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Abstract
We propose semi-autonomous control strategies to assist in the teleoperation of mobile robots under unstable communica-
tion conditions. A short-term autonomous control system is the assistance in the semi-autonomous control strategies, when 
the teleoperation is compromised. The short-term autonomous control comprises of lateral and longitudinal functions. The 
lateral control is based on an artificial potential field method where obstacles are repulsive, and a route is attractive. LiDAR-
based artificial potential field methods are well studied. We present a novel artificial potential field method based on color 
and depth images. Benefit of a camera system compared to a LiDAR is that a camera detects color, is cheaper, and does not 
have moving parts. Moreover, utilization of active sensors is not desired in the particle accelerator environment. A set of 
experiments with a robot prototype are carried out to validate this system. The experiments are carried out in an environ-
ment which mimics the accelerator tunnel environment. The difficulty of the teleoperation is altered with obstacles. Fully 
manual and autonomous control are compared with the proposed semi-autonomous control strategies. The results show 
that the teleoperation is improved with autonomous, delay-dependent, and control-dependent assist compared to the fully 
manual control. Based on the operation time, control-dependent assist performed the best, reducing the time by 12% on the 
tunnel section with most obstacles. The presented system can be easily applied to common industrial robots operating e.g. 
in warehouses or factories due to hardware simplicity and light computational demand.

Keywords Mobile robots · Teleoperators · Machine vision · Remote monitoring · Automation · Autonomous vehicles

1 Introduction

Teleoperated mobile robots are used in monitoring, inspec-
tion, and maintenance tasks, in hazardous or otherwise non-
human friendly places. The operator is not required on-site, 
which enables bilateral control over the internet. Remote 
control introduces additional control and feedback delays to 

the system, which can fluctuate due to the nature of internet 
protocols. The internet connection instability can be caused 
by weather conditions, network congestion, solar activity, 
geography, and buildings. Fluctuating control delay makes 
the teleoperation challenging, which can lead to accidents 
and slow mission operation.

Teleoperation with fluctuating control delay has been 
studied before. Delay passivation dampens the control 
depending on the delay, which has been shown to smooth the 
control and assist the teleoperation with low delays [1–3]. 
However, in the case of large delays the control is stopped 
until the delay is low enough to pass a delay threshold value. 
The threshold value has ranged from 300 ms up to 2000 ms 
in previous studies. [1, 4].

Thus, the teleoperation mission takes longer due to the 
delay and leaves the system helpless in situations where it 
is critical to keep moving. We present novel autonomously 
assisted control strategies for high control delay scenar-
ios. These strategies are namely delay-dependent assist 
(DDA) and control-dependent assist (CDA). DDA activates 
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autonomous control when the delay threshold is reached and 
CDA assists the teleoperator when the control is considered 
inadequate, similar to lane keeping assistant of passenger 
vehicles. Authors in [5–9] have successfully aided a teleoper-
ator of a robot manipulator using semi-autonomous control. 
Our aim is to successfully implement a semi-autonomous 
teleoperation system for a maintenance robot operating at 
the particle accelerator tunnel of the European Organization 
for Nuclear Research (CERN). The validation experiments 
are carried out in a mock-up environment of the tunnel. In 
these experiments, different teleoperation control strategies 
(DDA, CDA, delayed manual, manual, and autonomous) are 
compared under fluctuating control delay. In addition to the 
contribution of the semi-autonomous control strategies, we 
propose a novel RGB-D image-based artificial potential field 
(RGB-DPF) method, which is utilized for obstacle avoidance 
and route following of the autonomous control.

The purpose of this study is to address the issues caused 
by a large delay fluctuation in the communication signal, and 
to complement research gaps in previous studies presented 
in Section 2. The research gap in the teleoperated systems 
is the implementation of a semi-autonomous control strate-
gies that improve teleoperation in presence of long and high 
delay periods (5 s duration of over 300 ms delay). We also 
introduce and validate the RGB-DPF method, which builds 
on the work presented in [10]. Our contributions are sum-
marized on the list below.

• We propose a novel semi-autonomous control strategy. 
The strategy is presented in a form of two variants to 
address the issues of a large delay fluctuation in the com-
munication signal (5 s periods of over 300 ms delay) 
in mobile robot applications. The strategy variants are 
based on alternating between autonomous and manual 
control depending on the control and communication 
signals.

• Demonstration that during long cutouts (up to 5 s) the 
robot can be successfully navigated with a short-term 
autonomous control system, and the teleoperator can gain 
control back easily when the cutout ends.

