
IEEE INTERNET OF THINGS JOURNAL 2022 1

Smart Plants: Low-Cost Solution for Monitoring
Indoor Environments

Agustin Zuniga, Naser Hossein Motlagh, Huber Flores and Petteri Nurmi

Abstract—Humans tend to spend most of their life indoors
making the quality of indoor environments essential for human
health and well-being. While several solutions for monitoring
the indoor environment have been proposed, ranging from
infrastructure-based monitoring solutions to cameras, these tend
to require separate installation making the sensors difficult to
maintain and upgrade. In this paper, we introduce the idea of
using smart plants as an easy-to-deploy and affordable solution for
monitoring the indoor environment. Plants are typically deployed
close to humans and they increasingly are placed in containers
that integrate sensors, such as soil moisture, temperature, humid-
ity, and CO2 sensors. We demonstrate how these sensors can be
used as an alternative technology for monitoring – and enriching
– indoor spaces without needing to install proprietary sensors
or other technology. Specifically, we show how smart plants
can be used to estimate overall CO2 accumulation, occupancy
information, and whether people use protective face masks or
not. We also establish a research roadmap for the use of smart
plants to monitor indoor environments.

Index Terms—Internet of Things, Pervasive Sensing, Air Mon-
itoring, Smart Plants

I. INTRODUCTION

HUMANS tend to spend most of their time indoors [1]
which makes the quality of indoor environment essential

for human health and well-being. Indeed, the quality of
indoor environments is linked with human health, productivity,
comfort, and quality of life in general [2]. Ensuring the indoor
environment is healthy and that it fosters productivity thus
requires monitoring and offering feedback to the occupants
on the current state of the environment. Current solutions for
monitoring the indoor environment, such as proprietary indoor
monitoring devices that integrate air quality sensors, infrared
tracking and other sensors [3], [4] or occupancy monitoring
solutions such as low-cost thermal arrays [5], are limited as
they either require laborious deployments or capture limited
information about the state of the environment. Indeed, both
types of solutions need separate installation which requires
deploying the sensors in the indoor space and often also
additional wiring to ensure the devices are powered. Besides
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being laborious and costly, the need for separate installation
also makes maintaining and upgrading the sensors difficult.

The present paper contributes a novel approach for moni-
toring the indoor environments by re-purposing smart plants
– plant containers that integrate sensors and micro-controllers.
Plants are a common sight in residential and commercial
spaces as they are used to decorate and improve the diversity
of the environment. Plants also bring several benefits as they
can be shown to improve the mental and emotional well-being
of humans [6], support better cognitive performance [7], and
help to improve the air quality of the space [8]. Thanks to
advances in IoT garden and plant technology, plant containers
increasingly integrate sensors, e.g., for monitoring the soil or
the ambient environment. This information can then be used
to optimise growth, detect potential issues, and to automate
watering and other maintenance operations [9]. As plants are
typically located close to the areas where humans perform
activities, there is huge potential to re-purpose these sensors
to also monitor the indoor environment. As the sensors are
integrated directly into the containers, no laborious installation
is needed and upgrading the sensors simply requires changing
the containers rather than removing old sensors and installing
new ones – including ensuring sufficient wiring is available.
Indeed, the main benefits of smart plants are that they are
affordable and easy to deploy. As a result, smart plants
supplement existing techniques and offer an easy and cheap-
to-deploy alternative, particularly for spaces that otherwise are
difficult or costly to instrument.

We demonstrate the benefits and practical feasibility of
smart plant sensing through extensive experiments that use
CO2, temperature and humidity sensors integrated with a
plant container to demonstrate how plant sensors can pro-
vide insights into the overall indoor context. Specifically, we
show that the sensors can be used to estimate overall CO2
accumulation, occupancy information, and whether people use
protective face masks. We also introduce other potential uses
for smart plants as sensors – or even a sensing infrastructure
– and establish a research roadmap for their use to monitor
indoor environments. Taken together, our work paves the way
toward establishing smart-plants as an affordable and easy to
deploy sensing solution that can provide insights into human
living conditions and ultimately improve the quality-of-life.

II. SMART PLANTS

Smart plants can supplement other forms of infrastructure
by offering an easy to deploy solution that does not require
separate installation and that is easy to maintain. We next
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briefly discuss different types of smart plant sensors, different
application areas where they can be beneficial, and some key
research challenges in adopting them as sensors for monitoring
the indoor environment.

