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Objective: Amajor challenge in the treatment of platinum-resistant high-grade

serous ovarian cancer (HGSOC) is lack of effective therapies. Much of ongoing

research on drug candidates relies on HGSOC cell lines that are poorly

documented. The goal of this study was to screen for effective, state-of-the-

art drug candidates using primary HGSOC cells. In addition, our aim was to

dissect the inhibitory activities of Wee1 inhibitor adavosertib on primary and

conventional HGSOC cell lines.

Methods: A comprehensive drug sensitivity and resistance testing (DSRT) on

306 drug compounds was performed on three patient-derived genetically

unique HGSOC cell lines and two commonly used ovarian cancer cell lines. The

effect of adavosertib on the cell lines was tested in several assays, including

cell-cycle analysis, apoptosis induction, proliferation, wound healing, DNA

damage, and effect on nuclear integrity.

Results: Several compounds exerted cytotoxic activity toward all cell lines,

when tested in both adherent and spheroid conditions. In further cytotoxicity

tests, adavosertib exerted the most consistent cytotoxic activity. Adavosertib

affected cell-cycle control in patient-derived and conventional HGSOC cells,

inducing G2/M accumulation and reducing cyclin B1 levels. It induced
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apoptosis and inhibited proliferation andmigration in all cell lines. Furthermore,

the DNA damage marker gH2AX and the number of abnormal cell nuclei were

clearly increased following adavosertib treatment. Based on the homologous

recombination (HR) signature and functional HR assays of the cell lines, the

effects of adavosertib were independent of the cells' HR status.

Conclusion: Our study indicates that Wee1 inhibitor adavosertib affects several

critical functions related to proliferation, cell cycle and division, apoptosis, and

invasion. Importantly, the effects are consistent in all tested cell lines, including

primary HGSOC cells, and independent of the HR status of the cells. Wee1

inhibition may thus provide treatment opportunities especially for patients,

whose cancer has acquired resistance to platinum-based chemotherapy or

PARP inhibitors.
KEYWORDS

adavosertib, patient-derived cell line, high-grade serous ovarian cancer (HGSOC),
homologous recombination (HR), drug screen, platinum-resistant ovarian cancer,
homologous recombination deficiency (HRD), homologous recombination proficient
Introduction

There is an urgent need for effective therapies for patients

with platinum-resistant high-grade serous ovarian cancer

(HGSOC). While most HGSOC patients initially respond to

the standard first-line platinum–taxane combination

chemotherapy, relapse within 18 months is common followed

by chemoresistance (1, 2). Reasons for relapse and treatment

failure vary, and the progress in improving clinical care has been

rather slow. The heterogeneity as well as adaptability of the

HGSOC genome to chemotherapy requires new approaches to

improve the outcome of the disease (3). A molecular indicator of

platinum sensitivity is homologous recombination deficiency

(HRD), through either genetic or epigenetic alterations (4).

PARP inhibitors have been recently shown to provide a

significant clinical benefit for HGSOC patients, but they are

effective only on HRD tumors (5, 6). Therefore, there is a special

need to identify compounds that are efficient regardless of the

homologous recombination status.

In vitro models are essential for identifying effective oncology

compounds or drug combinations for any type of cancer, including

HGSOC. Until recently, most of the in vitro studies have been

conducted using publicly available ovarian cancer cell lines that may

not represent the HGSOC subtype and that may have undergone a

variety of in vitro alterations during extensive passaging (7). To

overcome this potential hurdle, we created patient-derived HGSOC

cell lines and demonstrated that the cells can be cultured and tested

under conditions that mimic their stemness properties (8). The cell

lines can provide a valuable model of the heterogenous disease and

identify personalized treatment options.
02
Here we tested a panel of 306 drug compounds on HGSOC

cells and identified potential effective compounds for further

studies (9, 10). Altogether, three patient-derived and two

conventional HGSOC cell lines, containing both HRD and HR

proficient (HRP) cell types, were screened using the panel, to

reveal interesting pharmacologically active substances for

further investigation.

In this study, we have focused on drug candidates that have

shown effectiveness in most cell models and under both traditional

and stemness-like growth conditions. Our rationale was that the

selected compounds had the potential for a broader and fast

clinical translation. Another criterion was that the candidates

must and have been included in clinical trials with any type of

cancer and shown promising results in early studies. Of the tested

compounds, the Wee1 inhibitor adavosertib (AZD1775) showed

the most consistent inhibitory results. Wee1 kinase plays a crucial

role in cell-cycle regulation and DNA damage identification and

repair in malignant and non-malignant cells, and its inhibition has

shown promising results in early phase clinical trials (11–14),

including HGSOC. Therefore, we carried out a more detailed

analysis on its effects on all five cell lines.
Material and methods

Patients

Tumor and ascites material and clinical information was

collected from consenting patients treated at the Department of

Obstetrics and Gynecology, Turku University Hospital, Turku,
frontiersin.org
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Finland, as described previously (8, 15). The patients participated in

a clinical trial (NCT01276574) and were diagnosed with stage III or

IV HGSOC, verified by histopathological evaluation and imaging.

