
Citation: Silva, M.T.; Guerrero-

Rascado, J.L.; Correia, A.L.; Gouveia,

D.A.; Barbosa, H.M.J. On the

Sensitivity of a Ground-Based

Tropospheric Lidar to Aitken Mode

Particles in the Upper Troposphere.

Remote Sens. 2022, 14, 4913. https://

doi.org/10.3390/rs14194913

Academic Editor: Simone Lolli

Received: 28 July 2022

Accepted: 28 September 2022

Published: 1 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

On the Sensitivity of a Ground-Based Tropospheric Lidar to
Aitken Mode Particles in the Upper Troposphere
Matheus T. Silva 1 , Juan Luis Guerrero-Rascado 2,3 , Alexandre L. Correia 1 , Diego A. Gouveia 4

and Henrique M. J. Barbosa 1,5,*

1 Physics Institute, University of Sao Paulo, Sao Paulo 05508-090, Brazil
2 Department of Applied Physics, University of Granada, 18071 Granada, Spain
3 Andalusian Institute for Earth System Research (IISTA-CEAMA), 18006 Granada, Spain
4 Royal Netherlands Meteorological Institute (KNMI), 3731 GA De Bilt, The Netherlands
5 Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21246, USA
* Correspondence: hbarbosa@umbc.edu; Tel.: +1-(410)-455-1248

Abstract: Airborne observations have shown high concentrations of ultrafine aerosols in the Amazon
upper troposphere (UT), which are key for replenishing the planetary boundary layer (PBL) with
cloud condensation nuclei that sustain the “green ocean” clouds. Given their climatic relevance, long-
term observations are needed, but aircraft measurements are only available in short-term campaigns.
Alternatively, continuous observations of the aerosol vertical structure could be performed by a
lidar (acronym for “light detection and ranging”) system in long-term campaigns. Here we assess
whether a ground-based tropospheric lidar system could detect these ultrafine UT aerosols. To this
aim, we simulated the lidar signal of a real instrument and then varied the instrument’s efficiency
and the UT-particle concentration to determine under which conditions the detection is possible.
Optical properties were computed with a Mie code based on the size distributions and numerical
concentration profiles measured by the aircraft, and on the refractive indexes inverted from AERONET
measurements. The aerosol optical depth (AOD) was retrieved by inverting the elastic lidar signal,
and a statistical test was applied to evaluate the detection of the UT-aerosol layer. Our results indicate
that, for the instrument we simulated, a 55-fold increase in the signal-to-noise ratio (SNR) is required
for a 100% detection rate. This could be achieved by simultaneously time averaging over 30 min and
spatially averaging to vertical bin lengths of 375 m, or by modifying the hardware. We repeated the
analysis for under- and overestimated aerosol lidar ratio (Laer), and found that possible systematic
errors did not affect the detection rate. Further studies are necessary to assess whether such long-
time averages are feasible in the Amazon region (given the very high cloud cover), and to design a
hardware upgrade. Although simulations and analyses here were based on a particular instrument
and for the presence of new organic particles in the Amazonian upper troposphere, our methodology
and results are general and applicable to other instruments and sites.

Keywords: elastic lidar; sensitivity; signal-to-noise ratio; Monte Carlo simulation; Amazon; new
particle formation

1. Introduction

In the context of climate change, the Amazon rainforest plays a crucial role in the
global hydrological, biogeochemical and energy cycles [1–3]. The region has approximately
5 million square kilometers of preserved forest, and is the world’s largest terrestrial carbon
reservoir [4]. There is intense evapotranspiration, and clouds are omnipresent even during
the dry season. Several studies highlight the importance of water vapor recycling [5] and
transport, carrying humidity to other regions [6,7]. Nonetheless, anthropogenic changes
are already disturbing the natural functioning of the forest [8,9]. Biomass burning in the
Arc of Deforestation emits aerosol particles that cover the entire region [10,11] and reach
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all over South America [12]. Even in pristine parts of the forest, aerosol particle number
concentration increases by 10-fold in the dry season (from about 220 to 2200 cm−3), and so
does aerosol optical depth (AOD) at 550 nm (from 0.1 to about 1.0) [10]. Interactions
between deforestation, fire and climate change are likely to further alter carbon storage [13],
moisture transport [14,15] and precipitation patterns [16]. In turn, such changes in the
Amazon basin atmosphere are expected to affect the global climate [17–19].