A. Sensors and Hardware

Smart plant sensors generally come in two main forms.
First, plant sensors have been designed for monitoring indi-
vidual plants and they capture moisture, and potentially also
the nutrient levels in the soil, and provide feedback to users
on when to water the plants. These sensors can either be
directly integrated into the container or be ground-mounted
on the soil. The main purpose of these devices is to monitor
irrigation and to automate or facilitate watering [10] or to
detect plant diseases [11]. Greenhouses, gardens, and grow
rooms, in turn, typically use more advanced sensors that
combine soil monitoring with atmospheric parameters, includ-
ing temperature, humidity, luminosity and CO2, as these are
essential for optimising the growth conditions [12]. For indoor
monitoring, the best option is to integrate CO2 and temperature
sensors with the plant containers as these provide the most
direct way to measure human occupancy. As miniaturisation
of sensors continues, we expect the gap between plant and
garden sensors to close. Hence plant sensors are likely to
integrate most of the sensors that garden devices incorporate
in the near future. Alternatively, luminosity changes can be
used to estimate human presence and changes in humidity
have been shown to have a strong correlation with CO2 [13].
Hence, it is also possible to use other sensors as a proxy when
CO2 sensors are unavailable.

B. Application Domains

Thermal comfort, the subjective comfort with the thermal
properties of the environment, is a key parameter for well-
being. A high thermal comfort level can also benefit cognitive
functions, e.g., the error rate and productivity of workers
has been shown to be higher in environments that have high
thermal satisfaction [14]. Plants usually are placed close to
sunlight and thus the luminosity values they capture reflect also
sunlight intensity instead of merely capturing the strength of
ambient light. Comfort in turn can be estimated using temper-
ature and humidity sensors as cold environments cause shiv-
ering which increases both oxygen and CO2 exhalation [15],
whereas too hot environments increase sweat exertion which
correlates with increased humidity [16].

Workplace productivity requires avoiding burn-out, an emo-
tional and physical state of exhaustion that reduces produc-
tivity. Companies are looking at non-intrusive monitoring
solutions that aid employees so that it is possible to preserve a
healthy cognitive state and to sustain productivity in the long-
term. Plants are typically located in desk places to improve
well-being. As these deployments are close to users, they can
be used to provide cues about stress and cognitive load [17]
through monitoring the temperature and breathing character-
istics (e.g., variance of exhaled CO2). Prolonged stress and a
high cognitive load over time (beyond the average of 4 and

half hours typical productivity [18]) can provide warnings of
the potential of suffering burn-out.
Non-Pharmaceutical Interventions (NPI)s refer to non-
medical countermeasures for slowing down the spread of
illnesses. Mask use and social distancing are two powerful
ways to slow down disease spread, particularly in case of
respiratory diseases that spread in close physical contact [19].
CO2 sensors can be used to estimate occupancy as well as
crowding of spaces [4] and hence they can serve as proxy a
for social distancing. Face mask use, in turn, results in higher
accumulation of CO2 [20] and can even present a health risk
in vulnerable people if the indoor temperature and humidity
are high [21]. Hence sensors integrated into smart plants can
provide insights into how well NPIs are followed.

C. Research Challenges

Sensing Challenges. Smart plant sensors are prone to the same
issues as what CO2 sensors generally face as an occupancy
monitoring solution [3]. Namely, the CO2 values accumulate
slowly and the values are mediated by the monitoring context.
Indeed, the accumulation of CO2 depends on the total number
of individuals within close proximity, the body mass of the
individuals, the distance of the sensor from the individuals,
the air ventilation in the environment, and many other factors.
Thus, smart plant sensors are better at capturing relative
differences in environments rather than detecting absolute
differences. These issues can potentially be alleviated by
learning different models for different kinds of environments
and using model selection techniques to select the best fitting
model for a given environment [22].
Programmability. Smart plants are an emerging area for IoT
technology and the ecosystem is still in its infancy. Indeed,
while plant containers that integrate sensors are becoming
increasingly common, the access to sensors is typically closed
or heavily constrained and all interactions take place through
a companion app. The goal of our work is to show that
offering access to these sensors can offer significant benefits
to facilitate monitoring the environment and it is highly likely
that the programming access to the devices will improve in
the near future.
Privacy and Security. Any sensors installed in indoor en-
vironments present privacy and security challenges [23], and
sensors integrated into plant containers are no different. People
occupying the space need to be made aware of the sensors,
and access to the data needs to be restricted to ensure it is
not used for malicious purposes. For example, having remote
access to CO2 could be used to infer whether the owners of
an apartment are at home. Ensuring sufficient level of privacy
and security requires sufficient sophistication from the micro-
controllers operating the sensors and can increase the cost of
the containers. Thus, optimally the sensors would integrate
with a smartphone or a smart space hub that is responsible for
providing the required privacy and security functionality.

