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A B S T R A C T   

Weakly-supervised learning has recently emerged in the classification context where true labels are often scarce 
or unreliable. However, this learning setting has not yet been extensively analyzed for regression problems, 
which are typical in macroecology. We further define a novel computational setting of structurally noisy and 
incomplete target labels, which arises, for example, when the multi-output regression task defines a distribution 
such that outputs must sum up to unity. We propose an algorithmic approach to reduce noise in the target labels 
and improve predictions. We evaluate this setting with a case study in global vegetation modelling, which in-
volves building a model to predict the distribution of vegetation cover from climatic conditions based on global 
remote sensing data. We compare the performance of the proposed approach to several incomplete target 
baselines. The results indicate that the error in the targets can be reduced by our proposed partial-imputation 
algorithm. We conclude that handling structural incompleteness in the target labels instead of using only 
complete observations for training helps to better capture global associations between vegetation and climate.   

1. Introduction 

Target variables are usually fully labeled in the classical supervised 
machine learning setting. In real-world predictive tasks, however, labels 
are often scarce and/or noisy. Various definitions and terms are used in 
the literature to describe variants of noise and scarceness of labels 
(Allison, 2001; Xie and Huang, 2018; Nikoloski et al., 2021; Sun et al., 
2010; Gao et al., 2017; Alarcón and Destercke, 2021; Van Engelen and 
Hoos, 2020), and each setting requires tailored approaches for exploit-
ing such target labels. In this study, we formulate a new computational 
setting for regression, where target labels are structurally incomplete. We 
computationally study this task via a case study in predictive modeling 
of global vegetation cover. 

1.1. The vegetation modelling task 

Our problem setting derives from a case study in which we aim to 
build a predictive model capturing large-scale associations between the 
global distribution of vegetation and prevailing climatic conditions. The 
goal of our task relates to manual climate classification schemes used in 
climate science (Kottek et al., 2006; Holdridge et al., 1967; Whittaker, 

1962). These schemes are rule-based systems composed manually by 
experts. They do not provide sufficient resolution to predict local 
vegetation types worldwide, and even less so to extrapolate to new 
scenarios under predicted climate change. 

Climate extremes and extreme weather events have changed over the 
last few decades (Ummenhofer and Meehl, 2017; Seneviratne et al., 
2012). The frequency and intensity of daily temperature and precipita-
tion extremes have been observed to increase due to human-induced 
climate change (Hulme et al., 1999; Mitchell et al., 2006; Seneviratne 
et al., 2012). The effects of climate extremes on vegetation distribution 
are highly uncertain. Typically, present, future, or past large-scale 
changes in vegetation cover are predicted using process-based models, 
such as Dynamic Global Vegetation Models (DGVMs) (Quillet et al., 
2010). DGVMs simulate the underlying physiological processes, climatic 
and biotic interactions using differential equations (e.g., Snell et al., 
2014). Those models are generally reliable in terms of process repre-
sentation but challenging in setting their parameters. Experimentation 
with variants is computationally expensive and not yet sufficiently 
streamlined, at least quantitatively. Thus, there is high demand for 
simpler machine-learned models that could work with remote sensing 
data. This way, future vegetation shifts can potentially be projected 
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more accurately following predicted climate changes drawn from dy-
namic earth-system models (Kelly and Goulden, 2008; Holsinger et al., 
2019; Gomez-Ruiz and Lacher, 2019). Machine-learned models may also 
aid in conservation planning where vegetation classification plays an 
important role (Hoagland, 2000). 

A related research question in ecology and biogeography is how to 
predict the potential natural vegetation (PNV). PNV is the expected state 
of mature vegetation, given a particular set of environmental constraints 
in the absence of human intervention (Chiarucci et al., 2010). At first, 
PNV models were constructed based only on expert knowledge, whereas 
nowadays, various statistical techniques and machine learning methods 
are more widely employed (Hemsing and Bryn, 2012). In Hengl et al. 
(2018), authors evaluate different machine learning methods, such as 
neural networks, random forests, gradient boosting, and k-nearest 
neighbours, for PNV mapping in a classification setting. The latter 
example describes global PNV mapping. However, most PNV studies 
focus on specific areas or regions (Raja et al., 2019; Vaca et al., 2011; 
Hemsing and Bryn, 2012). 

1.2. Why the task is difficult 

More than one type of vegetation is commonly present in any given 
area. In the case study accompanying our algorithmic analysis, we aim 

to predict the distribution of natural land cover types from climatic 
conditions. Those types can either be natural vegetation or lack vege-
tation in the form of snow and ice, as well as deserts. In the underlying 
data, each land point on Earth is represented as a set of fractions of 
various vegetation types. Our prediction task is thus a multi-output 
regression with compositional constraints (prediction outputs must 
sum up to one and be non-negative). 