Treatment-naive ascites was collected during diagnostic

laparoscopy. Patients who were considered primarily inoperable

received three cycles of neoadjuvant chemotherapy (NACT), and

new samples were taken during the interval debulking surgery

(IDS). For this study, we used cell lines from three patients (OC002,

M022i, and M048i). The patients' age range at the time of the

diagnosis was between 61 and 66 years. Progression-free survival

(PFS) was 3.1 to 10.1 months and overall survival (OS) 4.0 to 35.8

months. Detailed clinical information is presented in Table S1.
Cell culture

Two patient-derived cell lines were established from ascites

(OC002 and M022i), of which OC002 was treatment-naive and

M022i was from IDS. One cell line originated from omental

metastasis (M048i) and was from IDS (8). The cell lines were

characterized by DNA sequencing (see DNA/RNA sequencing and

functional assessment of homologous recombination capacity). In

addition to these patient-derived cell lines, two conventional

HGSOC cell lines were explored: CAOV3 (RRID:CVCL_0201,

American Type Culture Collection, ATCC, USA) and OVCAR8

(RRID:CVCL_1629, National Cancer Institute, NCI, USA).

Cells were grown at 37°C, at 5% CO2. The OVCAR8 cell line

was cultured in an RPMI medium; OC002, M022i, M048i, and

CAOV3 cells were cultured in a DMEM-F12-based spheroid

medium as described previously (8). To sustain adherent cell

cultures for IncuCyte experiments and immunostainings, a

modified OCMI medium was used instead of a spheroid

medium: 1:1 of medium 199 (Gibco) and DMEM/F-12

(Lonza) supplemented with 5% FBS (Lonza), 2% ITS

(Corning), 100 µg/ml penicillin/streptomycin (Gibco Life

Technologies), 0.5 ng/ml 17 beta-estradiol (Merck), 0.2 pg/ml

triiodothyronine (Sigma), 0.025 µg/ml all-trans retinoic acid

(Merck), 13.75 µg/ml insulin (Sigma), 25 ng/ml cholera toxin

(Sigma), 0.5 µg/ml hydrocortisone (Sigma), and 10 ng/ml EGF

(Gibco Life Technologies).
DNA/RNA sequencing and functional
assessment of homologous
recombination capacity

To genetically characterize tumors and identify patient-

specific TP53 mutations, we sequenced available fresh frozen

tissue or ascites samples, whole-blood buffy coat samples

(germline reference), and/or cells from the cultures. Germline

reference was available for M022i and M048i, fresh frozen tumor

tissue or ascites for M048i (N = 4) and OC002 (N = 1), and

cultured cells for M022i and M048i. DNA/RNA was extracted
Frontiers in Oncology 03
from samples with AllPrep DNA/RNA Mini Kit (Qiagen).

Sequencing was performed in the BGI (Beijing Genomics

Institute) as whole-genome sequencing (WGS) with HiSeq X

Ten or with whole exome sequencing (WES) with Agilent

SureSelect Human All Exon V5 using HiSeq 2000.

Data were aligned to GRCh38.d1.vd1 (median coverage 48,

Table S2), and mutations were called with Mutect2 [GATK4

(16)]. Mutation pathogenicity was evaluated using COSMIC

(17), ClinVar (18), and CADD (19) for exonic non-

synonymous mutations, indels, and splicing. Cell identity was

confirmed with contamination test (GATK4) for M022i and

M048i where sequencing data from both cells and germline

reference were available. All patients were identified with high

variant allele frequency, pathogenic TP53mutations, which were

used to verify cell identity in the cultures (Table S2). In addition,

the mutational status of other HR-related genes was identified

(list of genes in Table S3). Mutational signatures were fitted with

COSMIC v3.1 SBS signatures based on SigProfiler attribution

(20) to assess HRD mutational signature SBS3.

Functional homologous recombination status was analyzed

for OC002 and M048i cells as described in (21). Epithelial cells

(cytokeratin positive) in the G2 phase (cyclin A2 positive) were

stained with RAD51 to distinguish between RAD51-positive and

-negative cells. HR-score was obtained by calculating the

percentage of RAD51-positive cells. At least 300 cells were

counted per sample. HR-scores below 35% were considered

HRD (Table S2).

