearl's 
axiomatic definition of (in)dependence relationships among a set of 
variables. 

DEFINITION 3 Given a family of  variables (X  l . . . . .  An), a dependence 
structure on it is a mapping D: ~ ( { 1 , . . . ,  n}) x 9({1 . . . .  , n}) × ~({1 . . . . .  
n}) -~ {0, 1}, where if D(I ,  J, K) = 0, then X 1 is said to be independent of  
X~ given X j ,  verifying the following axioms [10, 11]. 

• Symmetry. I f  D(1, J, K)  = 0, then D(K,  J, I )  = 0 and viceversa. 
• Decomposition. I f  D( l ,  J, K U L)  = 0, then D(I,  J, K)  = 0 and 

D ( I , J , L )  = O. 
• Weak Union. l f D ( I ,  J, K u L)  = 0, then D(1, J U L, K)  = O. 
• Contraction. I f  D(1, J , K )  = 0 and D ( I , J  U K ,  L ) - -  0, then 

D ( I , J ,  K U L)  = O. 
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An intuitive interpretation of these axioms can be found in Pearl, [7]. 
A valuation on /5i is the mathematical representation of information 

about how X I takes its values. The following properties establish how to 
build more complex valuations from elemental ones. These properties are 
specified on the definition of system of information. A system of informa- 
tion for a problem aims to include all valuations representing the available 
initial information for this problem and, all valuations that may be deduced 
from them. 

DEFINITION 4 Let ( X 1 , . . . ,  X n) be an n-dimensional variable taking 
values on U1 x ... × Un, and D be an associated dependence structure. A 
system of information about this variable with respect to D is a family 
H c_ V and a mapping 

h : H ~ . ~ ( { 1  . . . . .  n}) × 9 ( { 1 , . . . , n } )  

with the following properties: 
1. V V  ~ H, if h (V )  = (I, J) ,  then V ~ 1/11 s and I n J = Q. It is said 

that V is a valid valuation about variables X~ conditioned to (or given) 
variables X]. I f  J = Q, then it is said simply that V is a valid valuation 
about X I. 

2. I f  V1, V 2 ~ H and h( V 1) = ( J, Q) and h(V 2) = ( l, J ), then V 1 ® 
V 2 ~ H w i t h h ( V ~  ® V 2 ) = ( I u J , • ) .  

3. I f V  c Hwith h (V)  = (I, J)  andD(I ,  J, K)  = O, then V ® Vo ~ K ~ H 
with h ( V  ® Vo +K) = ( I , J  tA K). 

4. I f  V ~ H  with h ( V ) = ( I , J ) ,  then if K c _ I ,  V +KuJ ~ H  with 
h (V  +KU]) = ( K , J ) .  

Property 1 says that valid valuations are always associated with a set 
of variables with respect to another set of conditioning. Property 2 
explains how to construct a valid valuation about X I u g from a valuation 
about Xj  and another about X 1 given Xj .  Property 3 relates the system 
of information with the associated dependence structure. V ® Vo +K 
stands for the extension of V ~ 1/ii J to the set V~I(j u r). It says that if X 1 
and X K are independent given X j, then a conditional valuation about 
X 1 given X j  may be extended to a conditional valuation about X 1 given 
X j  u i(, by combination with the neutral element. Property 4 says that the 
marginalization of a valid valuation is a valid valuation. 

There is no axiom saying that the contradiction V c does not belong to 
H; however, it is clear that in a system that includes the contradiction, 
some of the initial pieces of information are not true. In this case it 
would be interesting to find methods to resolve the inconsistency, by 
changing the minimum number of valuations. 

Another  interesting problem is that of completeness considered in the 
following definition. 
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DEFINITION 5 A system of information (H,h),  about ( X  1 . . . . .  X n) with 
associated dependence structure D is said to be complete if and only if there 
is a valuation V ~ H such that h(V) = ({1 . . . . .  n}, Q). 

That is, completeness is equivalent to the determination of a global valid 
unconditional valuation for all the variables. 