III. EXPERIMENTS

We demonstrate the potential of using sensors in plant
containers for monitoring indoor environments through ex-
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Fig. 1: Experimental Setup of Smart Plant Prototype.

tensive experiments that consider overall CO2 accumulation
estimation, occupancy detection, and face mask use detection
as representative examples of applications that can be imple-
mented by re-purposing smart plant sensors. We next describe
our experimental setup and measurements in detail.

Plants. We consider plants that are common and representative
of ornamental plants for indoor spaces: (i) coleus scutellari-
oides (common name: painted nettle, average height: 45 cm,
hardiness: USDA Zone 10-11, water needs: moderate to high)
and (ii) hatiora salicornioides (common name: bottle cactus,
average height: 40 cm, hardiness: USDA Zone 10-11, water
needs: low). Both plants are easy to grow and care, their size
facilitate placing them as potted desk plants. The greenery
was planted into separated pots (11.5 cm x 11 cm). The plants
covered the sensors used for monitoring to ensure a realistic
monitoring context, and the height of the plants from the
top of the pot was: coleus, scutellarioides: 22.5 cm, hatiora
salicornioides: 26.5 cm.

Apparatus. We built a simple prototype container that inte-
grates a Netatmo portable weather station with a plastic plant
container. The size of the weather station is 15.5 cm x 4.5 cm
and it uses a dedicated power supply via a Mini-USB in-
terface. WiFi connection is required for device configuration
and downloading the samples on a smartphone. We rely on
the weather station as it allows accessing the measurements
through a separate app and a web dashboard as most com-
mercial off-the-shelf plant containers do not currently offer
separate programmable access.

Sensors. Indoor air quality was measured through the Netatmo
station. The weather station collects sensor measurements
for carbon dioxide (CO2, range: 0 to 5,000 ppm, accuracy:
± 50 ppm), temperature (T, range: 0 °C to 50 °C, accu-
racy: ± 0.3 °C), barometric pressure (P, range: 260mbar
to 1.260mbar, accuracy: ±−1mbar) and relative humidity
(RH%, range: 0 to 100%, accuracy: ± 3%) sensors. The
sensors were properly calibrated following the manufacturer’s
guidelines before each test.

Environment. The sensing area corresponds to a space with
dimensions 2.8m x 4.8m inside a studio (one room) apart-
ment; see Figure 1(a) for an illustration. The characteristics of
the area are representative of common living or office space.
The smart plant prototype comprises of the plants and the
weather station (see Figure 1(b)). The station was covered

and placed between the desk plant container (pot) providing
air quality measurements around the plants. The location of the
persons during the sampling included two places with different
distances relative to the plant: (i) a work desk at 80 cm distance
(position 1) and (ii) a dining table at 380 cm distance (position
2). We also separately characterise the levels of CO2 when
the room is empty. We denote the mean value of the space
when it is unoccupied as Li and consider this value as a
reference point. Between experiments, we include a minimum
break of 30 minutes and ensured the CO2 level stabilises
to the reference value Li before further measurements are
collected. Having a minimum gap of 30 minutes ensures that
the mean CO2 level is within the reference value with a 97.5%
confidence level. We also characterised the time necessary to
reach the saturation point of CO2 produced by an individual,
Ls. In each experiment, the sensors sample measurements
every 5min over a 210min period. This includes an initial
30min period for verifying the CO2 levels are stable (i.e.,
correspond to Li), a 120min saturation period during with
the CO2 levels increase from Li toLs, and a 60min grace
period at the end to verify that the CO2 decrease back to Li.