To investigate whether the cell lines were different regarding

multidrug resistance (MDR), we analyzed RNA expression data of

the ABC transporters (ATP-binding cassette transporters). The

results are provided as reads per kilobase per million (RPKM)

values, normalized to GAPDH expression. A heatmap was

produced using Log2+1 values at the publicly available web

software Heatmapper (heatmapper.ca) (22).
High-throughput drug sensitivity and
resistance testing

The five cell lines were subjected to high-throughput screening

(HTS) with a panel of 306 clinical FDA- and/or EMA-approved

and emerging oncology drug compounds (Table S4). Screening

was performed at the Institute for Molecular Medicine Finland

(FIMM) as described previously (9, 10). While a part of the drug

screen data has been published earlier (8), here two additional

patient-derived HGSOC cell lines are presented: M048i and

OC002. Cells were tested in five different drug concentrations

spanning a relevant 10,000-fold concentration range for each

individual drug in conventional adherent and stem-like

spheroidal cell culture conditions as was described earlier (8).

Cell viability wasmeasured with CellTiter-Glo (Promega, Madison,

Wisconsin, USA) after 72 h of exposure to the drugs in at least five

separate experiments with triplicate wells.
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The data were analyzed with the quantitative scoring

approach, where a multiparameter area under a curve

sensitivity calculation called the drug sensitivity score (DSS)

was used (9, 10). This integration combines the model-based and

area-based drug response calculations. The DSS was calculated

for each drug, and responses were compared to human healthy

bone marrow-averaged controls to evaluate the specific selective

DSS (sDSS) as previously described (9, 10). Previously reported

cutoff values of sDSS were used: sDSS >5 for effective drugs and

sDSS >10 for highly effective drugs (23). The drug sensitivity and

resistance testing (DSRT) data were analyzed using the web-

based pipeline BREEZE (https://breeze.fimm.fi/) (24).

The cytotoxic effect of adavosertib (Selleckchem, Munich,

Germany) was further validated with a CellTiter-Glo®

(Promega) cell viability test. To test cells' sensitivity to cisplatin,

5,000 cells/well were plated on a 96-well plate in triplicates.

Cisplatin was added in concentrations of 0.01–100 µM, and cell

viability was measured after 72 h of incubation. Luminescence was

detected with a Victor2 luminometer (Wallac, Turku, Finland).

The IC50 value of adavosertib for each cell culture was calculated,

and a dose of 500 nM was selected to be used for the functional

experiments. The IC50 value for cisplatin was calculated using

log-transformed data and logarithmic trend line.
Flow cytometry

The M048i, OC002, CAOV3, and OVCAR8 cells were

investigated with a BD LSRFortessa™ flow cytometer (BD

Biosciences, NJ, USA). For each measurement, 10,000–30,000

events were assessed. The flow cytometry data were analyzed

with Flowing Software 2.5.1 (Mr. Perttu Terho, Turku Bioscience

Centre, Turku, Finland). Duplicates of each sample were tested,

and the experiment was repeated a minimum of three times.

Early and late apoptoses were detected after 48 and 72 h of

treatment with adavosertib with an Annexin V-FITC Apoptosis

Detection Kit (ab14085, Abcam). Samples were processed

according to the kit's protocol.

Cell-cycle phases were detected with a Click-iT EdU Flow

Cytometry Assay Kit Pacific Blue (C10425, Invitrogen). Cell-cycle

progression was studied in vehicle- and adavosertib-treated cells at

time points 24, 48, and 72 h. Samples were collected, and the protocol

was performed according to the manufacturers' instructions.
Cell proliferation

Cell proliferation of the HGSOC cell lines was inspected for

72 h at 2-h intervals with an IncuCyte S3 high-content imager

(Essen BioScience, Ann Arbor, MI). Cells were plated in 96-well

plates (Greiner Bio-One) to be 10% confluent and treated with

500 nM adavosertib. Cells treated with vehicle (DMSO) were

used as control in all the experiments. Each sample was
Frontiers in Oncology 04
measured in triplicate, and the experiments were repeated a

minimum of three times. Proliferation was measured by

confluence area by IncuCyte software (Essen BioScience).
Wound healing assay

Wound healing of the HGSOC cells was measured for 72 h at

2-h intervals with an IncuCyte S3 high-content imager (Essen

Bioscience, Ann Arbor, MI). Experiments were performed on 96-

well plates (ImageLock, Essen BioScience) with adavosertib (500

nM) or vehicle (DMSO). Each sample was measured in triplicate,

and the experiments were repeated a minimum of three times.