EXAMPLE 8 If we have three variables, X~,X 2, and X 3, and all of them 
are dependent,  then if we have the system of information generated by the 
following valuations 

• V 1 an unconditional valuation about X1, h(V l) = ({1}, Q), 
• V 2 a valuation about X 2 given X1, h(V 2) = ({2},{1}), 
• V 3 a valuation about X3 given X2, h(V3) = ({3},{2}), 

this system is not complete. 1/1 ® V 2 is an unconditional valuation about 
(X~, X2), but there is no rule that could be applied to obtain a valid 
valuation for all three variables of the problem. If V 3 were a valuation 
about X 3 given (X~, X 2), then the combination V 1 ® V: ® V 3 would be a 
global unconditional valuation for the three variables, h(V~ ® V 2 ® V 3) = 
({1, 2, 3}, Q) and the system would be complete. 

DEFINITION 6 A system of information ( H, h) is said to be complete and 
deterministic if and only if there exists one and only one valuation V ~ H 
such that h(V) = ({1 . . . . .  n}, ~) .  

It is important that the systems of information be deterministic. In a 
non-deterministic system there is more than one valid valuation for all the 
variables. In some theories, for example, upper and lower probabilities, 
this may be possible. But in others, such as in Probability Theory, this is 
impossible: we can only have one global probability for all variables. 

EXAMPLE 9 If we have two variables X 1 and X 2 and the system of 
information (H,  h) generated by the following probabilistic valuations (the 
system of information containing these valuations and all the valuations 
obtained by applying any of the rules of Definition 4), 

• p l and P2 two  unconditional probabilities about XI and X 2, respec- 
tively, 

• P3 and P4 a conditional probability about X 2 given X~ and about X~ 
given X:,  respectively, 

then p~ ® P3 and Pz ® P4 are two valid, unconditional valuations for all 
the variables. If they are different, then the system is incoherent. 

Two more definitions are needed to complete this abstract description of 
valuations and conditional valuations. These definitions are used to intro- 
duce the role of observations. Thus far, a valuation has been considered a 
piece of information for all the elements of a population. In practice, we 



266 Jos6 Cano, Miguel Delgado, and Serafln Moral 

usually start with a complete and deterministic system of information, 
representing our background knowledge. We then have a particular case, 
about which we want to make some inferences: We observe some data, 
and we want to obtain the information about some variables that can be 
deduced from the initial general knowledge and the observations for this 
particular case. 

DEFINITION 7 A family  o f  observations about an n-dimensional variable 
( X  1 . . . . .  X n) is a set o f  valuations {Oi} i E i, where I c_ {1 . . . . .  n}, and 0 i is 
an absorbent valuation on U i. 

Observations can be characterized (see Definition 1) as valuations for a 
variable that may not be refined by combination without obtaining the 
contradiction, that is, they represent perfect knowledge about the value of 
these variables. 

DEFINITION 8 I f  ( H ,  h)  is a complete and deterministic system o f  infor- 
mation about the variables ( X  1 . . . . .  Xn)  and {Oi} i ~ i a family  o f  observa- 
tions about these variables, we call (( ®i ~ i Oi) ® V )  ~ J the 'a posteriori' 
information about variables X j  induced by ( H , h )  and {Oi}i~l, where 
J _c {1 . . . . .  n} and V is the only valid global valuation for  all the variables 
(x~ . . . . .  x . ) .  

3. VALUATIONS AND DIRECTED ACYCLIC GRAPHS 

In the following, we relate valuations with directed acyclic graphs. We 
shall show that graphs of this type have an associated dependence struc- 
ture (as given by Pearl [7]) and are very appropriate for specifying com- 
plete and deterministic systems of information. 

DEFINITION 9 A directed graph is a pair (T,  E )  where T is a finite set and 
E a subset o f  T × T. The elements o f  T are called nodes or vertices, and i f  
e = (t 1, t 2) ~ E,  then e is said to be an arc going f rom t 1 to t2, t I is said to 
be a parent o f t2 ,  and t 2 is said to be a son o f t  1. 