One way to address this task is to look at it from the compositional 
data analysis perspective. Compositional data is a term that refers to data 
where elements are non-negative and are in the form of proportions of 
some whole (Aitchison, 1982; Pawlowsky-Glahn and Buccianti, 2011). 
Such type of data is common in many fields: demography (Lloyd et al., 
2012), economics (Ferrer-Rosell et al., 2015), chemistry and geology 
(Buchanan et al., 2012). The constraints in the compositional data 
setting are equivalent to label distribution learning (Geng, 2016) where, 
instead of labels, probabilities of the outputs are predicted in a classi-
fication task. 

The main technical challenge in our prediction task is that many 
parts of the landscape are altered by excessive human activities and 
changed into urban areas or croplands. Nowadays, this can happen 
under almost any climatic conditions and, by and large, is unpredictable 
from climatic variables (Zanelli, 2021). Yet from the ecological 
perspective, the main task of interest is what would be a natural 

Fig. 1. A simplified example of structurally incomplete target labels (yj where j = 1,2). Each pie chart represents the composition of the targets of one observation. 
After disregarding the human activity target label as noise, we want to reconstruct the original proportion of the remaining target labels of the composition. 

Table 1 
An example training instance for different weakly-labeled settings. Here yj indicates the targets of an instance. Red indicates an 
error in the training data (deviation from ground truth) – it is not known to the user where errors occur. Note that in the weak 
label setting, only 0s may be errors. Shading represents a constraint (in this example, that 

∑5
j=1yj = 1 and yj⩾0). In our setting 

(structurally incomplete), the constraint may not be met, but errors are neither random deviations. Mixtures of these settings 
are possible, e.g., we may have structurally incomplete with missing labels, etc. 
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vegetation cover under given climatic conditions (Hengl et al., 2018). 
Thus, from the computational perspective, part of the information on 
what would be the natural distribution of vegetation, given current 
climatic conditions, is not available in the training data. Consider an 
example (Fig. 1) where an observation is composed of 50% of urban 
area, 25% grassland and 25% forest. When we discard human activity 
proportion considering it as noise, we are left with a 50% covered grid 
cell. Our targets are then incomplete as we do not know how those 
remaining 50% would have been distributed. For instance, they could 
have been equally distributed between forest and grassland (both types 
would occupy 50 % of land in total), or maybe the urban area was 
replacing only grassland or only forest (in this case, one type would 
occupy 75% and the other 25% of land in total) and so on. 

We can make a simplifying assumption that human activity land-
scapes are only masking currently known vegetation types rather than 
making some unobserved vegetation extinct and consider these land-
cover types as a structural noise. If we then regard land cover types 
associated with intensive human activity (e.g., croplands) as noise, the 
target labels of natural vegetation become incomplete under the 
compositional constraint. In other words, the natural vegetation frac-
tions at many points on Earth do not sum up to one as they should. 

1.3. Related statistical and machine learning settings 

Statistically, the missing data problem is defined as a lack of infor-
mation for some variables for some cases (Allison, 2001). The term 
incomplete data is sometimes used as a synonym for missing data. 
However, values of the vegetation cover fractions in our setting are only 
partially missing, making standard missing value imputation methods 
not directly applicable or relevant. 

Incompleteness in our setting of structurally incomplete targets re-
sembles weakly supervised learning problem (Zhou, 2018). Weak su-
pervision refers to a problem setting where the data is labeled, but the 
labels are inexact, erroneous, or faulty. Multiple solutions exist for 
classification tasks (Yao et al., 2016; Sun et al., 2010; Dery et al., 2017; 
Xu et al., 2014) in weakly supervised learning (Zhou, 2018). However, 
this problem for the regression task, and particularly multi-output 
regression, to the best of our knowledge, does not yet have tailored 
solutions. 

Various other terms have been used to describe weakly supervised 
learning tasks in the literature (Table 1). Weak labels (Sun et al., 2010) 
or partial labels (Xie and Huang, 2018) are mainly considered in the 
context of binary labels. They often include different types of noise 
coming from the labeling process and data sources and lacks constraints. 
Distribution learning (Gao et al., 2017) entails the constraint that the 
outputs must sum to unity, but this constraint is already met in the 
training data, unlike in our structural incompleteness setting. 