• A new adaptation of the artificial potential field method 
for an RGB-D sensor coupled with a simple control 
algorithm for semi-autonomous navigation in the CERN 
particle accelerator tunnel or similar environment (e.g. 
warehouse, factory facility).

• The overall novelty of this paper is the large-scale com-
parative evaluation of aforementioned methods on a real 
robot prototype.

Proposed RGB-DPF method includes an attractive field (AF) 
and a repulsive field (RF). Their details are described in 
Sections 3.2 and 3.3. The control strategies are described in 
Section 4.1. The results are presented in Sections 4.3, 4.4, 

and 4.5. Discussion is presented in Section 5. The paper is 
concluded in Section 6 including future research proposals.

2  Related Work

2.1  Semi‑autonomous Systems in Internet‑based 
Teleoperation

Mobile robot teleoperation is well established field. The 
studies in delay management aim to improve real-time inter-
net-based teleoperation. Delay fluctuations, video feedback 
delay, and limited bandwidth are the main problems related 
to internet-based teleoperation [1]. Semi-autonomous con-
trol systems have been implemented to aid the teleoperator 
under communication issues or environmental challenges.

You et al. [5] proposed semi-autonomous control system 
where the operator controls the velocity of the body of a 
hexapod robot master, and the slave computes the corre-
sponding angular velocities of the leg joints automatically. 
The operator receives haptic feedback, which is proportional 
to the error between the actual velocity and the desired 
velocity of the body. This system aimed to make the tel-
eoperation more intuitive and accurate. The experiments in 
a semi-physical simulation validated the proposed system. 
However, the effects of delay in the control signal were not 
studied.

Authors in [7, 8, 11] studied the control of a teleoperated 
semi-autonomous system with time-varying delays and input 
uncertainties. Their systems were driven by the local and 
remote robot velocities, and position and velocity tracking 
errors. They improved the performance of a teleoperated 
system in a simulation setting. The delay fluctuations were 
periodic and had high frequency (0.5 Hz), and the effects of 
long and high delay periods were not studied.

2.2  Artificial Potential Field Method

The artificial potential field (PF) method is a path plan-
ning method, where obstacles are repulsive, and the goal is 
attractive. Virtual repulsive and attractive fields are formed, 
which sum forms a total field. The path is planned accord-
ing to descent direction of the total field so that the robot 
avoids obstacles and reaches the goal. The repulsive field 
is typically formed directly from range sensor data, where 
obstacles have potential if their range subceed a threshold 
or from a map. The method was formulated first by Khatib 
et al. [12], and it has been later improved and implemented 
e.g. in: [10, 13–19].

However, the PF method has its problems, one of which 
is the tendency to get stuck on local stable-points. Yao et al. 
[15] developed black-hole potential field method for avoid-
ing obstacles and reaching a goal in presence of multiple 
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goals. They use black-hole analogue to avoid local stable-
points. Their method also improved the traditional PF 
method with artificial intelligence, which purpose is to adapt 
quickly to scenarios containing new types of obstacles. The 
purpose of the black-hole is to bend the gradient in order to 
avoid the local stable-points. Conducted experiments with 
static and dynamic obstacles and goals showed that the robot 
learns how to automatically jump out of local stable-points.

Orozco-Rosas et al. [16] used an approach that utilizes 
evolution rules to solve the local stable-point problem. 
They implemented a hybrid algorithm based on membrane 
pseudo-bacterial potential field (MemPBPF). MemPBPF 
algorithm combines membrane computing, pseudo-bacterial 
genetic algorithm, and the PF method to generate a smooth 
and safe path for a mobile robot.

The PF method has also been utilized in road vehicle 
path planning. Rasekhipour et al. [20] developed a PF-based 
method that observes road regulations and avoids obstacles 
with appropriate vehicle dynamics. Simulations in complex 
scenarios validated that the system was able to plan an opti-
mal path in terms of vehicle dynamics.

Jang-Ho et al. [10] used the PF method as a short-term 
planner similarly as we. In short-term planner implementa-
tions, the PF is derived from sensor data only, and no maps 
are used. They implemented the obstacle-dependent Gauss-
ian potential field (ODG-PF), which defines the obstacles 
with Gaussian function. They prevented the local stable-
point issue by using the global minimum of the field as the 
desired direction. Their simulations and experiments proved 
stable performance of the ODG-PF with both static and 
dynamic obstacles. The experiments were conducted with a 
mobile robot equipped with a 2D-LiDAR.