DEFINITION 10 A directed path on a graph (T,  E )  is a sequence o f  arcs, 
. . ,  = ( t l ,  t2), then Vi  ~ {2 . . . .  , k}, t~ el , .  e k e E,  such that i f  e i i i ' = t~-1. 

DEFINITION 11 A n  undirected path on a graph (T,  E )  is a sequence 
i i e 1 . . . . .  e k e T × T, such that i f  e i = ( t l ,  t 2 ) ,  then Vi ~ {1 . . . . .  k} 

i i i t~) ~ {2 . . . .  , k}(t~ = t 2 ((tl, t2) e E or (t2, E )  and Vi  ~ i-1).  

DEFINITION 12 A directed acyclic graph ( D A G )  is a graph (T,  E )  such 
that for  each directed path,  e 1 . . . . .  ek, defined on it, t] 4: t~. 

A directed acyclic graph is said to be associated with the n-dimensional 
variable (X~ . . . . .  X n) if the set of vertices is {X1,. . . ,  Xn}, that is, if there is 
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a vertex for each variable. These graphs can be used to represent a 
dependence structure for these variables, as described by Pearl, [7]. This 
structure is given by the following definitions. 

DEFINITION 13 Given an n-dimensional t~ariable ( X l . . . . .  Xn) and (T, E)  
a graph with T = {Xi}i~ ll ....... I, we call dependence structure associated 
with (T, E)  to the structure git~en by D( I, J, K)  = 0 if and only if  for et,ery 
undirected path between {Xi} i ~ t and {Xk} ~. ~ K, one of the following condi- 
tions is true (d-separation criterion, [7]): 

• There exists a node with com,erging arrows in the path that does not 
belong to {Xj}j ~j  and its descendents do not belong to {X]}j ~j.  

• There exists a node without cont'erging arrows in the path that belong to 

A DAG can form the basis to describe a system of information. 

DEFINITION 14 If ( X  I . . . . .  X n) is an n-dimensional t,ariable and (T, E)  
is a graph with T = { X i } i ~  ...... I' then ( H , h )  is said to be a system of 
information defined on (T, E)  if  and only if (H, h) is the information 
system generated by a set of L,aluations {~}i ~ ~1 ...... ) where h(V i) = (i, P(i)) 
and P(i) = {jI(Xj, X i) ~ E}, that is, the set of parents of Xi, and where the 
dependency structure is the one associated with (T, E). 

Systems of information defined on directed acyclic graphs are very 
appropriate because they are always complete and deterministic. By intro- 
ducing for each variable a valuation conditioned to its parents, we are able 
to obtain a global valuation for all the variables, and this valuation is 
unique. 

PROPOSITION 7 If (H,  h) is a system of information defined on a graph 
(T, E ) w i t h  T = {X~}/~I ...... /, then it is complete and deterministic about 
(X~ . . . . .  Xn) where the structure of dependencies is that associated with 
(T, E). 

Proof Assume that {V,}i~ 1 are the valuations generating the system of 
information, (H,  h), defined on (T, E). The proof is based on the system 
of information ( H ' ,  h ' )  given by the following valuations: 

• M I =(VI  ® V 2 ® ... ® Vn) *t, where I_c{1 ,2  . . . . .  n}, with h ' (M I) = 
(I, Q). 

• RI, i = ( V / ®  V0;l), where 1___{1,2 . . . . .  n } - D i ,  D i is the set of 
descendents of X i including i, and h'(Rl, i) = ({i},I t5 P(i)), P(i) 
being the set of parents of X~. 