Recently a manifold regularization technique (Berikov and Litvi-
nenko, 2021) has been introduced for weakly supervised single-target 
regression problem where the learning sample includes labeled, unla-
beled, and inaccurately labeled data. The authors use a normal distri-
bution with different parameters for modelling the uncertain labeling. In 
Chung et al. (2022) Bayesian probabilistic model was proposed for 
weakly-supervised multi-output regression with partially labeled out-
puts. However, here the term partially labeled means the absence of a 
correct label that indicates its group membership, for instance, whether 
the observed body mass index belongs to the diabetic or non-diabetic 
patient group. 

In our setting of structurally incomplete targets, in some observations, 
targets form a complete distribution (that sums up to one), whereas in 
other observations, targets are structurally incomplete. From this 
perspective, the task resembles semi-supervised learning where a vast 
amount of unlabeled data is used with a small number of labeled ex-
amples (Zhu, 2005; Van Engelen and Hoos, 2020; Kostopoulos et al., 
2018). In Nikoloski et al. (2021), the authors have proposed using semi- 
supervised predictive clustering trees (Levatić et al., 2018) that can 

handle partially labeled examples for multi-target regression task of 
water quality assessment. In this setting, partially labeled examples are 
the ones that have some targets in the composition missing and some 
known. In contrast, even if the observations are incomplete in our 
setting of structurally incomplete targets, parts of correct information 
about each target of the observation are known. In addition, the 
constraint of compositional data (summation to unity) gives information 
on how much noise is present in each target. Therefore, our defined 
problem setting is unique from the machine learning perspective and 
only resembles certain aspects of various other learning settings. The 
task of natural vegetation prediction is well established in ecology. Our 
study presents a new computational perspective to this problem. 

1.4. Previous work and the structure of the paper 

An extended abstract version of an early version of this study was 
presented at the ICML Workshop On the Art of Learning with Missing 
Values (Artemiss) (Beigaite et al., 2020). We have also investigated 
added value of including extreme climatic variables in the modelling 
process when the task is reduced single-output classification problem 
(Beigaitė et al., 2022). While the task from the computational perspec-
tive was different, some of the data from that study are reused here. 
Apart from the difference in the computational setting and methods, the 
paper primarily focused on biological aspects rather than computational 
aspects of natural vegetation cover prediction. 

In the remainder of the paper, we formally define the proposed 
computational setting of structurally incomplete targets, backing it up 
with a case study of modelling global vegetation cover distribution 
(Section 2.1). We propose an algorithmic solution for handling struc-
tural incompleteness in the targets (Section 2.2–2.3). We experimentally 
investigate how well such strategy handles the structural noise in the 
training labels and how it can help to improve the performance of pre-
dictive models (Section 3). 

2. Formal definitions and proposed solutions 

In this section, we define a novel problem setting of structurally 
incomplete targets. We propose baseline approaches along with a partial 
imputation algorithm for tackling this problem. 

2.1. Formal definition of the computational task 

Let the available training data be represented as matrices 

X ∈ Rn×d and Ỹ ∈ Rn×l  

where each i-th row represents an input observations xi = [xi,1,…, xi,d]

and the corresponding structurally-incomplete outputs y∼i =

[

y
∼

i,1,…,

y
∼

i,l

]

(at least some of these rows are incomplete, in the sense that they do 

not sum to unity), respectively. 
The goal is to recover/reconstruct a valid distribution for all rows by 

adding probability mass, if and as necessary, to the incomplete outputs 
such that they represent a valid probability distribution representative 
of the underlying unobserved ground truth. 

In other words, to produce estimate ŷ ∈ Rl
+;

∑l
j=1yj = 1, and yj⩾0∀j. 

Examples of this task are illustrated diversely in Figs. 3 and 4. 

2.2. Baseline strategies for learning from structurally incomplete targets 

We define three possible baseline strategies dealing with the targets 
of our task: 
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1. Considering incompleteness of the targets as random noise and 
making no corrections, i.e., taking no action and using all observa-
tions as is.  

2. Complete case approach borrowed from the missing data problem. 
That is, discarding all instances where targets do not follow summing 
up to unity constraint; i.e., conducting analysis only on complete 
observations i where 

∑
jỹij = 1 (a numerical example is provided in 

Fig. 2).  
3. Normalizing targets of each incomplete observation to sum up to 

unity, i.e., setting y′

i = ỹi/
∑

jỹij (a numerical example is provided in 
Fig. 3). 

2.3. Proposed partial imputation algorithm 

We propose correcting each incomplete observation using our 
derived partial imputation Algorithm1. The algorithm redistributes 
missing or unwanted information over the existing fractions of each 
label. I.e., the difference between 1 and the sum of target values in the 
incomplete observation is redistributed over the targets. 