3  Methods

3.1  System Specifications

The robot used in this experiment is a 3-wheeled differen-
tial drive model (Fig. 1). It has approximately 0.9 by 0.9 m 
footprint, with a rigid steel frame. We have equipped the 
robot with two typical 350 W electric scooter hub brushless 
direct current motors. The on-board computer is Jetson TX2 
from Nvidia, which has a 2.0 GHz 6-core CPU. The software 
is written with Python3 and C++ languages. We use con-
tainerized Ubuntu 20.04 and ROS Noetic, and OpenCV and 
NumPy libraries. For perception we use the stereo camera 
of Intel RealSense D455 depth vision system, which is an 
RGB-D camera. The camera system is mounted pointing 
forward and approximately 0.4 m above the ground plane.

3.2  Route Detection and Sttractive Field

We detect a route line, which is on the ground of the parti-
cle accelerator tunnel (Fig. 1), and the attractive field (AF) 
is formed from the detected line. The route line detection 
comprises of following main steps: 

1. acquire an RGB color image from the camera system,
2. crop into Region Of Interest (ROI),
3. transform RGB to HSV color model,
4. apply HSV mask and acquire the edges,
5. apply Hough line detector, and
6. form the AF.

We are detecting the line on the ground, so the ROI is natu-
rally the lower part of the image, given the orientation of the 
camera system. Maximal horizontal Field Of View (FOV) is 
used, so the route line is detectable even when the trajectory 
deviates drastically from the route line (Fig. 2).

The thresholds for HSV mask are found manually, and 
the objective is to filter out everything except the route 
line. Binary image is formed where pixels have value 1 
if they passed the HSV mask, otherwise their value is 
0. Then, Hough line detection algorithm (cv2.Hough-
LinesP()) is applied, which gives us the end-point coor-
dinates of the detected lines [21]. We take the two most 
probabilistic ones and compute the arithmetic mean of the 
crossing points of these lines and a specified horizontal 
line. Finally, we form the AF according to this mean with 
following equation

where � is a scaling parameter defining the magnitude of the 
field. pu denotes the horizontal pixel coordinate and pgoal 
denotes the arithmetic mean of the crossing points.

(1)A(pu) = �|pgoal − pu|

Fig. 1  The prototype robot and the testing environment used in this 
study
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3.3  Obstacle Detection and Repulsive Field

The obstacles are detected from the depth images. The main 
steps of the repulsive field (RF) formation are the following: 

1. acquire a depth image from the camera system,
2. extract the ground plane and a threshold, and
3. form the RF.

All depth measurements that are above the ground plane 
and closer than a threshold th = 3m from the camera are 
obstacles. Hazard of a given obstacle is defined by the 
magnitude of the RF. The RF is utilized by lateral con-
troller to avoid obstacles. If obstacles are closer than 1.2 
m, close range obstacle avoidance (CROA) procedure is 
executed.

3.3.1  Formation of the Virtual Ground Plane

The ground is visible for the camera system, and we want to 
differentiate between the ground and obstacles. Therefore, a 
ground plane extraction procedure is carried out. We use the 
following assumptions for the camera system and the ground: 

1. the camera system is an ideal calibrated pinhole camera,
2. world and camera coordinate systems are aligned,
3. the ground is assumed to be a flat plane, and
4. the orientation and the position of the camera system 

relative to the ground plane stay constant.

The ground plane array is compared to the depth images. 
The formation of the ground plane array is done once, as 
we assume that the orientation and position of the camera 
system relative to the ground plane stay constant. This will 
reduce the computational cost. The ground plane array has 
the same size as the depth image, and it includes a projection 
of a virtual ground plane.

Random sample consensus (RANSAC) plane fit is imple-
mented for defining the virtual ground plane, so it is approxi-
mately aligned with the real ground. The plane fit method is 
applied to the point cloud, which gives us constants a, b, c, and 
d of Eq. 2 for the virtual ground plane. The equation of the 
plane is

where gth denotes a threshold, which sets the virtual ground 
plane closer to the camera accounting for depth measure-
ment error, parameter errors, and camera movement. Then 
we use intrinsic projection matrix (3) for projecting X-coor-
dinate values of plane (2) onto the virtual sensor

where pu and pv denote the virtual sensor coordinates in pix-
els i.e. the indices of the ground plane array, fl denotes the 
focal length, and u0 and v0 denote the principal point of the 
virtual sensor. Obstacles have potential if they are above the 
virtual ground plane and subceed the 3 m threshold. Figure 3 
illustrates the virtual ground plane and the threshold.