Measurements. Samples were collected in three different
experimental conditions. We first carry out an experiment
where we collect measurements separately from the smart
plant and the weather station for (i) a 1 day period with
one occupant following a normal daily routine (e.g., working,
eating, resting) at the apartment and (ii) a 6 hour period
with no occupants at the apartment. The experiment allows
estimating how well the sensors in the container capture air
quality variations compared to using a separate device that is
installed in the environment. Second, we collect measurements
for a 3 hour period for each different testing place and one
occupant (male, 38 years old) and evaluate the variation in
the measurements due to distance. We repeat the experiment
considering two occupants (a male and a female, 38 years old
both) to evaluate the effect of having more than one person.
Finally, we analyse the effect of face masks by having one
or both participants wearing FFP2 face masks and collecting
measurements for a 3 hour period at testing position 2 (dining
table). Prior to starting the measurements, we always ensured
that the mean CO2 level matches the reference value Li over
a 30 minute period.

IV. RESULTS AND ANALYSIS

A. Characterising Measurements

Figure 2 contrasts the results when the sensor is integrated
with the plant container and when it is used separately to
measure CO2 level variation. Figure 2(a) presents the result
of Spearman’s ρs between different factors. The correlation
between the smart plant sensor and the dedicated sensor is
consistently significant. This holds especially for variable pairs
that are expected to be strongly correlated: CO2-temperature
(ρ > 0.7) and barometric pressure-relative humidity (ρ <
−0.9). The decrease in correlation for some variables results
from different weather conditions during sampling (i.e., a
sunny day can increase the temperature in the sensing area
compared to a cloudy day). These results indicate that placing
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Fig. 2: Comparison between sensing methods. (a) Correlation of air factors, 24-hour sampling, one occupant. (b) CO2 variation,
6-hour sampling, no occupants.

the sensors in a plant container does not interfere with the
measurements and results in similar values as using a dedi-
cated sensor device – with the added benefit of not requiring
a separate installation or deployment in the indoor space.
Figure 2(b) compares the CO2 variations when the space has
no occupants. We used Welch test to assess the significance
between the two conditions: sensors in the plant container
(mean = 413.88, SD = 6.89) cf. dedicated sensors installed
in the space (mean = 411.75, SD = 7.34) and found the
differences not to be statistically significant (t = 1.791, d
= 0.298, p> 0.05). Note that changes in weather conditions
during the day can affect measurements, to overcome this issue
the variation of CO2 levels were measured from 01:00 a.m
to 06:00 a.m. The results confirm that smart plants can be
used to capture variations in accumulated CO2 equally well as
dedicated sensors installed into the space.

B. Robustness to different factors

Influence of Distance. Wilcoxon signed-rank test shows
significant differences between CO2 concentration at differ-
ent testing places, and thus at different distances (W= 1,
p< 0.001, rbc = −0.996). As expected, CO2 levels are higher
when individuals are closer to the smart plant, see Figure 3.
The variation in accuracy can be explained by the dissipation
of CO2 in the sensing area, which is lower when the individual
is closer to the sensor. Thus, the accumulation characteristics
in the CO2 values can be used to provide coarse-grained
estimates of the distance where the people are residing.
Number of Occupants. We next evaluate the response of
smart plants to measure CO2 accumulation when having more
than one individual in the space. We compare the variation
of CO2 levels for one and two participants in the sensing
area. Wilcoxon signed-rank test confirm the differences in CO2
measurements are statistically significant (W= 519, p< 0.001,
rbc = 0.966). Figure 3 shows that saturation of CO2 for two
individuals doing home office tasks is about 200 ppm higher,
showing that smart plants can be potentially used to obtain

information about the total number of occupants – or at least
separate between single and multiple occupant situations.

Use of Face Masks. We next demonstrate the potential of
smart plants to provide insights about compliance with face
mask use requirements. Face masks have been shown to
increase the level of exhaled CO2 [20]. As the particle size
of CO2 exceeds the filtration rate of common face masks, the
exhaled particles thus pass through the mask and result in
faster CO2 accumulation in the environment. First, we evaluate
the difference in the increase of CO2 levels (slope) over time
considering distance and the use of face mask for one indi-
vidual as experimental conditions. Friedman Test (χ2 = 96,
p< 0.001, W= 1) indicates significant differences between
CO2 concentrations. Posthoc comparisons (Holm-Bonferroni)
confirm that the differences are statistically significant for all
cases, i.e., the speed of CO2 accumulation can be used to
identify mask use or non-use, regardless of distance. Second,
we evaluate the difference in CO2 slope for two participants at
different testing places considering three conditions: (i) none
wearing face mask, (ii) both wearing face mask and (iii) one
wearing face mask while the other does not. Friedman Test
shows significant differences between CO2 levels (χ2 = 64,
p< 0.001, W= 1). Posthoc comparisons (Holm-Bonferroni)
prove that differences were statistically significant in all the
cases. The results thus show that sensors integrated into smart
plants can be used to provide insights about mask use of the
people occupying the space.