• $1, J = (M I ® Vo+J), where I _c {1,2 . . . . .  n}, and J _c {jIXj is not con- 
nected with a variable from {Xi}i~ ~}, h ' (Sl . j )  = (I, J). 
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Then the following facts are verified. 
a. (H ' ,  h ')  is actually a system of information. 
b. V~ ~ H ' ,  Vi ~ {1 . . . .  , n}, with h ' ( V  i) = (i, e ( i ) ) .  
c. If for a system of information (H", h") with the same dependence 

structure, (b) is verified, then M t, R1, i, SI. ] belong to H". 
d. The only global valuation, V, in H '  with h ( V )  = ({1, 2 . . . . .  n}, O) is 

V l ®  v2 ® ... ® v. .  
If these points are proved, then from (a) and (b) we conclude that 

H _c H ' ,  H being the system of information generated by valuations 
{V/}i~tl,2 ..... n~. Taking into account (c), we have the equality H = H ' ,  
because H is a system of information that verifies (b). According to (d), 
there is one and only one global valuation defined for all the variables, 
{1, . . . ,  n}: V 1 ® V 2 ® ... ® V~. Now all we need is to prove these points. 

To show (a), we need to prove the four properties of systems of 
information: 

1. It is immediate by the way valuations MI, R z, S/, ] are defined. 
2. Property 2 may be applied only to valuations Rl, i, S~,] combined with 

valuations M t. It is verified because the combination R~, i ® M t u e~0 
= MI u P(i) u {i}, and the combination St, ] ® M] = M 1 u ], that is, ele- 
ments from H' .  

3. The combination of a valuation M/wi th  V0 ~ ], with D ( I ,  O, J)  = 0, is 
precisely S/, ]. Applying this rule to valuations in the form of Rt, ~ and 
St, ] yields elements of the same type. 

4. Marginalization of elements Mt and St,] produces elements of the 
same type. The only proper marginalization operations applicable to 
elements Rt, i are to marginalize to U/v e~n and to U~ u e(i)u {i}. In the 
first case, as RI, i is a valuation conditioned on variables (Xj)j ~ i u e~o, 
yields the neutral valuation on U/u e(i) which is equal to S~, e<0" The 
second is not really a marginalization. We get the same valuation 
Rl ,  i. 

The proof of (b), (c), and (d) is straightforward and will not be described in 
detail. • 

4. PROPAGATION OF VALUATIONS IN POLYTREES 

Assume that ( X 1 , . . .  , g n )  is an n-dimensional variable and (H,  h) is a 
system of information defined on the graph (T, E) and given by valuations 
{V~}i ~ tl ..... n~. Under these conditions, the only possible global valuation for 
all the variables is V 1 ® V z ® .-. ® V~. Consider also a family of observa- 
tions {Oi}i~i, and that our objective is to calculate the 'a posteriori' 
valuations for each single variable, that is, to calculate the following 
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valuations: 

PSi = ® 0 i ~ V 
i e I  

for each j e {1 . . . . .  n}, where V = 1/1 ® .-" ® Vn _ _  is the only existing 
global information. 

The main problem, as indicated in the introduction, is to calculate, 
1/1 ®. . .  ® V~. Propagation algorithms proposed by Pearl, [7], avoid the 
calculation of V] ® .-- ® V n if the graph does not have undirected cycles 
(also called loops). These graphs are called polytrees, [7]. In this section we 
generalize these algorithms to the uncertainty expressed by means of 
valuations. 

The notation will be based on the following valuations, 

Hk = Vk , i f  k ~ I 

Hk = V~ ® O k , i f  k ~ l 

0~= V o~ V{j.},ifj~I 
O; = Oj, if j ~ l 

and the following sets for each j c {1 . . . . .  n}, 
• I f ,  the set of indexes i such that X i is a descendent of Xj (there is a 

directed path from Xj to Xi). 
• I [  = { 1 , . . . , n }  - (17 U { j } ) .  
• P ( j )  is the set of parents of node Xj. 
• For each k ~ P( j ) ,  I~ is the set of indexes of nodes X i such that 

there is an undirected path from X i to X k or from X~ to X i not 
containing Xj. 

• C(j ) ,  is the set of children of node Xj. 
• For each k ~ C( j ) ,  Ij~, the set of indexes of nodes connected with X k 

via an undirected path not containing )(i.. 
• I~ is the set of indexes of nodes not connected with node Xj. 
The following propositions form the basis of propagation algorithms. In 

all of them, it is assumed that the graph has no loops. 