In pristine conditions, cloud formation in the Amazon depends exclusively on the
few secondary organic aerosol (SOA) particles acting as cloud condensation nuclei (CCN)
(concentrations of about 150–300 cm−3 during the wet season, e.g., [20]). These particles
are formed by biogenic volatile organic compound (BVOC) precursors, but their nucleation
is rarely observed by ground measurements [21–24]. Recently, a conceptual model that
explains the life cycle of SOAs in the Amazon atmosphere was proposed, suggesting that
new SOA particles are nucleated in the upper troposphere (UT) from BVOCs transported
by cloud updrafts [25,26]. These new aerosol particles are transported into the planetary
boundary layer (PBL) by downward mixing, sustaining the CCN population that feeds the
green ocean clouds. However, the current knowledge of this mechanism must be improved
in order to allow its representation in global climate models [27]. This conceptual model
was based on observations from aircraft measurements during GoAmazon2014/5 [28]
and ACRIDICON-CHUVA [29] campaigns. However, aircraft campaigns are expensive
and sporadic, and hence cannot provide the long-term measurements needed to further
our understanding of the aerosol life-cycle. Ground-based remote sensing techniques,
particularly aerosol lidar, could help to fill this gap.

The first reported long-term lidar measurements of aerosol profiles in the Amazon
were conducted in the framework of EUCAARI and AMAZE-08 projects in 2008 [30–32].
The authors showed the presence of African smoke and dust on 32% of all profiles analyzed
during the wet season, with a maximum smoke AOD contribution of 0.15 at 532 nm in
February of that year. In a follow-up study, the same group reported intrusions of Saharan
dust [11]. Using airborne lidar observations, Marenco et al. [33] reported that the UK
Unified Model and the ECMWF-MACC model generally reproduced the observed vertical
distribution of biomass-burning aerosols. However, the authors highlighted that both
models tended to fail close to individual fires or in the vicinity of clouds. Barbosa et al. [34]
discussed the performance of a lidar instrument operating in the Amazon region. They
presented a validation analysis comparing the AOD from lidar measurements with those
from AERONET (AErosol RObotic NETwork [35]), finding a root-mean-squared error
of about 0.06. None of these early studies investigated the presence of aerosols in the
Amazon’s upper troposphere.

Our main goal here was to statistically evaluate whether a ground-based lidar sys-
tem could detect ultrafine particles in the Amazon UT layer (between 9 and 15 km). We
developed a simulation of the lidar signal based on aerosol physical in situ measure-
ment from recent aircraft campaigns, and from aerosol optical properties from AERONET.
The simulation had the same efficiency and hence mimicked the experimental lidar signal.
The methodology is described in detail in Section 2. Using the Monte Carlo approach
mentioned in Section 2.3, we performed thousands of simulations varying the aerosol
concentration and lidar efficiency to find conditions that allow for the detection of the
thin layer of ultrafine particles, despite the typical noise in lidar signals at UT altitudes.
The results are presented and discussed in Sections 3 and 4. Our recommendations for
improving the detection efficiency and conclusions are presented in Section 5.

2. Materials and Methods
2.1. Lidar LFA IF-USP

The observation data used for calibrating the simulations were measured by the LFA
IF-USP lidar, which was operated at the Manaus_EMBRAPA site (2.89◦S, 59.97◦W) from
2011 to 2017, with a co-located AERONET station. The instrument uses a Quantel CFR-400
Nd-YAG laser with 95 mJ per pulse at 355 nm and 10 Hz repetition rate. The receiver
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subsystem has a telescope area of 0.13 m2, and filters in the 355 nm (elastic), 387 (N2) and
408 (H2O) nm bands. The transient recorder operates at 20 MHz. The acquisition interval
is typically configured for 30 s or 1 min. More details about the instrument are given by
Barbosa et al. [34]. In this study, we simulated the 355 nm elastic signal in photon-counting
mode. In this mode, the acquisition hardware counts the individual photons arriving
at the photo-multiplier tube (PMT), and hence the signal follows a Poisson probability
function [36]. To avoid the saturation of the photon-counting at lower altitudes, we glued
the analog and photon-counting signals [37]. The data used as a reference in this study had
a raw time resolution of 30 s and a raw vertical resolution of 7.5 m.