Watering. Lastly, we evaluate the potential impact watering
the plants has on the CO2 measurements. Watering is crucial
to transport nutrients through the plants and can potentially
affect humidity due to water evaporation and plant transpi-
ration. Humidity, in turn, often correlates with CO2 concen-
trations [24] and thus watering can potentially mislead the
sensor measurements. For this experiment, we water the plants
in the early morning (06:00 a.m) providing 250 dl of water
to each plant and collect measurements for three hours in an
otherwise empty area. We compare the measurements with the
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atmospheric CO2 levels measured by the sensors in the plant
container. Repeated Measures ANOVA shows no significant
differences between CO2 concentrations (F= 519, p> 0.135,
η2 = 0.042). Posthoc comparisons (Holm-Bonferroni) confirm
that the differences were not statistically in all the conditions
confirming that watering under the recommended conditions
has no effect on the sensor measurements.
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Fig. 3: CO2 concentration curve for different experimental
conditions.

C. Analysis of the Growth Curve

As shown in Figure 3, the growth in CO2 concentration is
non-linear and we can identify three distinct phases within
the curve: (i) exponential initial growth phase, (ii) close to
linear transitional period, and (iii) stationary phase where the
concentration has saturated. We next analyse the different
phases in detail to demonstrate how smart plants can offer
more fine-grained insights into the current CO2 growth stage.

Table I shows the average CO2 level and slope for each
phase. In line with the earlier results, we can observe a higher
CO2 concentration when face masks are being used, with
the highest values resulting in the exponential phase from
the case where all occupants wear a mask (653.6 ± 106.7
ppm, slope= 36.50 ppm). Another way to interpret the result
thus is that face masks increase the growth rate in the
exponential phase, but do not necessarily result in signifi-
cantly higher concentrations in the saturated stage. Friedman
Test considering distance, number of participants and use
of face mask as experimental conditions shows statistically
significant differences in the slope of CO2 concentrations
in all three phases: exponential (χ2 = 46.757, p< 0.001,
W= 0.995), transitional (χ2 = 59.229, p< 0.001, W= 0.807)
and saturation (χ2 = 66, p< 0.001, W= 0.396). Posthoc
comparisons (Holm-Bonferroni) indicate that the differences
were statistically significant in all the cases. The results thus
confirm that, besides providing occupancy information, CO2
concentration measurements provided by smart plants can give
insights about the time that occupants have spent in an area.

When analysing the time that takes to return from CO2
saturation level (about 825 ppm) to atmospheric levels (when
the sensing area is empty, less than 425 ppm). We observe
that about 150 minutes are necessary to reduce the amount

of CO2 back to the initial reference value once the CO2 level
has saturated. This implies that the smart plant’s sensors can
provide information to support proper ventilation in areas
where different people are meeting (e.g., meeting rooms, study
rooms, working cabins, classrooms). Naturally increasing the
ventilation rate can speed up the CO2 decay and thus it is
also possible to use smart plants to obtain insights into the
ventilation rate used in the space. For example, increased
ventilation rates have been suggested as a way to mitigate
risks of COVID-19 spread [25], [26].

D. Modeling face mask use and occupation estimation

As the final step of our evaluation we demonstrate that smart
plants can support coarse-grained classification of the use of
face masks and occupancy estimation indoors.
Model. We consider a simple machine learning model that
attempts to distinguish between people that use and those
that do not use protective face masks. As shown earlier, the
speed of change in the CO2 levels depends on the number
of people in the space and whether the people use masks
or not. For demonstrating the general principle, we limit
our analysis to scenarios involving one or two occupants.
As before, this results in three categories for mask use (i)
all persons wearing mask, (ii) no persons wearing a mask,
and (iii) one person wearing a mask while the other is not
using, and two categories for occupancy (i) one individual and
(ii) two individuals. We evaluate two different input feature
combinations that consider the slope of CO2 concentration
growth and the ambient temperature. We consider three simple
classifiers, Random Forest, Gradient Boosting and AdaBoost,
which can be run directly on the micro-controller of the
smart plant container as these models have small memory
requirements, low computational requirements, and low energy
consumption.
Use of face masks. Modelling the use of face masks based
only on the growth in CO2 concentration gives an average
classification accuracy of 65% across the three algorithms.
The performance increases when more information about the
environment is included. Indeed, incorporating temperature as
a factor increases average accuracy by more than 5% (≈ 70%).
When considering the length of the time window, the shortest
five minute window results in the best performance through
the performance with longer time windows is similar (lowest
performance 64.53% for CO2 growth and 69.03% for CO2
growth and temperature). Thus, information about face mask
use (or non-use) can be obtained using only few minute time
windows. The main source of errors is the case where mask
use is mixed between the occupants, resulting in 23.5% and
21.5% misclassification rates for the two feature combinations.
In terms of classification algorithms, the three models have
very similar performance.
Occupancy. The results for detecting occupancy are signif-
icantly higher, ranging from ≈ 85% for CO2 growth to
89% when both CO2 growth and temperature are used as
input features. Best results are obtained for 10 minute time
windows, through similarly to the results for face mask use,
the variation across time windows is small and the overall
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TABLE I: Statistics of CO2 concentration for different experimental conditions and growth curve phases.