3.3.2  Repulsive Field

Figure 4 illustrates the nodes and processes of the RF com-
putation. The RF is a 1D-array, which values represent the 
horizontal potential because the robot is steered in a yaw 
direction. The full repulsive field is formed from the depth 

(2)aX + bY + cZ + d − gth = 0

(3)�

⎡
⎢⎢⎣

pu
pv
1

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

fl 0 u0
0 fl v0
0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Y

Z

X

⎤
⎥⎥⎦

Fig. 2  The ROI for the route detection. On the right, the trajectory 
deviates drastically from the route line

Fig. 3  The virtual ground plane, X=3 m threshold, and the camera 
coordinate system. The segment of the obstacle that has potential is 
marked with red

Fig. 4  The nodes and processes of the repulsive field computation. 
The numbers indicate the resolution of nodes
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image and the ground plane array. This is described by Algo-
rithm 1. The depth image updates with a rate of 30 Hz, and 
the ground plane array stays constant. It is computed during 
calibration to reduce computational cost.

The full repulsive field is compressed into a 1D-array. 
That is, the set of m largest values of each column of 
the full repulsive field are computed ( m = 30 was noted 
to work the best during testing). For column n, this is 
expressed as

where Km+1 ∶= Ki ⧵ Bm+1 . We compute the arithmetic mean 
of this set because the maximum is not stable due to noise 
in the depth measurement. For column n, it is expressed as

The raw repulsive field (RRF) is formed from elements rn

where the length of the array pw is the width of the depth 
image. The global minimum of Rraw(pu) represents the 
region that has the most space, thus defining the desired 
direction. However, steering in this direction might lead to 
collisions because the robot has width. Therefore, obstacles 
are enlarged in such way that desired direction shifts so that 
the robot will not collide with them. Figure 5 illustrates this 
process. A safety threshold st is added to the width of the 
robot wr for safety reasons, which results in w = 2st + wr . 
Adaptive dilation ad(pu) represents this enlargement on the 
virtual sensor, which depends on the focal length fl , and 
the depth Do(pu) . Here, Do(pu) = th − Rraw(pu) to obtain the 
dilation

(4)Bm+1 ∶= {b ∈ Km ∶ b ≥ k∀k ∈ Km}

(5)rn =
∑
b∈Bm

b

|Bm| .

(6)Rraw(pu) = {r1, ..., rpw}

The RF R(pu) is compiled using Algorithm 2. Finally, the 
potential field (PF) is computed as an element-wise sum of 
the AF and the RF

3.4  Autonomous Control
Figure 6 presents the flow chart of the autonomous control sys-
tem. Close range obstacle avoidance (CROA) utilizes binary 
parameters Turning Direction (TD) and Safety Zone (SZ), which 
are defined from the RF. The RF is divided into two halves, 
which define the value of TD. In particular, if the average poten-
tial of left half is smaller than the one of right half, TD is set to 
0, which manifests as counterclockwise turning. SZ indicates if 
any obstacle is closer than 1.2 m i.e. in the SZ. When SZ is 0, 
the linear speed is at maximum, and the robot controlled laterally 
according to the PF global minimum. Lateral control input is 
calculated with pure pursuit algorithm [22], resulting in

(7)ad(pu) =

{
fl⋅w

2(th−Rraw(pu))
, if Rraw(pu) < th

0, otherwise.

(8)P(pu) = A(pu) + R(pu).

Fig. 5  Top-down view of the obstacle enlarging process
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The unit of �̇�input is rad/s. �input denotes the linear speed, 
which unit is m/s. yLg and xLg denote the coordinates of 
short-term goal point on the ground plane in meters. The 
global minimum of PF is projected on the ground plane 
using projection matrix (3) and (2), resulting in aforemen-
tioned parameters yLg and xLg . Figure 7 illustrates the posi-
tion of the short-term goal point and the lateral control input.

3.5  Localization

The localization of the robot enables the evaluation of the 
performance of the proposed control strategies. Therefore, 
it is crucial to have an accurate and reliable localization 
system. We use wheel odometry and inertial measurement 
unit (IMU) data for deriving the location of the robot rela-
tive to the starting point. The location is described with 2D 
Cartesian coordinates, and the heading angle of the robot. 
Fusion of IMU and wheel odometry data is done with efk_
localization_node from robot_localization ROS package 
[23], which utilizes extended kalman filter producing more 
reliable location information compared to using only IMU 
or wheel odometry. We select the parameters of the filter in 
such a manner that heading is mainly derived from IMU data 
and translation from wheel odometry.