2.2. Lidar Signal Simulation

The lidar equation describing the number of elastic photons with wavelength λ de-
tected as a function of the altitude z can be written as:

P(z, λ) =
E0

Ephot
dzAη

O(z)
z2 β(z, λ) exp

(
−2

∫ z

0
α(z′, λ) dz′

)
(1)

where E0, Ephot, dz, A, η e O(z) are the energy per laser pulse, energy per photon, vertical
bin length, telescope area, overall system efficiency and overlap function, respectively. β
and α are the backscattering and extinction coefficients, respectively, which account for the
extrinsic optical properties of aerosols and molecules as indicated below:

β(z, λ) = βmol(z, λ) + βaer(z, λ) (2)

α(z, λ) = αmol(z, λ) + αaer(z, λ) (3)

where the subscripts “mol” and “aer” respectively stand for molecules and aerosols. For air
molecules, the optical properties were simulated based on Bucholtz [38] and Bodhaine et al. [39],
using the standard tropical profile of pressure and temperature [40].

For the aerosol optical properties, Mie calculations were performed using the radiative
transfer package libRadtran [41]. The number size distribution of ultrafine particles was
based on GoAmazon 2014/5 campaign measurements aboard the G-1 aircraft [28], which
are shown in Figure 9 of Andreae et al. [25]. The authors report measurements up to 5800 m,
close to the maximum flying altitude of the aircraft. Because the distributions at 4500
and 5800 m have approximately the same median radius and standard deviation for their
Aitken modes, we assumed those to be representative of the Aitken mode in the UT layer.
Close to the surface, the size distribution measured by the aircraft shows an accumulation
mode only. This is due to the size cut-off of the instrument, which could not measure larger
particles. For this reason, we analyzed the volume size distribution from the AERONET
inversion products to obtain the median radius and standard deviation of the fine and
coarse mode aerosols, which we assumed to be representative of the aerosols in the PBL. We
used data from the Manaus_EMBRAPA site and averaged all 764 size distributions obtained
from 8 years (2011–2019) of level 1.5 measurements during the dry season (Jul–Nov).

For the real (<) and imaginary (=) refractive indexes, we considered those reported by
the same AERONET station at 440 nm. Values retrieved with AOD440 < 0.4 were excluded
from the analysis, as suggested by Holben et al. [42]. Since no significant differences were
observed between refractive indexes in the dry (Jul–Nov) and wet (Dec–Jun) seasons, data
from both seasons were combined and the same refractive indexes were used to simulate
the UT and PBL aerosol optical properties. Table 1 lists the parameters used for particles in
the UT and at the PBL. Note that the UT’s refractive indexes and Laer were randomized in
the Monte Carlo experiments discussed further below, while the values in the PBL were
kept fixed.

The aerosol lidar ratio Laer and extinction-to-mass coefficient αmass
aer were obtained by

Mie calculations. The extinction-to-mass coefficient has units of m−1 (g/m3)−1, and was
multiplied by the profile of aerosol mass concentration (in g/m3) to obtain the extinction
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coefficient αaer in m−1. The backscatter coefficient, βaer, in m−1 sr−1 was determined by the
quotient of αaer and Laer.

Table 1. Properties of aerosols in the upper troposphere (Aitken mode) and the boundary layer
(fine and coarse modes) used as input to the Mie code and lidar signal simulations. Number size
distributions are log-normal with median radius Rg and geometric standard deviation σg. Real (<)
and imaginary (=) refractive indexes were obtained from 8 years of AERONET measurements at the
Manaus_Embrapa site. The aerosol lidar ratio Laer is calculated by the Mie code and varies with the
refractive index. The altitude range and concentration are based on the median profile shown by
Andreae et al. [25], which was approximated by two aerosol layers as shown in Figure 1. Ranges in
brackets, corresponding to the 10th and 90th percentiles, are given for the parameters randomized
in the Monte Carlo experiments. Number, mass, extinction and AOD of the UT aerosol layer were
varied in the sensitivity experiments, from 1× to 16× the values shown here.