Exponential Phase Transitional Phase Saturation Phase
Participants Position Wearing mask Mean CO2 SD CO2 Slope Mean CO2 SD CO2 Slope Mean CO2 SD CO2 Slope

1 1 no 535.2 71.9 24.52 726.9 27.4 7.47 751.7 7.8 1.35
yes 603.4 105.4 36.53 814.5 20.9 5.46 820.5 7.9 0.57

2 no 557.6 67.6 23.35 680.8 18.9 5.27 722.4 8.5 1.52
yes 624.7 74.9 26.03 776.5 9.8 2.26 777.4 7.3 0.28

2 2 no 646.7 94.7 32.47 838.0 33.3 10.34 912.6 7.1 1.69
yes 653.6 106.7 36.50 850.7 55.6 17.12 973.2 13.6 3.55

1 yes, 1 no 645.0 97.5 33.67 857.8 38.9 11.86 938.1 9.4 2.66

TABLE II: Classification accuracy considering the average
level of CO2 and temperature (T) given a time window, w.
Classifiers: Random Forest (RF), Gradient Boosting (GB),
AdaBoost (AB).

Time window size [minutes]
model → predicted Classifier 5 10 15 20 25 30

CO2 → face mask use RF 65.9 63.8 65.6 63.4 62.9 64.4
GB 63.7 63.7 63.8 64.3 64.9 65.1
AB 66.9 67.6 66.5 66.2 64.3 64.1

Mean 65.5 65.0 65.3 64.6 64.0 64.5
CO2 → amount of people RF 81 82.2 82.4 81.3 80.7 80.9

GB 84.1 84.7 83.1 84.1 84.7 84.3
AB 89.7 88.8 89.4 88.8 89.4 90.1

Mean 84.9 85.2 85.0 84.7 84.9 85.1
(CO2, T) → face mask use RF 70.9 69.6 70.4 69.7 68.4 67.8

GB 71.5 72.8 72.2 72.8 70.3 70.3
AB 69 68.5 67.1 68.1 69.3 69

Mean 70.5 70.3 69.9 70.2 69.3 69.0
(CO2, T) → amount of people RF 85.3 86.9 84.4 85.6 84.1 83.1

GB 89.4 89.9 89.3 89 88.7 87.8
AB 92.5 92.4 92.6 92.6 91.9 92.4

Mean 89.1 89.7 88.8 89.1 88.2 87.8

model performance is highly similar across all time win-
dows. As expected, the highest misclassification rates result
for distinguishing between one or two occupants, and mask
usage further complicates occupancy counting. AdaBoost has
consistently the best performance for estimating the number
of users in the space, though overall the three algorithms have
very similar performance.

Summary. Overall the classification results demonstrate that
smart plants can be used to model diverse indoor scenarios and
provide insights about the indoor context. The best results are
obtained for using a combination of sensors, with CH2 growth
rate and temperature resulting in reasonably high classification
accuracy. Indeed, combining temperature information with
CO2 growth improves the performance by over 5% percentage
points on average compared to only using CO2 growth rate;
see Table II. The performance depends on the complexity of
the task, with face mask use being more challenging than
occupancy detection. Naturally we expect the benefits to be
highest in relatively stable environments, e.g., monitoring the
area around a working space is likely to result in more stable
estimates than monitoring an exercise room where physical
activity affects the exhalation patterns of the occupants. Thus,
the granularity and accuracy of the information that can be
captured depends on the characteristics of the space that
requires monitoring and alternative sensor modalities are likely
to be superior in more dynamic environments. Nevertheless,
smart plants can support a wide range of spaces and offer
an affordable and easy-to-deploy solution for monitoring the
space which simultaneously brings benefits through the posi-
tive effects of greenery.