Relative wound density was analyzed by IncuCyte software (Essen

BioScience). The wells were precoated with Geltrex (Gibco) for

migration experiments and with Matrigel (100 µg/ml, Corning,

Bedford, MA, USA) for invasion experiments. Wells were

pretreated for 24 h with adavosertib (500 nM) before wound

making with a wound-maker provided with IncuCyte S3 (Essen

Bioscience). In the invasion experiments after wound making, the

cells were covered with 50 µl Matrigel (2 mg/ml) for 30 min in the

incubator; thereafter, adavosertib was added.
Western blotting

The effect of adavosertib on the cell cycle was investigated in

the cell cultures treated for 72 h. Cells were grown in a DMEM/

F-12 or RPMI medium and harvested and lysed with a RIPA

Buffer supplemented with protease inhibitors. Protein

concentrations were measured using a Bio-Rad protein assay

kit according to the manufacturer's instructions. Equal amounts

of proteins in the Laemmli buffer were separated in 4%–20%

polyacrylamide PROTEAN® TGX™ Precast Protein Gels (Bio-

Rad) and transferred to the 0.2-µm PVDF membrane using the

Trans-Blot Turbo Transfer System (Bio-Rad). Membranes were

blocked with 5% BSA (bovine serum albumin) in Tris-buffered

saline with 0.05% Tween 20 (TBST) and probed with primary

antibodies diluted in the same solution. Primary antibodies used

in the Western blotting were rabbit monoclonal anti-Cyclin B1

(D5C10, 1:1,000, Cell Signaling), rabbit monoclonal anti-Cyclin

E1 (EP435E, 1:500, Abcam), mouse anti-PCNA (PC10, 1:2,000,

Cell Signaling), and mouse monoclonal anti-gH2AX (phospho

S139, 1:1,000, Abcam). GAPDH-HRP-conjugated (1:5,000,

Abcam) or mouse monoclonal anti-a-Tubulin (B-5-1-2,

1:1,000, Sigma) was used as control for protein loading. The

secondary antibodies were HRP-conjugated swine anti-rabbit

and rabbit anti-mouse immunoglobulins (1:2,500, Dako,

Glostrup, Denmark) diluted in a blocking solution.

Membranes were washed three times with TBST between

antibody incubations. Bound proteins were detected by

enhanced chemiluminescence using ChemiDoc™ Gel Imaging

System (Bio-Rad), and the signals were quantified using ImageJ.
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Immunostaining and nuclear
morphology analysis

Cells were grown on glass slides with a Geltrex (Gibco)

coating and a modified OCMI or RPMI medium. After 72 h of

incubation with 500 nM adavosertib, the cells were fixed for 10

min in 4% paraformaldehyde and washed with PBS. Blocking

was performed with 5% BSA and 0.5% Triton X-100 in PBS for

30 min. Slides were incubated at room temperature for 60 min

with a primary antibody diluted in a blocking buffer and

thereafter for 60 min with a secondary antibody. The slides

were washed twice after the antibody incubations with PBS and

embedded in a mounting medium containing DAPI for staining

nuclei (ProLong Gold Antifade Mountant with DAPI, Thermo

Fisher). The following primary antibodies were diluted in the

blocking buffer: mouse monoclonal anti-a-Tubulin (B-5-1-2,

1:100, Sigma) and mouse monoclonal anti-gH2AX (phospho

S139, 1:500, Abcam). Alexa Fluor 555 Donkey anti-Mouse

(1:400, Invitrogen) was used as a secondary antibody together

with Alexa Fluor 488-conjugated phalloidin (1:300, Invitrogen,

Carlsbad, CA) for actin filament visualization.

Nuclear morphology was assessed after 72 h after treatment

with vehicle or 500 nM adavosertib by staining the tubulin for cell

structure and embedding in mounting medium containing DAPI

for the cell nucleus staining. At least 100 cells were counted in each

sample, and the nuclei were categorized as normal, abnormal, or

multinuclear. Images were taken with a Nikon Eclipse Ni

fluorescence microscope, and different channels were merged

using ImageJ v1.53a software (http://rsbweb.nih.gov/ij/).
Statistics

The IC50 values for the adavosertib cytotoxicity validation

were acquired using a sigmoidal dose–response curve. The

differences in proliferation, wound healing, cell cycle,

apoptosis, nuclear abnormalities frequencies, and protein levels

between vehicle- and adavosertib-treated cells were compared

using the two-sided t-test on freely available VassarStats:

Website for Statistical Computation (www.vassarstats.net). P

values ≤0.05 were considered statistically significant.
Results

Several compounds effectively kill
HGSOC cells

The drug sensitivity testing was performed under two

growth conditions, i.e., conventional adherent and spheroid

conditions inducing stemness features and mimicking the

environment of the malignant cells in ascitic fluid. We

employed a correlation plot analysis for sDSS to assess the
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condition-related variations in drug sensitivity (Figure S5).

The number of effective (sDSS >5) drugs from the whole

screen of 306 drug compounds varied between screened cell

lines and was partially dependent on growth conditions. Of the

primary HGSOC cell lines, M048i was sensitive to 28

compounds in adherent cell culture conditions, OC002 to 59

compounds, and M022i to 72 compounds. Of the conventional

cell lines, OVCAR8 showed sensitivity to 74 compounds and

CAOV3 to 102 compounds (Figure 1A and Table S6). The

results demonstrate that compounds target cancer cells from

individual patients differently, possibly reflecting the variability

of individual patients' response to chemotherapy/targeted

therapy. While there was variation between the patient-derived

cell lines, they were generally more resistant than the

conventional HGSOC cell lines.