Parameters Upper Troposphere Planetary Boundary Layer

Rg (nm) 23 85 and 236
σg 1.6 1.5 and 2.4

< (440 nm) [1.40 to 1.56] 1.46
= (440 nm) [0.00052 to 0.00944] 0.0021

Laer (sr) [20.2 to 23.5] 60.3
Layer Top (km) 15 2
Layer Base (km) 9 0

Number Conc. (cm−3) N0,ut = 1246 N0,pbl = 1251 and 4.9
Mass Conc. (µg m−3) 0.25 11.2 and 16.0
Extinction (Mm−1) 0.37 88.4

AOD 0.0022 0.18

The mass concentration was obtained from the number concentration and the normal-
ized log-normal size distributions for each aerosol log-normal mode, assuming an aerosol
density of 1.5 g cm−3. The number concentration was taken from the median of all aircraft
measurements, as shown in Figures 7a and 10a of Andreae et al. [25]. The Aitken mode
concentration was the ultrafine fraction (<90 nm) of the total concentration, while that in
the boundary layer was the non-ultrafine fraction. For our simulations, we considered a
simplified profile with two aerosol layers (see Figure 1). The UT layer had a uniform number
concentration between 9 and 15 km with Aitken mode aerosol, while the boundary layer
aerosols had fine and coarse modes with constant concentrations from the surface to 2 km.
The values used in the simulations are given in Table 1. N0,ut and N0,pbl were calculated
as the layer mean value of the observed concentration of Amazon upper-troposphere and
planetary boundary layer particles, respectively. The concentration was assumed to be zero
outside these two layers. For the sensitivity experiments, we increased the value of N0,ut,
as explained in the next sections.

Finally, the performance parameters of Equation (1) were set based on the LFA IF-USP
lidar. Energy per laser pulse was E0 = 95 mJ, telescope area was 0.13 m2 and vertical
resolution was dz = 7.5 m. The incomplete overlap between the telescope field of view
and the laser beam was not included in the simulation, because the same overlap would
be used for performing the inversion of the signal. The efficiency η was estimated by
calibrating the simulated signal, i.e., by a molecular fit on a 1 h mean profile (21:00 to 22:00 h
LT) of the LFA IF-USP lidar measurements between 16 and 26 km. Figure 2 shows the
range-corrected lidar signal for a single 30 s profile in blue and the molecular reference
in black. From the molecular calibration, we obtained an efficiency of 0.75%. This is an
estimation of the overall efficiency in the system, which includes optical (e.g., filters and
lenses) and detection efficiencies (e.g., photocathode quantum efficiency).
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Figure 1. Median aerosol number concentrations measured by the HALO aircraft (left) and the
2-layer representation adopted in our simulations (right), for the ultrafine (blue) and fine plus coarse
particles (red). The values shown are not corrected for standard temperature (273.15 K) and pressure
(1000 hPa).

Figure 2. Vertical profiles of the range-corrected lidar signals are shown for a single 30 s measurement
at 21:00 h LT on 14 September 2014 (blue), the simulated molecular signal with noise (red) and the
molecular reference without noise (black). The reference was calibrated from 16 to 26 km using the
average of all 30 s measurements from 21:00 to 22:00 h LT. The measured photon-counting and analog
signals were glued and corrected for the instrument overlap. The signal shows aerosols in the PBL
below 2 km.
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The comparison between the measured and simulated signals shows excellent agree-
ment for both the mean value and the Poisson noise. This example is for 14 September 2014,
when AERONET reported an atmosphere with AOD of about 0.4, mostly due to particles
in the PBL, below 2 km.

2.3. Detection Algorithm

For a 30 s backscatter profile, as in the example in Figure 2, the signal-to-noise ratio at
the base (top) of the UT layer was very low, around 4.6 (1.7) and precluded detection of
the signal of the ultrafine aerosol particles. To understand under which conditions such
detection would be possible, we varied the system efficiency and the aerosol concentration
in our simulations.