PROPOSITION 8 V j e  {1 . . . . .  n}, PSi 

Proof 

= 7rj ® ;ti, where 

] '~ {j} ,~ (j} 

Taking into account the expression of PSi and the definition of 

PSi = ( H ,  ® H 2 ® "'" ® Hn) ~{j} 
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Taking into account Axioms 1 and 2, 

P S j  = ( H 1 ® H 2 ® ' ' '  ® H ~ )  ~ {j) 

= ((iE~lj+Hi) ® Hj ® (iE~llj Hi)) J'{j} 

On the basis of Proposition 5, and taking into account that ( I  S u {j}) n 
( I~  u { j } )  = { j } ,  

® ) ~ {j) ,' '[ {j} ) 

Q.E.D. • 

PROPOSITION 9 If ( H  1 ® H 2 ® ... ®/4 , )  ~° is different from the contra- 
diction, then 

V j ~  {1 . . . . .  n}, zr) = Vj® ( @ 7rf' ; A i = ~ h~ ® q  
\ k ~ P ( j )  "/ I I k~C(j )  

where 

Proof 

= l~j = (iE~iijkHi) i ljk 

The expression for 7rj is 

Taking into account that the graph has no loops, we can show that 
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I f  = LI~ ~ p(j) I)~ with Ij~, n I)] 2 = ~ if k, 4: k 2. Therefore, 

and on the basis of Axiom 3, 

® ~ ]  ~ ({Jlueff))] klj} 

o 
k ~ P ( j )  i~l jk  

271 

Now, by a repeated application of Proposition 4, 

Taking into account the expression for ~r[, we obtain the desired equality 
for 7rj, 

k ~ P ( j )  

The valuation Aj was defined as 

As the graph has no loops, I~ = U k ~ c(j)u (01 I~,  with Ijk ' n I ~  = Q, if 
k I 4= k 2. Therefore, 

Aj = ® ® ® o~. 

By a repeated application of Proposition 5, 

~ =  ® /4, ® ®o~. 
• 

kGC( j )  l Ilk \ i ~ l j o  

Taking into account the expression of A~, 

k ~ C ( j )  i o 
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As (H  1 ® . . -®  H,)  t~ is different from the contradiction then 
(®i~ 6o Hi)~° is also different from the contradiction, and taking into 
account Axiom 6, 

Thus, 

a t=  ® a: ®o:= ® aj ®o:. 
k~C(j)  k~C(j)  

Q.E.D. • 

We now have the valuations we want to calculate, PSi, in terms of 
k and valuations 7rj and A:, which are expressed in terms of valuations h: 

• ff.  In the next proposition, we show how we calculate these valuations in 
a node, assuming that the corresponding valuations in all the neighboring 
nodes are known. 

PROPOSITION 10 If j ~ {1, . . . ,  n}, then Vk ~ P(j), 

i~C(k), i¢j  

And V k ~  C(j), 

k Ak® ' ®V~® ® ~- Aj = O k 
i~P(k), i c j  

Proof If k ~ P(j) ,  then 

[ ~{k} 

i ®/-/ , /  

i~ C(k), i e j  

[ ( .)] = % ® 0 ~ , ®  ® ,~}, . 
i~ C(k), i=/=j 
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Analogously,  if k ~ C( j ) ,  

• lj~ 

= h k ® O k ® V k ® ® 7rk 
i cP(k ) ,  i4-j 

Q.E.D.  • 

The  contradic t ion raises the following problem.  If  we have a graph with 
two disconnected parts ,  for  example  one  with vert ices {1, 2 , . . . ,  i} and o ther  
with vertices {i + 1 . . . .  , n} (that is, there  is no arc f rom vert ices of  one set 
to vert ices of  the o ther  set), then if H l ® ... ® H i is the contradict ion in 
U~I ..... i~, it can be shown that  H 1 ® ... ® H n is the global contradict ion 
and PSi is the contradic t ion for  each variable Xj, j ~ {1,2 . . . . .  n}. How- 
ever, if we use the above formulas ,  then the contradict ion is not propa-  
gated be tween  non-connec ted  parts  of  the graph and what  we obtain  for  
PSi, j ~ {i + 1 . . . . .  n} is (Hi+ 1 ® ... ® [In) ~{j}, which is not PSi if there  is 
no contradic t ion in variables  Xi+ 1 . . . .  , X n. Wha t  to do f rom a practical  
point  of  view? The  answer  is simple. If  the graph  is connected,  then the 
p ropaga t ion  formulas  are correct .  We have used the lack of  contradict ion 
to show that  