Here, we make an assumption that observations with similar target 
compositions are forming clusters based on features observed in the 
dataset (cluster assumption). Then, for each distinct cluster, we can 
calculate averages of each fraction in complete observations with valid 
distributions. Instead of substituting incomplete observations with these 
averages, we suggest only filling in the missing parts of each target in the 
composition. The difference between the average of complete observa-
tions and the incomplete observation is used as a proportion guideline of 
how much of each fraction should be filled in (a numerical example is 
provided in Fig. 4). 

3. Experimental evaluation: predicting global vegetation cover 

Climatic conditions are the strongest determinants of what vegeta-
tion types can exist where (Adams, 2009). Our task is to build a pre-
dictive model which would capture global associations between the 
current distribution of vegetation cover (Fig. 5) and and prevailing cli-
matic conditions. While addressing this task, we must account for 
structured incompleteness in the natural vegetation. 

In this experimental analysis, we firstly investigate how the noise/ 
error in the data, which comes from the incompleteness of targets, can 
be reduced by the baselines strategies formulated in Section 2.2–2.3, and 
then we evaluate the performance of our proposed new algorithmic 
solution. 

3.1. Dataset 

We have a global dataset of n = 52297 land tiles each described by 
d = 47 climatic features – each associated with two different land cover 
classification schemes: a distribution over l = 13 natural vegetation (and 
its absence) types and a distribution over l = 10 types. 

The climatic feature matrix X is assembled from: BIOCLIM (Fick and 
Hijmans, 2017), Climdex Climate Extreme Indices (CEI) (Sillmann et al., 
2013) datasets and potential evaporation (PET) variable from cru_ts4.01 
dataset (Harris et al., 2014) as in Beigaite et al. (2020). The BIOCLIM 
dataset includes climatic features such as mean annual temperature or 
mean annual rainfall. The CEI dataset includes various climatic ex-
tremes, such as consecutive days without rainfall. 

We use ESA CCI LC land cover classification scheme (Poulter et al., 

2015) and MODIS (Channan et al., 2014) land cover product 
(MCD12C1, year 2001) for creating two different natural vegetation 
cover distribution matrices Ỹ1 and Ỹ2, respectively. These matrices are 
created by discarding human activity (croplands, urban areas, crop-
lands, and natural vegetation mosaic) and water columns which we 
consider as noise. 

Additionally, we use elevation information extracted from the 
HYDRO1k geographic database (Verdin and Greenlee, 1998). 

A more detailed description of the dataset can be found in Beigaitė 
et al. (2022). 

Fig. 2. A simplified numerical example of discarding incomplete targets.  

Fig. 3. A simplified numerical example of normalized targets.  

Algorithm1 Partial Imputation of Incomplete Targets 

Fig. 4. A simplified numerical example of partially imputed targets. Incomplete 
targets belong to the same cluster where the average of complete targets is (0.2, 
0.2, 0.6). 
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3.2. Experimental protocol 

We carry out two types of computational experiments: (1) evaluating 
how well incomplete target approaches work in reducing initial struc-
tural incompleteness in the data (i.e., direct evaluation), and (2) how the 
predictive model performance improves when using these approaches 
(indirect evaluation). 

3.2.1. Evaluation of data massaging strategies for handling structural 
incompleteness 

Employing the ESA CCI LC land cover scheme, we evaluate how 
proposed approaches for handling structural incompleteness work when 
we artificially introduce incompleteness into the data. In this experi-
ment, we take only complete observations of the matrix Ỹ1 and intro-
duce incompleteness in the following three ways:  

1. Random down-scaling. We reduce each target in the composition 
by a random percentage.  

2. Random reduction. We reduce each target in the composition by a 
random fraction. In this case, some targets can be reduced to 0.  

3. Non-random (biased) reduction. We reduce targets randomly, as 
in the random reduction. However, only a few selected targets are 
being reduced. This way, we imitate the biased incompleteness of 
only some target labels. 

Then, we compare the mean absolute error (MAE) left in the data 
after we employ baseline approaches from Section 2.2 (taking no action 
and applying normalization) and partial imputation algorithm (Section 
2.3) to this artificially incomplete data. MAE is averaged over 1000 
repetitions for each experiment. 

In the partial imputation algorithm, we use two types of clusters:  

• Combinations of the same degree of latitude where observations are 
geographically similar (135 distinct latitude degrees with complete 
observations) and elevation range in the world. Elevation values are 
divided into 5 range categories: <500 m, [500, 1000], [1000, 2000], 
[2000, 3000], >3000 m. Total of 675 clusters.  