In this study, Klett–Fernald inversion algorithm [43,44] was applied, assuming the
known average Laer to retrieve β(z) and α(z), from which the AOD in the UT layer, AODUT ,
was calculated. Uncertainties in these aerosol optical properties were calculated using a
Monte Carlo approach, where the lidar signal was resampled 100 times by drawing from
the Poisson distribution of the measured signal. To avoid the need to visually inspect the
optical profiles for the presence of aerosols in the UT, a quantitative detection algorithm was
applied. The algorithm compares AODUT with its uncertainty and computes the z-score as
AODUT/σAOD. Aerosols were considered to be present in the UT when the AODUT > 0
with statistical significance at the 99.7% level, i.e., when z-score > 3. Note that this detection
method does not locate the top and bottom of the aerosol layer, it merely informs whether
there is a significant AOD from 9 to 15 km, i.e., whether there are aerosols in the UT.

2.4. Sensitivity Experiments

Lidar signals were simulated for 5 different values of the system efficiency and 5 dif-
ferent values of the ultrafine aerosol concentrations in the UT layer (N0,ut). The aerosol
number concentration in the PBL (N0,pbl) was kept fixed as 1256 cm−3. Here, the efficiency
(κ) and the ultrafine aerosol number concentration (ν) factors represent how much each
quantity was increased compared to their reference values. κ was simulated for values of 1,
10, 100, 1000 and 10,000, where κ = 1 represents an LFA IF-USP lidar efficiency of 0.75%.
Similarly, ν was simulated for the values of 1, 2, 4, 8 and 16, where ν = 1 represents the
aerosol number concentration (N0,ut) of 1246 cm−3 at UT—the median value measured by
the aircraft (Table 1).

This range of concentration values was used because there were flights which detected
much greater values than the median. Andreae et al. [25] reported UT ultrafine concen-
trations ranging approximately between 2000 and 19,000 cm−3 at standard temperature
and pressure (STP: T0 = 273.15 K and p0 = 1000 hPa), reaching up to 65,000 cm−3 (STP) in
some cases. On the other hand, the range of efficiency values was chosen to allow a definite
detection for any number concentration chosen. Whether a large improvement in efficiency
is feasible and how it could be achieved will be discussed later.

Altogether, there were 25 combinations of κ and ν, for which 100 lidar profiles were
simulated in a Monte Carlo approach. Each repetition represents one “experiment” with
the same κ and ν, but with different Poisson noise and different aerosol optical properties,
drawing from our database of AERONET’s index of refraction. For each experiment,
the detection algorithm described in the previous section was applied. The frequency of
detection f was calculated as the ratio between the number of successful detections and
the total number of experiments. Note that we applied two Monte Carlo methods: one to
obtain the uncertainties of the aerosol optical properties retrievals and another to obtain
“ f ”. From all 25× 100 simulations, maps of frequency of detection as a function of the
system efficiency and ultrafine aerosol number concentration were built.

Differences between the Laer used in the Klett–Fernald inversion (hereafter Linv
aer ) and

the Laer of the actual particles in the atmosphere can lead to systematic biases in the
retrievals [34,45,46]. Because the Laer has a natural variability, the best-case scenario for the
analysis of a lidar signal is when the average Laer in the atmosphere is known. Therefore,
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to evaluate whether such a bias could affect our estimates of the detection efficiency, our
simulations were repeated, and the inversions were performed using a range of Linv

aer values
above and below the mean value of Laer. This was done only for the Aitken particles in
the UT because using a biased lidar ratio for the boundary aerosols would not distort the
retrieved extinction in the UT.

3. Results

Our goal was to perform a sensitivity analysis to evaluate whether a typical ground-
based lidar for tropospheric aerosols could detect ultrafine particles in the Amazonian upper
troposphere. The analysis scheme consisted of changing the aerosol number concentration
in the UT layer and the instrument detection efficiency to values above our baseline. This
baseline considers the median profile of the aerosol concentration reported by aircraft
measurements and the typical signal-to-noise ratio of a single 30 s lidar profile.