Ten clinically interesting drug compounds from the initial

screen were selected for further investigation according to two

criteria: literature search and ongoing clinical studies in HGSOC

or other cancers (Figure 1A). In more detailed cytotoxicity assays,

the cellular responses to these 10 drug compounds were variable

(Figure 1B). The patient-derived M048i cells were relatively

resistant to all of the 10 oncology compounds. Similarly, M048i

cells were extremely resistant to cisplatin (IC50 >100 µM) while in

other cell lines IC50 varied between 1.3 and 11.7 µM (Figure S7

and Table S8). Five of the drug compounds were categorized as

highly effective (sDSS ≥10) in the majority of the HGSOC lines:

Wee1 inhibitor adavosertib and four Hsp90 (heat shock protein

90) inhibitors BIIB021, tanespimycin, luminespib, and

alvespimycin (Figure 1B). Of these compounds, the Wee1

inhibitor adavosertib was chosen for further research due to its

ongoing clinical interest and the validation results. Table S9 shows

the sDSS values for the 10 investigated compounds tested in

adherent or spheroid culture conditions. Adavosertib was

cytotoxic for all cells except M048i, with IC50s between 578 and

785 nM (Figure 2A and Table S9).
Adavosertib induces apoptosis and
causes G2/M arrest in HGSOC cells

To study whether adavosertib induces apoptosis, HGSOC

cells were treated for 48–72 h before labeling with Annexin V.

Adavosertib-induced apoptosis was evident in all of the examined

cell lines, surprisingly also including M048i, the most resistant cell

line in viability tests (Figures 2B, C, Table S10). The total number

of apoptotic cells after a 72-h treatment with adavosertib (500 nM)

increased from 8.9% to 26.7% in OVCAR8, from 12.6% to 31.5%

in CAOV3, and from 11.9% to 25.2% in the M048i cell line.

The effect of adavosertib on the cell cycle was examined after

treatment for 24, 48, and 72 h. When compared with control

cells, significant G2/M accumulation and a reduction in the G1

cell-cycle phase were found in all four evaluated cell lines

(Figure 3B). As compared to vehicle-treated cells, adavosertib
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diminished the proportion of G1 cells by 27%–54%, dependent

on the cell line. The accumulation of G2 cells was clear in all

tested cell lines. In OVCAR8, the percentage of G2 cells of total

cell amount after adavosertib treatment was 58.3% as compared

to 14.4% in untreated cells. In CAOV3, M048i, and OC002 cell

lines, the percentages of G2 cells in treated cells and vehicle were

45.3% and 16.0%; 54.0% and 23.9%; and 57.2% and 24.8%,

respectively. In addition, a trend toward a reduced S phase was
Frontiers in Oncology 06
seen in all cell lines, but the difference was statistically significant

only in CAOV3 and OC002 (Figure 3B, Table S11).

Interestingly, the cell-cycle regulation of the most resistant

cell line M048i appeared abnormal. In the untreated samples,

very few cells were in the S phase and the same trend was

observed in the adavosertib-treated cells (Figure 3B). However, a

drift from G1 to G2/M in the treated cells was detected, as

expected. Although the result of the cell viability test showed
A

B

FIGURE 1

High-throughput drug sensitivity and resistance testing (DSRT) with 306 drug compounds. (A) Study design and basis for selection of small
molecules for further analyses. DSRT was performed with five HGSOC cell lines in adherent and spheroidal culture conditions. The number of
effective compounds varied between 28 (M048i) and 102 (CAOV3). Based on literature search and ongoing clinical trials, 10 compounds were
selected for further cytotoxicity tests, which divided compounds into three categories: highly effective, effective, and ineffective. (B) Heatmap of the
selected drug compounds based on sDSS (selective drug sensitivity score) values tested in adherent and spheroidal conditions. Bright yellow =
sensitive, dark blue = resistant; sDSS >5 effective, sDSS ≥10 highly effective. M048i spheroidal data not available.
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FIGURE 2

Effects of adavosertib on cell viability and apoptosis. (A) Viability was assessed after a 72-h treatment with adavosertib in five different
concentrations (1–10,000 nM) (±SD). (B) Apoptosis was measured in three HGSOC cell lines (OVCAR8, CAOV3, and M048i) with annexin V
staining detected by flow cytometry. Apoptotic cell populations (% of total cell amount, ±SD) were significantly elevated in all cell lines after 48
and 72 h of treatment with 500 nM adavosertib as compared with the control cells (p-value: ns = p > 0.05, *p ≤ 0.05, **p ≤ 0.01, and ****p ≤