and in this case Ij0 is empty.  
I f  the graph  is not connected,  then for  a global contradic t ion to exist, 

some of  the connected  parts  have to be contradictory.  In such a case, f rom 
a mathemat ica l  point  of  view all values of  PSi will be contradictory.  But 
there  is an alternative: not to consider  the informat ion  f rom variables 
giving rise to the contradict ion,  removing such contradic tory  informat ion  
f rom the system and keeping only non-cont rad ic tory  valuations.  Shenoy 
[12] describes an efficient way to isolate a maximal  consistent  set of  
valuations.  With this restr icted system, the formulas  of  p ropaga t ion  can be 
used. 

Our  object ive is now to calculate the values ~j, hi, 7r~ k (k E C(j)), h~ 
(k ~ P(j)), for each j E {1 . . . . .  n}. If  the set of  observat ions,  {Oi}i~ 1 is 
empty  ( I  = ~3), then this can be done  very easily. First, we shall prove  that  
all valuat ions h i are the neutra l  valuation.  
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PROPOSITION 11 If  I = Q and V c ~ (V 1 ® ... ® Vn) *e then  Aj = V o 
KU}, Vj ~ {1 . . . .  , n}. 

Proof For every leaf variable in (T, E), we have Aj = (®k~c(j) A~) ® 
O ~ = V  o. If  Xj is a leaf  (a node  with no chi ldren)  then  C ( j ) = Q ,  
therefore ,  O~ = V o. 

Now let us prove  that  if A k = Vo ~tk} ~ Vtk ~ for  every k ~ C( j )  then  
Aj = Vo ~j~ + v+. 

k~C(j)  k~C(j)  

and 

,~= ,~,®o~®v, ® ~ 
i~P(k), i.,~j 

i~P(k), i#:j 

[< t ]"J' = ® -,,-~ ® v/p<k)  
i~P(k), i~j  

Now, taking into account  that  V k ~ V~k}le(k), 

[ < ,)1 A~ = Vo ~'<') ® ® ~-~ 
i~P(k), iV:j 

By a r epea ted  appl icat ion of  Propos i t ion  4 we get 

k VoCJ}® ( @ -a'~'t~) = Vo cj} A j =  
i~P(k), imj 

Tha t  is, ;t~ = V0 * u} ~ Vtm hence  

a.j=( ® a.~)=Vo~U}~vu,. 
k~C(j)  

Q.E.D.  • 

U n d e r  these conditions,  if I = 0 ,  we can find ~rj for  every j ~ {1 . . . . .  n} 
with the following algori thm, where  it is a s sumed  that  if ] > i, then Xj is 
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not a parent of X i (that is, the rrj value of a node will be calculated when 
corresponding 7r~, j ~ P ( k )  are known). The steps are as follows: 

• For every j = 1 . . . .  , n calculate 

aj I~,, ~j 
PS i =  rrj ® Aj. 
Vk  ~ C(j) ,  7r~ = rr k 
Vi  ~ P( j ) ,  aj = Vo+ ~1 

Assume now that we want to calculate PSi with a set I 4= 0 .  We shall 
give, like Pearl, [7], an algorithm that calculates these values 
(PSi, 7rj, Aj, A~, ~-~) for a set I '  = 1 U {@}, assuming that we know these 
values for the set of observations I; that is, the algorithm updates the 
values of valulations in the light of a new observation. 

For k ~ P( j ) ,  the 7rf values are said to be messages from the parents of 
Xj to it, or incoming messages from its parents. Analogously, for k ~ C(j) ,  
the A~ values are the messages that this node receives from its children. 