• Climate clusters are derived using the K-Means algorithm on the 
feature matrix X. For a fair comparison, we use not the optimal 
number of clusters but the same number (675) as in latitude and 
elevation clusters. 

The true cluster average is used for the imputation of artificially 
incomplete targets. 

3.2.2. Evaluation of accuracy of predictive models 
Using MODIS classification, we build predictive models and evaluate 

their performance when targets are handled with proposed structural 
incompleteness approaches. For solving the vegetation fraction predic-
tion problem we employ three models internally handling multiple 
targets: 

Fig. 5. Distribution of vegetation cover (indicated by dominant vegetation type).  

Fig. 6. A scheme of performance evaluation (with simplified numeri-
cal examples). 
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1. A feed-forward neural network. We chose a fixed architecture of a 
feed-forward neural network, of three layers. The first layer consists 
of 47 input neurons for each climatic feature. The hidden layer has 
40 neurons with sigmoid activation functions. The third layer con-
sists of 13 output neurons for each land cover type, with a softmax 
function, to satisfy the constraint of the outputs summing up to unity. 
The neural network is trained with Adam optimizer and the mean 
absolute error loss function using the Keras (Chollet, 2015) library. 
This loss function was chosen as it is more robust to outliers.  

2. Multivariate random forests. The model is trained using the Scikit- 
learn (Pedregosa et al., 2011) library. We chose 50 trees in the forest, 
a squared error function for measuring the quality of a split and 
unlimited tree depth.  

3. K-nearest neighbours regression. The model is trained using the 
Scikit-learn (Pedregosa et al., 2011) library. We select ten nearest 
neighbours and computing of Euclidean distance. 

We randomly split the data into the training (70%) and testing (30%) 
subsets. Then, we train each model and examine how incomplete ob-
servations affect the accuracy of predictions. We carry out experiments 
for each incomplete data approach. 

3.2.3. Evaluation metrics when true target labels are not known 
We compare the performance of different approaches primarily via 

the Mean Absolute Error (MAE), which we have chosen since it is easily 
interpretable and naturally scales for predictions of fraction values be-
tween 0 and 1. With this metric, we evaluate the performance only on 
complete test set observations. 

For the incomplete observations, we do not know the true underlying 
distribution of the target values; we only have noisy or incomplete ob-
servations. Thus, it would be misleading to assess the prediction accu-
racy on those observations. A further challenge is that the complete 
observations are not uniformly distributed worldwide. Therefore, to 
evaluate predictive performance on incomplete data, we assess how well 
the dominant vegetation cover type is predicted and measure the pre-
diction accuracy similarly to a classification task. More specifically, we 
check whether the largest predicted fraction of each observation equals 

to the ground-true dominant vegetation cover type. The dominant 
vegetation cover type is considered to be the one that occupies the 
largest fraction in a grid cell. In such evaluation, we consider only those 

Fig. 7. A comparison of errors (× 102) in the data when incompleteness 
handling approaches are applied after introducing structural incompleteness. 

Table 2 
A comparison of prediction accuracy and errors (× 102) with different strategies 
for handling structurally incomplete targets. Results of the neural network 
model. Bold font indicates where partial imputation based on climatic clusters 
leads to the same or better model performance compared to taking no action.  

Approaches → 
Measures of 
accuracy ↓ 

Only 
complete 
targets 

Normalized Imputed  
(latitude 
and 
elevation) 

Imputed  
(climate 
clusters) 

No 
action 

Accuracy (of 
incomplete 
targets) 

77 % 88 % 85% 88% 89%  

MAE 1.74 1.88 1.89 1.81 1.82 
MAE (non- 

zero-value 
targets) 

5.79 6.23 5.96 5.83 5.85 

MAE (zero- 
value 
targets) 

0.08 0.13 0.20 0.13 0.14  

MAE 
(Evergreen 
Needleleaf 
Forest) 

0.90 0.80 0.84 0.85 0.76 

MAE 
(Evergreen 
Broadleaf 
Forest) 

0.81 0.76 0.86 0.73 0.81 

MAE 
(Deciduous 
Needleleaf 
Forest) 

0.53 0.47 0.44 0.45 0.46 

MAE 
(Deciduous 
Broadleaf 
Forest) 

0.17 0.43 0.20 0.20 0.23 

MAE (Mixed 
Forest) 

1.17 1.07 1.14 1.11 1.09 

MAE (Closed 
Shrubland) 

0.30 0.31 0.31 0.31 0.31 

MAE (Open 
Shrubland) 