3.6  Communication and Delay Generator

Tunnel environments are challenging from a communication 
point of view. Cutouts and disturbances of the communica-
tion signal are caused by the shape of a tunnel, which is 
narrow and long. These problems are caused by an effect 
called multipath propagation and can be eased by imple-
menting multiple nodes in the network. Multipath propaga-
tion is apparent especially in tunnel environments [24], and 

(9)�̇�input = −𝜈input

2yLg

x2
Lg

+ y2
Lg

.
is caused by constructive and destructive interference of the 
communication signal. The original signal reflects off the 
tunnel walls resulting in multiple signals that have phase 
differences. Interference manifests as loss of signal or delay 
fluctuations in the communication signal [25]. [26]

The robots in CERN facilities are connected to 4G/3G/
WiFi network [27]. We use WiFi for communication in our 
test environment, and the distances between the robot, tel-
eoperator computer, and the WiFi module are short (1-15 m). 
Therefore, the quality of service is excellent consistently. The 
communication delay is 20 ms on average with standard devi-
ation of 10 ms. We measure the delay during the experiments.

To study the effects of delay fluctuation, we add artificial 
delay profiles to the control signal. They are added only to 
the control signal, as the feedback is direct eyesight. Figure 8 
presents the applied delay profiles, which are time-depend-
ent. They are periodic and they have different Gaussian noise 
levels (no autocorrelation).

3.7  Manual Control

We use a typical joystick controller. For the manual con-
trol, linear speed range is [0, 0.5] m/s, and angular speed 
range is [−0.8, 0.8] rad/s. Linear speed is controlled with 
vertical and angular speed is controlled with horizontal tilt 
angle of the joystick. The main author is the teleoperator in 
the experiments because of the experience with the system 
and ability to control the robot consistently. Consequently, 
results where the robot is controlled manually are subjective. 
The feedback in the teleoperation set-up is direct eyesight, 
thereby the feedback delay is neglected.

3.8  System Nodes

Figures 9 and 10 illustrate the software communication diagrams 
of the system used in the experiments. Teleoperation site is con-
nected to the robot via WiFi. ROS message topics are denoted by 
/< topic name >. The messages on the topic /cmd_vel include 

Fig. 6  The flow chart of the autonomous control system Fig. 7  The short-term goal point when obstacles are absent (left), and 
present (right)
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linear and angular speed of the robot, /delay includes control 
signal delay, and /odom includes the position and the heading 
angle of the robot on a plane relative to the starting position.

4  Experiments

Section 4.1 describes the control strategies and the detailed 
set-up for the testing environment. The testing procedure 
used in this study is presented in Section 4.2. The results 
regarding the proposed RGB-DPF method, trajectories, and 
performance are presented in Sections 4.3, 4.4, and 4.5, 
respectively.

4.1  Set‑up

We carry out a set of experiments for comparing the con-
trol strategies, and validating the RGB-DPF method. The 
experiments are carried out in a testing environment, which 
mimics the particle accelerator tunnel with several obstacle 
arrangements. Different control strategies are used to dis-
cover which one is the smoothest. Figure 11 presents the 
test tracks and their obstacle arrangements. The tracks are 
15 m long and approximately 2 m wide. The obstacles are 
cardboard boxes with dimensions of 0.68, 0.38, 0.38 m.

The control strategies are introduced in Table 1. The 
strategies are Manual, Delayed manual, Autonomous, Delay-
Dependent Assist (DDA), and Control-Dependent Assist 
(CDA). DDA and CDA tests are done with teleoperating, 
except when delay or control triggers activate the autopilot. 
The delay profiles are applied to the manual control com-
mands on strategies Delayed manual, DDA, and CDA.

DDA and CDA are semi-autonomous strategies. DDA takes 
over the controls when the delay of the control signal exceeds 
300 ms. The reason for this value is that the control strategy 
usually changes to “control-and-wait” when the delay is larger 
than 300 ms according to [4]. Therefore, the goal for this sys-
tem is to aid the teleoperator in this scenario. CDA compares 
the control commands of the teleoperator and the autopilot. If 
the difference exceeds a threshold, autopilot is enabled.