Figure 3 shows the effect of increasing the instrument efficiency (κ) from 1 to 10,000,
for a situation where ν = 16. Hence, the concentration in the UT was 16× that shown in
Figure 1, which corresponds to an extinction of 6.0 Mm−1 and AOD of 0.035 in the UT layer.
It should be noted that the noise in the UT was lower than in the troposphere because of
the different Laer used in the retrieval (22 and 60 sr, respectively). For κ = 1 (left panel),
the noise in the retrieved extinction in the UT was significantly larger than the simulated
extinction, hence the aerosol layer was not detectable. For the largest values (κ = 1000 and
10,000), the noise was reduced by a factor of

√
κ, and the aerosol layer was identifiable.

For intermediate values (κ = 10 and 100), visual inspection was not sufficient and it was
necessary to rely on the statistical detection method. The z-score is indicated in each panel
and, for this example with ν = 16, even a value of κ = 10 was sufficient for the detection of
the layer (z = AOD/σAOD = 5 > 3).

Figure 3. Example of extinction profiles obtained by the Klett–Fernald inversion of lidar signals
simulated with κ varying from 1 to 10,000, and ν = 16. Although the Monte Carlo method varies the
simulated Laer, here αaer is held constant to allow a direct comparison between panels. The inversion
used the exact average value of the Laer at the UT (22 sr).

Figure 4 shows the same analysis but with the aerosol number concentration ν varying
from 1 to 16. From the first to the last panel, the extinction noise and the horizontal axis scale
are equal because they all correspond to the same efficiency of κ = 10,000. The situation was
similar to that previously discussed. The aerosol layer was detectable for the two largest
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number concentrations, and was undetectable for the lowest one. However, looking at the
results of the statistical detection method, the retrieved AOD in the UT was statistically
significant even when ν = 1 (z = 13.6 > 3).

Figure 4. As Figure 3, but for ν varying from 1 to 16, and κ = 10,000. The x-scale is truncated at
10 Mm−1 to emphasize the UT.

As explained in Section 2.4, this analysis was repeated for each of the 25 combinations
of κ and ν values, and we used a Monte Carlo approach to estimate the detection frequency.
Figure 5 shows the result as a detection map. Values in dark red indicate the combinations
of κ and ν where the detection was achieved in 100% of the Monte Carlo experiments, which
occurred for large efficiency and/or large number concentrations. However, the larger
the concentration, the less likely this situation was to occur in the actual atmosphere. The
median number concentration measured by aircraft was ν = 1, while ν = 16 surpassed
the 90th percentile. Considering the median as a reference (ν = 1), the analysis indicates a
guaranteed detection for an efficiency between 1000 and 10,000 times greater than the LFA
IF-USP lidar (a signal-to-noise ratio 100 times greater).

The detection efficiency map was built under an ideal scenario. The lidar signals
were simulated allowing the Aitken mode particles Laer to vary around 22 sr as for a real
atmosphere, but our analysis used the exact average value of that Laer in the inversion to
retrieve the optical properties, i.e., without any biases.

It is well-known that the solution of the elastic lidar equation derived by the Klett–
Fernald method depends on the choice of lidar ratio, which affects the magnitude of both the
extinction and backscatter profiles. Hence, a biased lidar ratio could in principle interfere
with our methodology to detect the UT aerosol layer, because it is based on the AOD value.
Therefore, it is important to evaluate the effects of underestimating or overestimating the
Linv

aer used in the inversion on the extinction retrievals and the detection frequency.
Figure 6 shows an example of retrieved extinction profiles above 2 km for fixed values

of κ = 10,000 and ν = 16 and a range of Linv
aer values. The lidar signal was simulated with a

refractive index of 1.52 + 0.005i at the UT layer, corresponding to an Laer of 22 sr and an
AODUT = 0.041. The title of each panel shows the aerosol Linv

aer , where it was underestimated
on the left, exact in the middle (with 22 sr) and overestimated on the right. The extinction
increased with the Linv

aer as expected, but so did its uncertainty. This effect is visible in
the sequence of panels, and in the corresponding AODUT values reported in Table 2.
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The AODUT bias was −32% for an underestimation of −9 sr (−40%), and was +25% for an
overestimation of +9 sr (+40%) of the Laer.

Figure 5. Detection map for the 25 combinations of κ and ν values, where colors represent the
detection frequency (ranging from 0 to 1).