V. DISCUSSION

Augmenting Computations. Our work demonstrates that
smart plants can work as effective sensing infrastructure in
indoor environments, but they could potentially be used to
support also limited form of computations. For example, plants
could be used as an additional computing infrastructure for
real-time object recognition [27] or other tasks where the
velocity of the data is fast. Indeed, scarcity of available
deployments is a key challenge for edge computing and smart
plant deployments could support improving the density of edge
computing support.
Indoor Health Indicator. Indoor air pollution is estimated to
be responsible for the deaths of an estimated 3.8 million people
each year [28]. Smart plants can provide insights of air quality,
and thus they can be used to offer indicators for healthier
living environments. Changes in sensor values can also be
used to detect activity that affects the indoor air quality, e.g.,
cooking can cause increase in the level of indoor pollutants.
The magnitude of changes in sensor values can then be used
to determine whether there is adequate ventilation and inform
the occupant when this is not the case.
Further Optimisations. Naturally further optimisations are
needed to improve the accuracy of the plant sensors. For
example, as our experiments demonstrated, the values are
sensitive to the monitoring context and common sensor modal-
ities available on plants are better at capturing relative rather
than absolute changes. Further improving the accuracy would
require insights into the monitoring context and applying
calibration on the sensors. Potential way to support this is
to take advantage of the fact that most sensor-enabled devices
interact with a smartphone or another device that is used to
control the space, and these devices could be used as a source
of information to support the calibration. A simple example is
to use proximity sensing, similarly to what is used by contact
tracing apps, to estimate changes in the number of people in
the space and to use this information to adapt the model that is
used on the plant. Another potential improvement is to rely on
more advanced classification models, such as deep learning.
These can potentially improve the classification performance
but would also require external computing support, optimally
in the form of dedicated edge nodes, whereas the models we
considered can be run directly on the plant containers.
Comparison to Other Modalities. Sensors for monitoring
the indoor environments generally cost from around $30 to
several thousands of dollars, depending on the technology and
the software that is available. At the cheapest end are low
resolution thermal array sensors which are aimed at detecting
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occupancy status and changes in it [5] whereas the high-end
includes sensor units integrating high precision 3D cameras,
air quality monitors, and other sensor modalities. The price
point of smart plants is close to the cheaper end, with an
advanced sensor-enabled container costing less than $100.
Note that these costs include only the cost of the sensor
technology, and the main benefit of smart plants come from
driving down the costs of installing, operating, or maintaining
the sensors. Indeed, the same container can be re-used multiple
times and even upgrading the sensors only requires changing
the container, not detaching or uninstalling older sensors and
reinstalling new ones.

Future Scenarios. Plants not only serve as decorative ele-
ments that can affect the mental state of people around them,
but they can also be used to change properties of the space. A
simple example is the use of plants to improve the air quality
of indoor spaces, and another example is the use of plants to
reduce noise in the environment [29]. Future offices could de-
ploy plants on robots (e.g., roomba or similar ground vehicles)
and have them move around the space to enrich the space and
support the workers – while simultaneously transporting the
sensors that can monitor the quality of the indoor space. While
futuristic, this kind of scenario is well possible in the near
future, offering a potential way to simultaneously improve the
quality of the indoor environment and support its occupants.

VI. SUMMARY AND CONCLUSION

We demonstrated how sensors in smart plants can be
harnessed for monitoring indoor environments and serve as a
proxy for human behaviour. Plants are typically placed close to
areas that humans occupy, and they increasingly are equipped
with sensors that monitor growth conditions but that also
can be used to make inferences about human presence. The
price of the sensors is also inexpensive, making it easier to
monitor an indoor space using sensor-equipped plants than
to install separate sensor infrastructure – let alone needing
to wire or install separate power for the sensors. Through
experiments we demonstrated that smart plants are able to
detect human occupancy, the number of individuals that are
close by, and even able to provide insights into whether the
people are wearing protective face masks. While there is
significant potential in the use of smart plants for indoor sens-
ing. Our work demonstrates that smart plants have significant
potential to support the monitoring of indoor spaces, offering
an affordable and easy-to-deploy solution that supplements
existing approaches.
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