On introducing a new observation, O t, all incoming messages to a node 
do not change, unless there is an undirected path between this node and 
X t. In this case, only the message arriving from this path changes; that is, 
A~ o r  71"j k change only when there is an undirected path between Xj and 
X t via X k. 

As the graphs we are working with do not have loops, there is, at most, 
only one undirected path from each node to X t. All incoming valuations 
for Xj with the set of observations I '  are, therefore, the same as the 
valuations for set of observations I, except perhaps for the message 
coming from one of its children or parents. The outgoing message from Xj 
to this node does not change, but all the other outgoing messages are 
different (Figure 1). 

For node X l, the variable for which we have introduced the new 
observation, the situation is as follows: all incoming messages are the same 
and all outgoing messages are new (Figure 1). In the light of these 
considerations we can design an algorithm to perform the updating. The 
algorithm is based on the fact that when we arrive at a node, all the 
incoming messages are calculated, and we then calculate 7r/, A/, PS/, and 
the outgoing messages. Let J be the set of pairs (Jl, J2) where Jl is a node 
to be updated and J2 the incoming node. Then the algorithm is as follows: 

• J = {(1, - 1 ) }  

• While J =~ Q 
Choose (Jl,J2) ~ J, J "- J - {(JJ,J2)} 
calculate 

• rrj~ * -  [ ~  ® (®~ ~rk) l~u'} e .g ( j~ )  j l  ] 
k t • Ajl ~ (®*¢<c<j,) Ajl) ® O;I 

• PSjj ,-- rrjl ® Ajl 
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Figure 1. Changing messages with a new observation 09. 

For  every k e C( j l )  , k 4:j2 calculate 
jl 

* 77 k ~ [77jl ~ O~l ~ (~i~:C(jl)i.k /~'1 )] 
, J ~ J u {(k,  Jl)} 

For every k E P(Jl), k 4= Jl calculate 
* A~ 1 ~ [~jl  ~ Oil * Vii ~ (®iEP(j,),.krr;1)] "~(k} 
* J (-  J U ((k, jx)} 

It is immediately clear that this algorithm updates all the messages, and 
the values of PSi corresponding to I ' .  

5. PROPAGATION ALGORITHMS AND CONDITIONAL 
INDEPENDENCE 

In this section we prove that if all the axioms hold, then the propagation 
algorithms are coherent with the initial dependence structure associated 
with a graph. To prove this coherence, we need Axiom 6. In a theory of 
uncertainty representation in which this axiom does not hold, we could 
resort to use propagation formulas, but then we would have to admit that 
we are violating the coherence with the dependence structure associated 
with the graph. 

PROPOSITION 12 Let (T, E)  be a DAG without loops associated with 
n-dimensional variable ( X  1 . . . . .  X,),  (H,  h) a system of information defined 
on it, and I , J , K _ c { 1  . . . . .  n} in such a way that D ( I , J , K ) = O .  Under  
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these conditions, if we know the values of variables X j, that is, if we have 
the observations {Oj}j ~ j and the contradiction is never obtained, then the 
introduction of a new observation of a variable in {Xi} i ~ ~ does not change 
the 'a posteriori' valuation in any of the variables in {X~} k ~ s.. 

Proof Assume that we introduce a new observation, Oi~ ,, where i~b E 1, 
and assume a node Xk, where k ~ K. As the graph has no loops there is 
only one undirected path going from Xi,, to X k. Along this undirected 
path travel the messages with the influence of Oi,, on Xk. If at a given 
moment, one of these messages does not change after introducing observa- 
tion O~,, then this observation does not have any effect on X k. 

As we assume that D ( 1 ,  J, K)  = 0, then by the d-separation criterion 
(see Definition 13) we have that for this path one of the two following 
conditions holds 

• There exists a node with converging arrows in the path that does not 
belong to {Xj}j ~j  and its descendents do not belong to {Xj}j~ j. 

• There exists a node without converging arrows in the path that 
belongs to {Xj}j~ j. 