5.74 6.01 6.26 6.06 5.86 

MAE (Woody 
Savanna) 

2.60 2.98 2.86 2.70 2.76 

MAE 
(Savanna) 

1.65 2.11 2.08 1.98 2.03 

MAE 
(Grassland) 

4.57 5.01 4.91 4.71 4.87 

MAE 
(Permanent 
Wetlands) 

0.33 0.38 0.40 0.38 0.41 

MAE (Snow 
and ice) 

0.49 0.51 0.53 0.52 0.53 

MAE (Barren) 3.31 3.54 3.68 3.47 3.55  

Fig. 8. Number of zero and non-zero values in distribution of each vegetation type.  
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observations where the dominant type occupies more than 55% of a grid 
cell. In addition, for all complete observations, we individually measure 
prediction errors for each vegetation cover type and separately measure 
errors for non-zero and zero-valued targets. Such approach allows us to 
dissect the effects of predictive performance: (1) whether the types that 
can grow in a given environment are predicted correctly, and (2) to what 
extent the relative shares of those types in a given environment are 
predicted correctly. 

The scheme or performance evaluation with simplified numerical 
examples is provided in Fig. 6. 

4. Results and discussion 

4.1. Performance of data massaging strategies for handling structural 
incompleteness 

Fig. 7 summarizes the results of structural target incompleteness 

handling approaches. As seen from the barplot, if we take no explicit 
action to address incompleteness in the targets, the MAE error is the 
lowest when target reduction happens non-randomly. In this scenario, 
fewer training instances are affected by incompleteness; thus, the overall 
error is smaller. 

We can observe in the figure (Fig. 7) that both normalizing and 
partial imputation approaches significantly reduce the noise. In all 
cases, partial imputation based on climate clusters performs better than 
imputation based on latitude and elevation. This is due to climate 
clusters reflecting environmental conditions more precisely than the 
rough grouping by latitude and altitude. 

Normalization performs slightly better than partial imputation based 
on latitudes and elevation when incompleteness is introduced by 
random down-scaling. However, in other scenarios, the performance of 
this approach appears to be much worse compared to the climate cluster 
imputation. This result can be attributed to the fraction of zero-valued 

Table 3 
A comparison of prediction accuracy and errors (× 102) with different strategies 
for handling structurally incomplete targets. Results of the random forest model. 
Bold font indicates where partial imputation based on climatic clusters leads to 
the same or better model performance compared to taking no action.  

Approaches → 
Measures of 
accuracy ↓ 

Only 
complete 
targets 

Normalized Imputed  
(latitude 
and 
elevation) 

Imputed  
(climate 
clusters) 

No 
action 

Accuracy (of 
incomplete 
targets) 

77% 92% 90% 91% 92%  

MAE 1.68 1.72 1.77 1.69 1.71 
MAE (non- 

zero-value 
targets) 

5.26 5.31 5.37 5.21 5.43 

MAE (zero- 
value 
targets) 

0.23 0.26 0.33 0.25 0.22  

MAE 
(Evergreen 
Needleleaf 
Forest) 

0.89 0.78 0.79 0.77 0.76 

MAE 
(Evergreen 
Broadleaf 
Forest) 

0.84 0.99 1.16 0.93 1.21 

MAE 
(Deciduous 
Needleleaf 
Forest) 

0.41 0.43 0.44 0.42 0.41 

MAE 
(Deciduous 
Broadleaf 
Forest) 

0.22 0.23 0.22 0.21 0.20 

MAE (Mixed 
Forest) 

1.04 1.03 1.09 1.02 1.02 

MAE (Closed 
Shrubland) 

0.33 0.35 0.33 0.34 0.33 

MAE (Open 
Shrubland) 

5.37 5.39 5.56 5.35 5.36 

MAE (Woody 
Savanna) 

2.42 2.55 2.50 2.48 2.42 

MAE 
(Savanna) 

1.59 1.77 1.73 1.71 1.72 

MAE 
(Grassland) 

4.43 4.51 4.55 4.44 4.46 

MAE 
(Permanent 
Wetlands) 

0.38 0.48 0.46 0.45 0.44 

MAE (Snow 
and ice) 

0.53 0.46 0.50 0.49 0.51 

MAE (Barren) 3.32 3.36 3.62 3.30 3.43  

Table 4 
A comparison of prediction accuracy and errors (× 102) with different strategies 
for handling structurally incomplete targets. Results of the k-nearest neighbours 
regression model. Bold font indicates where partial imputation based on climatic 
clusters leads to the same or better model performance compared to taking no 
action.  