4.2  Testing Procedure

In total, we conducted 60 test runs. Trajectory, time, video 
feed of the on-board camera, and the PF were recorded 
with rate of 30 Hz. The robot was accelerated to a maxi-
mum of 0.5 m/s speed before the start line. Timer starts at 
the start line and stops at the finish line. Thus, a theoretical 
minimum completion time for a mission is 30 s, as the track 
length is 15 m. Each test track was driven with each control 
strategy, and each delay profile. Three repetitions for each 
configuration were carried out. The test run was declared 
successful if the robot reached the finish line without colli-
sion. The testing procedure included following steps: 

1. observe the operation of the system under manual, semi-
autonomous, and autonomous control strategies,

2. measure time, location, and collisions, and
3. measure the improvement (if any) of using autonomous 

or semi-autonomous system.

Fig. 8  The delay profiles which are applied to the manual control sig-
nal in the delay generator node

Fig. 9  The software communication diagram of the prototype system

Fig. 10  The communication diagram of the autopilot
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4.3  RGB‑D Potential Field

To evaluate the performance of the presented methodology, 
we carry out visual analysis. Color and depth image-sets were 
recorded during a test run on the track 3. AF and RF were 
computed, which are presented in the image-set on Appendix 
2. Herein, we present color images because they are more 
informative than the depth images.

Additionally, PF and its minimum are illustrated to visual-
ize the input of the autonomous control function. Vertical black 
line indicates image center, the horizontal distance between the 
minimum and the line is proportional to yLg . Overall, method per-
formed well as the AF minimum is aligned with the route line and 
obstacles are seen as peaks in the RF. The obstacle enlargement 
ensured that the minimum was shifted away from the obstacles.

Although the obstacles on the test tracks were cardboard 
boxes, we also tested the detection of different obstacles to 
study the robustness of the method. Figures 12 and 13 illus-
trate PF of variety of obstacles approximately at a distance of 
1.5 m. The chair was detected correctly because the peak is 
as wide as the chair itself on the left of Fig. 12. The detection 

of semi-transparent obstacle was not perfect, as the camera 
system sees partially through it, which is seen as non-uniform 
peak on the RF on the right of Fig. 12.

On the left of Fig. 13, the peak heights are relatively con-
stant despite the obstacles had non-uniform height. This is 
because the peak height depends on the distance rather than 
the height of an obstacle. The right side on Fig. 13 illustrates 
that obstacle shorter than around 5 cm is not detectable with 
the current system. The reason for this is that the obstacle is 
between the virtual and the physical ground plane.

4.4  Trajectories

We analyze the behavior, performance, and limitations of 
the control strategies on the test tracks. Different control 
strategies produce different driving trajectories. As an 
example, Figure 14 illustrates typical trajectories of the 
Autonomous strategy. The position is illustrated once per 
second, so maximum distance between the dots is 0.5 m. 
The robot followed the route line well on the track 0. How-
ever, the trajectory deviated slightly from start line to 3 m 
due to initial heading. Besides that, deviation compared to 
the route line was negligible. The robot avoided obstacles 
and followed the route line successfully on tracks 1, 2, and 
3. Most of the time, robot avoided obstacles with the PF 
method. CROA activated on the track 1 at 9.3 m, and mul-
tiple times on the track 3. Overall, the PF method performed 
better on tracks 1 and 2, where the density of obstacles was 
smaller compared to the track 3. However, no collisions 
happened during testing, which indicates that the control 
strategy is stable and robust.

Figure  15 presents typical trajectories of Delayed 
manual strategy. The color spectrum indicates the control 
delay. Trajectories indicate that there were lot of oscilla-
tions in the steering. Manual control has a benefit on the 
track 2, where the robot does not return on the route line 
after the first obstacle. Whereas Autonomous strategy does 
because it does not consider obstacles further than 3 m.

The typical trajectories of DDA strategy are illustrated 
on Fig. 16, where red indicates sections where the auto-
pilot was enabled. Color spectrum indicates the sections 
driven with Delayed manual strategy and the control delay, 
and red indicates the sections driven with the autopilot. 

Fig. 11  The test tracks from left to right: 0, 1, 2, and 3

Table 1  Explanations of the 
control strategies

Strategy Explanation

Manual Manual control without delay fluctuation
Delayed manual Manual control with delay fluctuation
Autonomous Autopilot is enabled during the whole run
Delay-Dependent Assist (DDA) Autopilot is enabled depending on the delay or if SZ=1
Control-Dependent Assist (CDA) Autopilot is enabled depending on the control signal 

difference or if SZ=1
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Visual analysis of the trajectories indicate that the strategy 
works well, and the autopilot can take over rapidly depend-
ing on the delay. Autopilot was successful at detecting and 
returning on the route line while the trajectory deviated 
drastically from the route line. This is visible e.g. on the 
track 3 at 6 m and 11 m.