0.0001). (C) Distribution of early and late apoptotic cell populations (% of total number of cells).
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FIGURE 3

Effect of adavosertib on the cell cycle. (A) Illustration of cell-cycle checkpoints involved in DNA-damage response (DDR) pathways, including
the role of Wee1. In HGSOC cells, the G1/S checkpoint is dysfunctional due to p53 mutation, while the G2/M checkpoint remains functional in
DNA-damage repair. Inhibition of Wee1 by adavosertib (AZD1775) disables the G2/M checkpoint, thereby enabling a cell with damaged DNA to
enter mitosis. Created with BioRender.com. (B) HGSOC cells were labeled with 5-ethynyl-2-deoxyuridine (EdU), and cell-cycle phases were
monitored with flow cytometry. The distribution of cells in the G1, S, and G2/M phases is shown after 72 h of treatment with adavosertib (500
nM) or vehicle. White bars = vehicle and black bars = adavosertib treated (average, ±SD). Dot blots present the distribution of cells with EdU
staining. (C) Western blot analysis of cyclin B1, cyclin E1, and Wee1 pathway regulating CHK1 protein in adavosertib- (500 nM) and vehicle-
treated cells after 72 (h) The bars show quantitative analysis of cyclin B1, cyclin E1, and CHK1, normalized to GAPDH, using ImageJ software.
The values shown are the mean ± SE of three separate experiments. Significant difference between vehicle and adavosertib treatment was
determined by the t-test at ns = p > 0.05, *p ≤ 0.05, **p ≤ 0.01 and ****p ≤ 0.0001.
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relative resistance of M048i cells to adavosertib (Figure 2A), the

increased apoptosis and G2/M accumulation suggest that

adavosertib has some beneficial effect on these patient-derived

HGSOC cells.

The cell-cycle alterations were further explored by Western

blot analysis of cyclin E1 and cyclin B1, which regulate the G1/S

and G2/M transition, respectively (Figure 3A). The level of

cyclin B1 was reduced in most cell lines after adavosertib

treatment, although it remained normal in OVCAR8 cells

(Figure 3C). Cyclin E1 expression was reduced in CAOV3 and

M022i following 72 h of adavosertib treatment (Figure 3C).

Similarly, the CHK1 protein, which is a key regulator upstream

of the Wee1 pathway (Figure 3A), was studied. After adavosertib

therapy, there was a reduction in CHK1 expression (Figure 3C)

in all cell lines. It is worth noting that the amounts of both

cyclins and CHK1 differed greatly among the studied cell types,

with M048i and OC002 expressing very low levels (Figure 3C).
Adavosertib reduces proliferation and
migration in HGSOC cells

Proliferation was studied by measuring the confluence area

of cell cultures at 2-h intervals. Adavosertib significantly reduced

proliferation in all the tested cells (P < 0.0001; t-test) (Figure 4A).

Although two of the patient-derived cell lines (M022i and

OC002) proliferated very slowly, a clear (58.1% and 67.0%)

inhibition of proliferation was observed after 72 h of treatment.

For the faster proliferating M048i, CAOV3, and OVCAR8, the

reduction was 55.2%, 38.0%, and 82.3%, respectively. Here, again

we were not able to show any difference in proliferation between

the adavosertib-resistant cell model M048i as compared to the

more sensitive HGSOC lines.

The expression of the proliferation marker PCNA

(proliferating cell nuclear antigen) was detected with Western

blotting to confirm the confluence area-based proliferation

result. The amount of PCNA decreased after 72 h of

adavosertib treatment in the tested HGSOC lines (Figure 4B),

except for OVCAR8 in which PCNA remained unchanged.

Wee1 inhibition reduced the mobility of all HGSOC lines as

evaluated by both migration and invasion assays (Figure 4C and

Figure S12), with migration showing a greater reduction than

invasion through the extracellular matrix.
Adavosertib induces DNA damage
regardless of HR status

The impact of Wee1 inhibition on DNA damage and nuclear

morphology was further addressed. Apart from M022i,

adavosertib induced a significant increase in the number of

aberrant nuclei (multinucleated, bud, and micronuclei) in the

HGSOC lines (Figure 5A). Similarly, using both Western and
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immunofluorescence imaging, the DNA-damage marker gH2AX

(phospho S-139) was clearly upregulated in all the tested cells

(Figures 5B, C).