Approaches → 
Measures of 
accuracy ↓ 

Only 
complete 
targets 

Normalized Imputed  
(latitude 
and 
elevation) 

Imputed  
(climate 
clusters) 

No 
action 

Accuracy (of 
incomplete 
targets) 

75% 89% 87% 89% 89%  

MAE 1.76 1.81 1.87 1.78 1.83 
MAE (non- 

zero-value 
targets) 

5.64 5.73 5.79 5.63 5.90 

MAE (zero- 
value 
targets) 

0.19 0.23 0.31 0.23 0.20  

MAE 
(Evergreen 
Needleleaf 
Forest) 

0.88 0.80 0.83 0.81 0.80 

MAE 
(Evergreen 
Broadleaf 
Forest) 

0.91 1.15 1.25 1.06 1.36 

MAE 
(Deciduous 
Needleleaf 
Forest) 

0.45 0.47 0.49 0.47 0.47 

MAE 
(Deciduous 
Broadleaf 
Forest) 

0.22 0.18 0.18 0.17 0.17 

MAE (Mixed 
Forest) 

1.11 1.11 1.17 1.07 1.15 

MAE (Closed 
Shrubland) 

0.34 0.35 0.34 0.34 0.34 

MAE (Open 
Shrubland) 

5.69 5.72 5.90 5.69 5.79 

MAE (Woody 
Savanna) 

2.61 2.75 2.73 2.67 2.66 

MAE 
(Savanna) 

1.67 1.91 1.87 1.85 1.84 

MAE 
(Grassland) 

4.67 4.63 4.73 4.56 4.63 

MAE 
(Permanent 
Wetlands) 

0.38 0.50 0.48 0.48 0.47 

MAE (Snow 
and ice) 

0.52 0.52 0.55 0.55 0.54 

MAE (Barren) 3.42 3.47 3.77 3.46 3.57  
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targets. If targets are reduced to zero, normalizing cannot recover these 
fractions and introduce more noise in the fractions as compared to the 
scenario where non-zero values would have remained present in the 
training data. 

4.2. Performance of predictive models 

The performance of compared predictive models is summarized in 
Tables 2–4. When using only complete targets for training, the MAE of 
complete observations of the test set is the lowest. However, experi-
mental results on evaluating the prediction accuracy of dominant 
vegetation cover types show that using this approach, the prediction 
accuracy of incomplete observations is more than 10% less than using 
other approaches. This suggests that complete observations do not carry 
full information about the distribution of the natural vegetation cover 
worldwide. It confirms existing findings (Nikoloski et al., 2021) that 
better performance can be achieved if incompletely labeled data is used 
in model training instead of discarding it. 

The highest accuracy using the neural network model and the 
random forest model is achieved when no action is taken while handling 
the targets. One of the explanations for this superiority could be that, 
with the lower error than in imputation and normalization cases, this 
model is better trained to predict the open shurbland type, which is the 
second largest vegetation type. Using k-nearest neighbours, the predic-
tion error of the open shurbland type is lower compared to the error when 
no action is taken. In that case, the prediction accuracy of imputation 
based on the clusters approach and the no-action approach is the same. 

The lowest MAE among other than the complete case approaches is 

achieved by using partial imputation when trained on the climate 
clusters. This can be observed for all predictive models. Even though the 
mean error is similar to the one when no action is taken, it can be seen 
that the error is decreased for nine out of 13 vegetation types using the 
neural network model, seven types using the random forest model, and 
eight types using the k-nearest neighbours model. 

When analyzing zero and non-zero-value predictions, we notice that 
the error of zero-value targets increases in the case of latitude and 
elevation imputation. This suggests that we can be imputing vegetation 
types where they are not present. 

If we analyze the errors of each vegetation type separately, it is clear 
that not all fractions of vegetation cover types can be predicted equally 
well. For instance, fractions of grasslands, open shrublands and Barren or 
sparsely vegetated are predicted with at least four times higher error than 
any other vegetation cover type. One of the possible reasons for this 
could be that these vegetation types can exist in very similar or, in some 
cases, the same climatic conditions. Fig. 9 represents a visual pairwise 
comparison of how proportions of different vegetation cover types vary 
in the same observations. evergreen broadleaf forests and evergreen nee-
dleleaf forests are easily separated as mostly only when one type occupies 
a fraction close to zero, another type exists in different sizes. Whereas 
open shrublands and grasslands coexist in various proportions. Thus, they 
are easily mixed up by the predictive model. 