Lastly, the typical trajectories of CDA strategy are pre-
sented on Fig. 17. Again, red indicates the sections driven 
with the autopilot, which activated on all tracks. Autopilot 

stabilized the oscillations, which were apparent with Delayed 
manual strategy. Autopilot helped maneuvering around the 
obstacles and was enabled significantly more on the track 3 
compared to other tracks.

4.5  Control Performance

Control performance of the strategies was evaluated by 
measuring the time taken to complete the test tracks. Fig-
ure 18 presents arithmetic mean times with delay profiles, 
where gray indicates standard deviation. The absence of 
obstacles on the track 0 allowed the robot to move on a 
straight line, resulting in nearly constant completion times 
regardless on the control strategy. Overall, completion times 
on the track 3 were significantly larger compared to other 
tracks. Therefore, completion time is dependent on the den-
sity of obstacles. Figure 18 is analyzed from top to bottom, 
so first delay profile 1.

On tracks 1, 2, and 3, manual without delay was the 
quickest. Delayed manual was the slowest on tracks 1, 2, 
and 3. Autonomous, DDA, and CDA were quicker than 
Delayed manual on tracks 1, 2, and 3. DDA was slower 
compared to Autonomous on tracks 1 and 3, but quicker 
on the track 2. CDA was nearly as quick as manual without 
delay, especially on tracks 1 and 2. Completion times with 
delay profile 2 look similar to delay profile 1. On aver-
age, they are smaller compared to delay profile 1. DDA is 
quicker than Autonomous on tracks 1 and 3, whereas with 
delay profile 1, DDA was slower. Again, CDA was nearly 
as quick as manual without delay.

Based on the time spent on the most challenging track 3, 
it can be stated that CDA was the best, followed by Auton-
omous strategy, then DDA, with 12%, 9%, and 6% faster 
operation than Delayed manual strategy, respectively.

Fig. 12  Illustration of the potential field on variety of obstacles

Fig. 13  Potential field of a collection of obstacles with different 
heights, and of an undetected short obstacle

Fig. 14  Autonomous strategy: typical trajectories on the test tracks

Fig. 15  Delayed manual strategy (delay profile 1): typical trajectories 
on the test tracks
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5  Discussion

5.1  RGB‑D Potential Field

We noted that there are no valleys in the RF when the gaps 
between the obstacles are smaller than the width parameter 
w of the robot. Obstacles lower in the vertical axis than 5 
cm were not detectable, because they are between the virtual 
and physical ground plane. The purpose of the gap between 
the planes is to prevent the physical ground plane intersect-
ing the virtual ground plane. However, the implications of 
undetectable short obstacles are negligible because of the 
maneuverability of the robot. The problem could be solved 

by calibrating the virtual ground plane more accurately and 
mounting the camera more rigidly.

Reflective surfaces will certainly cause some problems 
for a vision-based system. Consequently, the performance 
of this system varies depending on the surface materials and 
the lighting conditions. For example, the reflective surfaces 
in the particle accelerator tunnel might cause false measure-
ments with an RGB-D sensor. The same issue would be pre-
sent in a LiDAR-based system too, while not detecting color, 
which is essential in the operation environment. Therefore, 
an RGB-D sensor is better suited for this application.

5.2  Trajectories

The RGB-DPF method avoided obstacles successfully on all 
test tracks. No collisions happened during the experiments 
with Autonomous strategy, which confirms the robustness 
of the proposed method. CROA activated more when the 
density of obstacles on route was high. We suspect that it 

Fig. 16  DDA strategy (delay profile 1): typical trajectories on the test 
tracks. Red indicates the sections where autopilot was enabled

Fig. 17  CDA strategy (delay profile 1): typical trajectories on the test 
tracks. Red indicates the sections where autopilot was enabled

Fig. 18  The arithmetic mean track completion time, standard devia-
tion in gray
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activated because of the sudden appearance of the obstacles. 
The horizontal FOV of the camera system is relatively nar-
row (86 degrees at 2 m), which means that obstacles appear 
relatively late to the FOV in certain cases (e.g. on the track 2 
at 9 m on Fig. 14). When this happens, the robot has already 
gotten so close to the obstacles that the CROA activates. 
The activation of CROA means that the intervention time 
increases because the robot briefly stops completely. We 
suspect that the overshoot on the track 1 at 10 m is caused 
by poor detection of the route line. The lighting on that part 
of the track was slightly dim, which made the detection of 
the line more unreliable.