Figure 6. Examples of extinction profiles obtained with a range of values of Linv
aer from 13 to 31 sr are

shown in blue, with the reference value used in the simulation in black. The simulation was for the
case of κ = 10,000 and ν = 16.
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This increase of the AODUT with the lidar ratio could affect the detection frequency.
However, the uncertainty of AODUT also increased with the lidar ratio and, as shown in
Table 2, there was little change in the z-score for the example in Figure 6. To understand
how systematic errors in the Linv

aer impacted the detection analysis, over the simulated range
of κ and ν values, the detection maps were calculated for the five lidar ratios in Table 2.

Table 2. Retrieved AODUT and its uncertainty σAOD for each profile of Figure 6. Linv
aer is the aerosol

lidar ratio for ultrafine particles used in the inversion. The detection algorithm uses the z-score,
which is the ratio AODUT/σAOD.

Linv
aer (sr) 13 18 22 26 31

AODUT 0.02791 0.03495 0.04105 0.04629 0.05112
σAOD 0.00008 0.00010 0.00011 0.00013 0.00014
z-score 346 351 361 365 368
Bias AOD (%) −32 −15 0 13 25
Bias σ (%) −28 −12 0 14 23
Bias z-score (%) −4.1 −2.8 0 1.1 1.9

Comparing the maps in Figure 7, no systematic disparities were clearly identified.
Figure 8 supports this statement. Each line is a slice on the maps at ν = 1, and includes
additional simulations for 50 different levels of κ. Considering the uncertainties, none
of the Linv

aer values were significantly better for the detection of particles in the UT. This
indicates that the effects of lidar ratio bias on the AODUT and on the AODUT uncertainty
compensated each other. Therefore, the z-score did not vary significantly and the detection
was not affected. Finally, it is also possible to note in Figure 8 that, with the larger number
of κ values, the full detection (in 100% of the Monte Carlo experiments) occurred for a κ
value of around 3000.

Figure 7. Maps of detection for the 25 combinations of κ and ν values, where the colors represent the
detection frequency (ranging from 0 to 1). Each panel shows the biased inversion, with Linv

aer varying
from 13 to 31 sr.
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Figure 8. Detection frequency for ν = 1 and κ varying from 1 to 6000 in steps of 200. Different colors
indicate the Linv

aer values used.

4. Discussion

The results above suggest that the detection of ultrafine particles in the Amazonian
upper troposphere by the lidar technique is possible. For our reference system, the detection
of the UT layer with the observed median concentration (ν = 1) was guaranteed only if
the system efficiency was improved by a factor of 3000, which is equivalent to an increase
of the SNR by a factor of

√
3000 (≈ 55). These improvement factors were relative to the

original SNR of our 30 s profiles. In absolute terms, the requirement for any lidar is to have
an SNR of about 217 at 9 km and 80 at 15 km altitude. This condition is for the detection
of the UT aerosol layer with the measured median number concentration and the Mie
simulation of the optical properties. According to our calculations, this aerosol layer has an
AOD at 355 nm of 0.0022 with a 23% uncertainty that is attributable to the variability of the
refractive indexes.

This improvement could be achieved by combining a time average of 30 min (60 pro-
files of 30 s) and a vertical resolution of 375 m (50 bins of 7.5 m). Vertically averaging
reduces our ability to differentiate very thin layers, but 375 m would still be sufficient to
measure internal variations in the UT layer given that it extends over a height range of
6 km. On the other hand, finding long periods without clouds in the Amazon region can be
very challenging [45]. A follow-up study would be necessary to investigate the frequency
of low clouds, from the point of view of a nadir-looking narrow-beam instrument. An alter-
native to increasing the time and spatial averages would be to modify the hardware. Easy
upgrades include removing the neutral density filter (currently has 50% of transmission)
and doubling the laser power or shot frequency. These would give a factor of 4 in the
numbecccr of photons detected, allowing us to lower the time average to about 15 min.
Nonetheless, higher numbers of photons incident on the PMT could surpass its maximum
range. To implement such improvements, an in-depth study of all optical components
must be done.