The efficacy of many current HGSOC drugs depends on the

homologous recombination DNA repair capacity of the cancer

cells. Therefore, we wanted to evaluate whether this is also the

case for adavosertib. The HGSOC lines were evaluated for

homologous recombination (HR) capacity using both genomic

(Table S2) and functional (Figure S13 and Table S14) tests. Of

the cell lines, OC002 and OVCAR8 were HR-deficient (HRD)

while M022i, M048i, and CAOV3 were HR-proficient (HRP)

(Table S2, Figure S13, and Table S14). The result suggests that

the effects of adavosertib are independent of the HR status of

the cells.
Discussion

Despite the advances in understanding the molecular

background of HGSOC, patients who do not initially respond

or acquire resistance to platinum compounds or PARP

inhibitors have limited treatment options. Based on the high-

throughput screen of HGSOC cell lines, and with a focus on

compounds in the clinical development, we identified two

compound groups cytotoxic to HGSOC independent of the

cell culture method: Wee1 inhibitor (adavosertib, AZD1775)

and Hsp90 inhibitors (BIIB021, alvespimycin, luminespib, and

tanespimycin). In a further validation using three patient-

derived and two conventionally available HGSOC cell lines,

adavosertib provided the best cytotoxicity result. Wee1 has

already proven to be a potential target in genomically unstable

cancers, including HGSOC, due to its role in cell-cycle control

and DNA-damage response (DDR) pathways [reviewed in

(25–28)]. Our findings presented here indicate that adavosertib

inhibits HGSOC cell growth at multiple levels. Importantly, the

effect in our study material is independent of the homologous

recombination capacity of the cells and thus potentially effective

in patients who do not benefit from current treatments.

We also noticed generally similar effects on the three HRP

and two HRD cell lines. Additionally, adavosertib inhibited

equally well patient-derived HGSOC cells and the publicly

available HGSOC cell lines. One of the patient-derived

HGSOC cell lines, M048i, was less responsive than the other

cell lines in the high-throughput cytotoxicity assay to most of the

306 drugs including adavosertib for reasons that remain unclear.

No significant difference was found in the DNA sequencing or

RNA expression data of the multidrug resistance (MDR) ABC

transporters (ATP-binding cassette transporters) compared to

other cell lines (Figure S15). ABC transporters are known to play

a role in the MDR mechanism in cancer, and they are

responsible for the increased efflux rate of anticancer drugs in

the MDR phenomena (29, 30). In spite of the relative resistance

in the conventional cytotoxic assay, M048i responded to
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FIGURE 4

Effects of adavosertib on proliferation and wound healing. (A) Proliferation of HGSOC cells treated with adavosertib (500 nM) or vehicle was
monitored in IncuCyte every 2 h for 72 h (normalized to time point 0 h). (B) Expression of the proliferation marker PCNA (proliferating cell
nuclear antigen) protein at 72 (h) The bars show quantitative analysis of PCNA normalized to GAPDH using ImageJ software. The values
shown are the mean ± SE of three separate experiments. (C) Wound healing experiment of the M022i HGSOC primary cells treated with
adavosertib (500 nM) for 72 (h) Data of the four other HGSOC cells (M048i, OC002, OVCAR8, and CAOV3) are presented in Figure S8.
Significant difference between vehicle and adavosertib treatment was determined by the t-test at ns = p > 0.05, *p ≤ 0.05,**p ≤ 0.01, ***p ≤

0.001, and ****p ≤ 0.0001).
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FIGURE 5

Adavosertib induces nuclear abnormalities and DNA damage (A) Nuclear morphology of cells treated with adavosertib or vehicle. Percentage of
normal, multinucleated, and abnormal nuclei (micronucleus and buds of OVCAR8, CAOV3, OC002, and M022i cell cultures). Examples of
nuclear abnormalities present in the samples: first picture of cells with normal nuclei, the second of a multinuclear cell, the third with a cell with
nuclear buds, and the fourth of a cell with several micronuclei caused by the adavosertib treatment. (B) Protein levels of DNA-damage marker
gH2AX (phosphor S-139) after 72 h of treatment with adavosertib (500 nM). The bars show quantitative analysis of PCNA normalized to a-tubulin
using ImageJ software. The values shown are the mean ± SE of three separate experiments. Significant difference between vehicle and
adavosertib treatment was determined by the t-test at ns = p > 0.05, *p ≤ 0.05,**p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001). (C) OVCAR8 and
M048i cells were cultured on coverslips and treated with 500 nM adavosertib for 72h. Cells were fixed and stained with gH2AX (phosphor S-139)
for DNA damage, DAPI for cell nuclei, and phalloidin for the actin filament (green, actin; blue, nucleus; and red, DNA damage).
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adavosertib in other assays, indicating that none of the

investigated cell lines were unresponsive to Wee1 inhibition.