Manual control with both delay profiles was difficult. 
The delay in the control signal caused oscillating steering. 
Controlling was more difficult when the speed of the robot 
was high. This indicates that assisted or autonomous control 
would be more useful on higher speeds.

DDA strategy prevented the “control-and-wait” style as 
the autopilot activated when the delay was over the thresh-
old. However, it was challenging for the teleoperator to 
predict when the autopilot activates, which resulted in a 
decrease in operating confidence. CDA strategy provided 
the smoothest teleoperation experience. Teleoperating with 
this strategy was smooth because the autopilot was able to 
assist constantly unlike with DDA, and teleoperator could 
focus on the longitudinal control.

5.3  Control Performance

Both semi-autonomous strategies and Autonomous strategy 
made teleoperation smoother, which was seen as a decrease 
in track completion times. Completion times were highly 
dependent on the density of obstacles, as the times were 
short on the track 0 and long on the track 3. Time differences 
between control strategies were more evident with high den-
sity obstacles. Times on the track 0 were independent on the 
control strategy. It should be noted that the tracks were only 
15 m long. To have better validation, tests on longer tracks 
must be conducted where time differences would become 
more apparent.

Autonomous strategy was quicker on the track 1 com-
pared to the track 2 because on the track 2, the robot used 
time to maneuver on top of the route line between obsta-
cles. We suspect that the completion times were collectively 
smaller with delay profile 2 because the teleoperator could 
send low delay control signals more frequently. Moreover, 
autopilot on DDA strategy activated more frequently result-
ing in better control.

In addition to perfect reliability, Autonomous strategy 
was also quicker than Manual strategy on the challeng-
ing track 3. The performance of the Autonomous strat-
egy proves that autonomous navigation could be feasible 
also for long-term navigation, specifically in the particle 

accelerator tunnel because the environment is repetitive. 
Therefore, long-term path planning is not important in 
uniform, narrow, and one-directional tunnel if we assume 
that the robot has high accuracy localization system. Our 
system is computationally light, utilizing only a modest 
amount of processing resources, memory, and storage, as 
maps are not used nor long-term path planning performed.

6  Conclusion

The presented RGB-DPF method and the control strategies 
made the teleoperation smoother while the manual control 
signal had fluctuating delay. Based on the time spent on the 
most challenging track 3, it can be stated that CDA was the 
best, followed by Autonomous strategy, then DDA, with 12%, 
9%, and 6% faster operation than Delayed manual strategy, 
respectively. The experiments proved that the completion 
time is dependent on the density of obstacles, and frequent 
low delay control signals make the teleoperation smoother 
compared to a case where large delay periods are longer. We 
demonstrated that during long cutouts (up to 5 s) the robot 
can be successfully navigated with a short-term autonomous 
control system, and teleoperator can gain the control back 
easily when the cutout ends. We developed an autonomous 
control system which is capable of navigating tunnel section, 
which mimics CERN particle accelerator tunnel, while utiliz-
ing only a modest amount of computation, memory, and stor-
age as maps are not used nor long-term planning performed. 
Despite being designed for the accelerator tunnel; it can be 
easily applied to common industrial robots operating e.g. in 
warehouses or factories due to hardware simplicity and light 
computational demand.

Based on the results, the present study recommends using 
either control- or delay-dependent assist as a semi-autono-
mous strategy in presence of large delay fluctuation. While 
using a real robot prototype, these strategies were proven to 
perform well and reliably in challenging operation environ-
ments compared to a manual control strategy.

To conclude the limitations of this study, the usage of 
a single teleoperator incorporates subjectiveness to the 
results. Furthermore, the testing environment is not identi-
cal to the particle accelerator tunnel, especially in length. 
We mitigated the effect of this by conducting a large num-
ber (60) of repetitions in our testing environment. The 
final limitation is that the feedback was direct eyesight.

To address the discussed limitations, experiments with 
multiple teleoperators with a variety of skill levels should 
be carried out to increase the confidence of the results. 
Teleoperator feedback was direct eyesight, which is not the 
case in real operation scenarios as the robot is in a remote 
environment. Thus, video feedback from an on-board cam-
era or from a remote environment should be tested.
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Appendix

Fig. 19  The image-set from the on-board camera system and corresponding potential field during a run on the track 3
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Image‑set

The image-set is presented in Fig. 19.
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