Overall, we see consistently low errors on the zero-value targets, 
indicating that the predictive models can capture and predict very well 
where each vegetation type can be present and where must be absent. 
For example, in Fig. 10 locations of predictions of evergreen broadleaf 
forests and deciduous needleleaf forests are visualised. These locations 

Fig. 9. Comparison of pairwise proportions of different vegetation cover types.  

Fig. 10. Locations where Deciduous needleleaf forest and Evergreen broadleaf forest types are predicted to occupy fraction grater than zero.  
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match geographical areas where evergreen broadleaf forests and deciduous 
needleleaf forests can be observed. 

While it is more difficult to predict the exact proportion of each 
vegetation type, our proposed algorithmic solution (partial imputation) 
brings the most noticeable improvement in predicting these non-zero 
values. In Fig. 8, we observe that many vegetation types have frac-
tions equal to zero. The grassland has the most observations with non- 
zero values. We can observe that prediction error of this type de-
creases in all models when our porpoised imputation method is used. 

4.3. Limitations of incomplete targets approaches 

Discarding all incomplete observations leads to the loss of most data 
points in Europe, North America, and India. Thereby, results can be 
systematically biased as different parts of the world are not represented 
equally well in the training set. 

If we make an assumption that humans occupy the land with each 
vegetation cover type equally, normalizing incomplete data could be a 
good option. However, agricultural competition leads to more intense 
use of fertile lands (Bičık et al., 2001), and it is more likely for some 
vegetation cover types to be converted to agricultural lands than others. 
Hence, by using this approach, we could inaccurately alter the distri-
bution or not be able to recover vegetation-type fractions that are 
reduced to zero. 

Partial imputation algorithm is based on the cluster assumption 
(Chapelle et al., 2002). In semi-supervised learning, the cluster 
assumption is considered to apply fairly well to the data which is likely 
to be clustered. Here we assume that the average of complete observa-
tions in a cluster is similar to a true cluster average, i.e., the average of 
all observations if they were complete. However, these two averages 
may differ. In that case, the imputation of vegetation fraction would be 
faulty. 

Using latitudes and elevation as clusters is based on the assumption 
that similar vegetation cover can be found in similar geographical or 
climatic zones. These climatic zones can be broadly classified by lati-
tudes as different latitudes on Earth receive different amounts of sun-
light. However, the climate of the places, which are at the same latitude, 
can vary depending on altitude or continental position. Therefore, we 
also have to take into account the elevation of each observation. 

4.4. Implications and future research directions 

Our results highlight the importance of handling incomplete target 
labels when the noise in the data is not evenly distributed but structured. 
Other examples of such data could include demographic data, user 
modeling and recommendation systems data, soil composition data 
where we do not have the same quality information, or the same quality 
samples in all regions of the world. In our case study, some locations, e. 
g., India, appear much more affected by human activity. Failing to 
address this issue would lead to biased vegetation models for future 
climate scenarios. 

The evaluation of the model accuracy on incomplete data is a chal-
lenging task. The compositional structure of the targets enabled us to use 
the classification accuracy of the dominant vegetation types as an 
alternative evaluation metric in the regression setting. However, there 
are still opportunities for further enhancements to both the evaluation of 
prediction accuracy on incomplete target labels and its handling. For 
example, as exact altitudinal zones in mountain regions around the 
world differ, the ranges suggested in this paper could be further tailored. 

5. Conclusions 

We defined a novel computational setting of weakly supervised 
multi-output regression and proposed an algorithmic approach for 
handling structurally incomplete learning targets. We evaluated how the 
proposed approach helps reduce the imprecision in the data and 

compared the performance of predictive models in our global vegetation 
modeling case study. Our experimental results show that with our pro-
posed algorithmic approach of partial imputation, we can reach the 
lowest prediction error within different climatic contexts (clusters). 

The proposed partial imputation algorithm allows us to preserve the 
existing information about the vegetation types in training data. At the 
same time, the algorithm potentially enhances this information by 
redistributing the fraction of human activity in urban areas and crop-
lands across the training set. 

When incomplete data is included in the training set, different parts 
of the world are more equally represented, and the model avoids over-
fitting to complete observations only. Imputing incomplete data helps to 
achieve more accurate predictions of vegetation compositions. This al-
lows us to model global associations between natural vegetation cover 
and climate potentially more accurately, which is pivotal for under-
standing the future vegetation response to climate change. 

In addition to macroecology and conservation, this computational 
task setting can potentially apply to other domains, including, for 
example, soil composition, demographics data or user modeling and 
recommendation systems under the constraints of eliminating undesired 
or irrelevant information from predictions when such information is 
present in the historical data. 
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