For our instrument, the data acquisition works in both analog (AN) and photon-
counting (PC) modes. The AN mode dynamical range is roughly 166 (12-bit ADC) and
the PC dynamic range is about 300, which can be “glued” [47] to achieve a dynamic
range of about 400 for 30 s profiles. This is about two orders of magnitude less than what
is needed to simultaneously measure the aerosols in the boundary layer and the upper
troposphere. From our simulations with the median aerosol number concentration in the
UT, the difference in the signal from the PBL (800 m above the ground) to the aerosol-
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free region above the UT layer (20 km above the ground) was estimated to be a factor of
30,000. To reach this dynamic range and the necessary SNR at the UT, the use of a long
time-averaging will be unavoidable.

To our knowledge, similar studies evaluating the detection efficiency of thin aerosol
layers as a function of the instrument efficiency and the aerosol number concentration have
not yet been reported. For instance, Gouveia et al. [45] performed a similar analysis but
for the detection of cirrus clouds in the Amazon. The authors also used a Monte Carlo
approach to calculate the detection frequency, but they did this as a function of the SNR
below the cloud and the cirrus backscatter coefficient. Moreover, instead of estimating
the necessary increase in the system efficiency to detect the particles, they computed
the minimum measurable cloud optical depth (COD) for their instrument efficiency.

Torres et al. [48] performed simulations of satellite-born lidar signals to study the
aerosol radiative forcing above clouds, with a focus on the top of atmosphere (TOA) re-
flectance, which depends on the AOD above clouds and the COD. The authors estimated the
error in the lidar-retrieved AOD and COD from possible systematic errors in the Ångström
absorption exponent, single scattering albedo and aerosol–cloud separation. Another study,
by Thorsen et al. [49], that computed the systematic error in AOD retrievals from lidar in-
spired the analysis developed here. The AOD error was obtained by lidar measurements on
the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations [50,51] (CALIPSO)
satellite sensor, underestimating the global average AOD [49]. The investigation separates
two cases: “transparent”, when the laser completely passes through the layers of clouds
and aerosols, and “without clouds”. For the first, a daytime underestimation bias of 54%
was found, while for the second it was 47%. At night, the bias dropped to 38% and 22%, re-
spectively. Although the authors found that a system capable of detecting a backscattering
coefficient (at 532 nm) of 1–2 km−1 sr−1 is required to reduce the bias to 1%, nothing about
improving the SNR or the system efficiency was reported.

5. Conclusions

We studied the sensitivity of a ground-based tropospheric lidar operating in the near
UV to the detection of ultrafine particles in the upper troposphere. By calculating the detec-
tion frequency as a function of the system efficiency and ultrafine aerosol concentration,
we determined the conditions under which the detection was possible. For the median
ultrafine aerosol concentration measured by aircraft campaigns in the Amazon, the detec-
tion was feasible for an SNR around 217 at 9 km and 80 at 15 km of altitude, corresponding
to the base and top of the UT layer, respectively. In other words, an increase by a factor
of about 55 in the SNR of the LFA IF-USP lidar would be necessary. While considering
possible biases in the ultrafine particles lidar ratio Laer, it was found that they would not
affect these estimates. This is because the Laer affects both the retrieved optical depth and
its uncertainty, while our algorithm used their ratio for detecting the presence of aerosol in
the upper troposphere.

To achieve this increase in the SNR of the LFA IF-USP lidar, a time average of 30 min
and a vertical resolution of 375 m were found to be sufficient. Further studies are necessary
to evaluate the occurrence of low clouds at this particular lidar site, and whether such a long
time average is possible. Making changes to the system hardware, e.g., more powerful laser,
filters with higher transmission, or PMTs with greater quantum efficiency, would be helpful.
However, a detailed simulation of all optical components is necessary to evaluate the impact
on the dynamic range of the system. Future studies are encouraged to investigate whether
lidar systems in the visible or near-infrared, where molecular extinction is less significant,
could be more suitable for detecting ultrafine particles. Another interesting consideration
is whether the real vertical structure of the aerosol concentration in the upper troposphere,
with alternating finer and thicker layers, could make a difference in the retrieval results.

Finally, although simulations and analysis were based on the LFA IF-USP lidar signal,
in the presence of new organic particles formed in the Amazonian upper troposphere, our
results are general and applicable to other instruments and sites.
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