Our study supports several mechanisms of action for

adavosertib. Mechanistically, Wee1 regulates the G2/M

checkpoint via inhibiting CDK1 and delays the mitosis entry

of cells with DNA damage. Its inhibition in cells with DNA

damage allows these cells to enter mitosis prematurely, which

leads to mitotic catastrophe and apoptosis. Wee1 is also involved

in regulating the G1/S checkpoint via CDK2 and thereby DNA

replication by phosphorylating CDK2-bound cyclin A/E during

the S phase (31, 32). The exact mechanisms of Wee1 inhibition

in addition to the G2/M checkpoint is not yet completely

understood. Heijink et al. (2015) found in their study that

Wee1 inhibitor sensitivity is controlled by the status of several

S-phase entry genes including CDK2 (33). In line with our

results, they correspondingly report elevated gH2AX after Wee1

inhibition. We also found that adavosertib induced increased

levels of the gH2AX DNA damage marker and shortened the S

phase together with the abnormalities in the nuclei, which are

indicators of increased replication stress. We found a reduction

in CHK1 and an increase in gH2AX following adavosertib

therapy, which was consistent with two earlier investigations

using breast cancer, pancreatic, and osteosarcoma cell lines

(34, 35).

In our study, Wee1 inhibition effectively reduced

proliferation and increased apoptosis of all the tested cell lines

including the less sensitive patient-derived cell line M048i. An

exception was the OVCAR8 cell line that had no change in the

PCNA levels compared to the other cells. PCNA plays an

important role in replication and interacts with the cell-cycle

progression machinery (36). We observed an accumulation of

cells in the G2/M phases and a decrease in the S phase after

adavosertib treatment. This is also in line with Heijink et al.'s

study where they observed a shortened S phase (33). In addition,

a similar increase in the G2/M phase has been shown in

OVCAR8 cells in a recent study (37). A decreased cyclin B1

expression in all cell lines except in OVCAR8 might indicate the

cytotoxic effect to be in the S phase rather than at the G2/M

checkpoint. In a normal cell cycle, cyclin B expression peaks in

the late G2 phase and radically declines in mitosis (38). The

unchanged levels of PCNA and cyclin B1 expression in

OVCAR8 cells might indicate that the cytotoxic effect in this

cell line lies more in the mitotic catastrophe than in the S phase,

compared to the other cells investigated.

Our study demonstrates that adavosertib treatment impairs

migration and invasion in HGSOC cell lines, which could in part

be interpreted as a consequence of cell-cycle arrest. Other studies

have shown similar results in gastric cancer cell lines after Wee1

siRNA-mediated knockdown (39) or adavosertib treatment,

although the mechanism of action was not elucidated (40).

More recently, Bi et al. (2019) described that targeting Wee1

by shRNA or adavosertib significantly diminished the migration
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and invasion in esophageal squamous cell carcinoma by

suppression of metalloproteinases MMP-2 and MMP-9 (41).

Several clinical trials have shown encouraging cytotoxic

efficacy by adavosertib both as a single agent treatment and as

a combination therapy in several solid tumors (11–14, 42–45).

Thus, a combination therapy approach with platinum

compounds or PARP inhibitors has been taken into clinical

trials (NCT01357161, NCT03579316, NCT03345784,

NCT02272790) (12–14). However, patients that are HRP and

platinum resistant do not benefit from these drug combinations.

Several other drug combinations have been studied in both in

vitro and clinical trials. A recent clinical trial reported promising

results with adavosertib in combination with nucleoside analog

gemcitabine in treatment of platinum-resistant ovarian cancer

(14). In an in vitro study, a similar result was reported that

suggested that Wee1 inhibition sensitizes cells to gemcitabine

but also reduced the ATR/CHK1 activity (35).

According to our knowledge, a thorough validation and

mechanistic evaluation of Wee1 inhibition mechanisms in

patient-derived HGSOC cells has been lacking. The current

findings and our previous results showing that adavosertib is

also effective against HGSOC cells with stemness features and

had an observed cytotoxic effect in all of the studied HGSOC

lines including the generally quite resistant M048i cells have

increased our understanding of its broad mechanisms of action

during the cell cycle.

Importantly, we observed that adavosertib inhibits HGSOC

cells regardless of their HR status. A study by Garcia and others

(2017) found that adavosertib impairs HR and may work as a

combination therapy with PARP inhibitor olaparib in BRCA1/2-

mutant leukemias (46). Another study with HRD and HRP

murine cell lines demonstrated that Wee1 inhibitor in

combination with olaparib had no difference in effectiveness

between the HR-deficient and -proficient cells (47). Both of these

studies were performed in combination with PARP inhibitor

olaparib. We were able to demonstrate that adavosertib has

efficacy toward HRP cells also as a single agent.

Our findings lay the basis for treatment of HRP patients,

with whom treatment strategies are scarce. It is especially

important to find an effective DNA-damaging agent to be used

in combination with adavosertib for the platinum-resistant

HGSOC patients. In this regard, gemcitabine has already

shown promising results.

In conclusion, our study suggests Wee1 inhibitor

adavosertib as a candidate compound to treat HGSOC patients

independent of the HR status of the tumor.
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