In the first case, let this node be X I. None of its descendents is in 
{X~}j~ j. By applying a proof similar to that in Proposition 11, it can be 
shown that before and after introducing observation Oi,,, all messages that 
this node sends to its parents are the neutral valuation. As the chain of 
messages carrying the effect of Oi, ' to X k goes through X 1 from one of its 
parents to a different parent, the outgoing message does not change. It is 
the neutral element, with no effect on X k. 

In the second case, we have a node, Xj, j ~ J, without converging 
arrows in the path from Xi, ' to X k. As j is in the set of observations, we 
have an observation Oj for this node, which is an absorbent valuation. The 
messages this node sends to its children. X m, m ~ C( j )  are 

i ~  C ( j )  i ~ m 

As Oj is absorbent and the contradiction is never obtained, 

rr~ = O i . 

Thus, the messages from Xj to its children never change, and if the path 
from Xi ,  ' to X k passes through Xj from a parent to a child, or from a 
child to a different child, then it does not change in X k and has no effect 
o n  S k . 



278 Jos6 Cano, Miguel Delgado, and Serafin Moral 

The messages that node Xj sends to its children, X m, m ~ C ( j )  are 

I ( aim=  j®Oj®b® ® or; 
i ~ P ( J ) i ~  m 

As Oj is absorbent and the contradiction is never obtained, we have 

oj®vj® ® orj 
i ~ P ( J ) i  ~ m 

In this expression A~ does not depend on the incoming messages from 
its children, it only depends on Oj, ~ and the incoming messages from its 
parent 0r/. Therefore, if the path from Xio to X k passes through Xj from 
a child to a parent it does not change and has no effect. 

At this point we run out of alternatives as, in this second case, the path 
cannot go through Xj from a parent to another, because the path has no 
converging arrows on Xj. In all cases, the messages going from Xio to X k 
are cut off on a given moment and the effect of Oi0 never reaches to X k. 

6. CONCLUSIONS 

In this paper we have shown that the propagation model developed by 
Pearl can be adapted to other formalisms for representing information. 
The initial idea of extending the procedures of probabilistic propagation to 
other systems used to represent uncertainty was introduced by Sharer and 
Shenoy, [1, 2], whose work centered mainly on calculus but did not 
consider some important aspects related with the representation of knowl- 
edge. Shenoy, [8], also studies the concept of independence in the valua- 
tion formalism from the point of view of factors of a joint or global 
valuation. Here we give a general framework to represent and use our 
knowledge about a problem integrating independence relationships and 
abstract valuations. The point of view is different: we study rules to build 
more complex valuations from elemental ones, using independence rela- 
tionships. Conditional valuations have special relevance in our work. Two 
different types are considered: 'a priori' conditional valuations, given by 
the user as general knowledge about a population, and 'a posteriori' 
conditional valuations, calculated after some observations for a particular 
case. 

The graphical structures have been directed acyclic graphs. These graphs 
are directly related with the concepts of conditional independence and 
dependence, which are fundamental for our problem. 
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The loops in the resulting algorithms pose a serious problem. Of the 
methods proposed by Pearl, [7], to surmount this difficulty in the proba- 
bilistic case, only the clustering method can be directly generalized. It is 
difficult to see how the conditioning method could be expressed in a 
general manner. Montecarlo algorithms can be applied only to particular 
theories of representation. 

A particular important case is that posed when the combination of 
valuations is idempotent (see Dubois and Prade, [13]), as occurs with 
valuations based on the Theory of Possibility, with the minimum rule for 
combination. In this case loops are more amenable to resolution: we can 
combine the same information several times. 

With regard to the verification of the axioms, all representations models 
we have studied verify Axioms 1-5; however, Axiom 6 is not verified in 
some cases, as Possibility Theory. This can be explained by recalling that 
Possibility Theory can represent different degrees of partial inconsistency, 
[14]. Therefore, apart from the contradictory valuation, there are other 
levels of contradiction. This has important consequences for the propaga- 
tion algorithms, which deserve particular attention. 
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