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Abstract—Outdoor user equipment (UE) localisation has at-
tracted a significant amount of attention due to its importance
in many location-based services. Typically, in rural and open
areas, global navigation satellite systems (GNSS) can provide
an accurate and reliable localisation performance. However, in
urban areas GNSS localisation accuracy is significantly reduced
due to shadowing, scattering and signal blockages. In this work,
the UE positioning assisted by deep learning in 5G and beyond
networks is investigated in an urban area environment. We study
the impact of utilising the spatial correlation in the received
signal strengths (RSSs) on the UE positioning accuracy and
how to utilise such correlation with deep learning algorithms
to improve the localisation accuracy. Numerical results showed
the importance of utilising the spatial correlation in the RSS
to improve the prediction accuracy for all of the considered
models. In addition, the impact of varying the number of access
points (APs) transmitters on the localisation accuracy is also
investigated. Numerical results showed that a lower number of
APs may be sufficient when not considering uncertainties in RSS
measurements. Moreover, we study how much the degrading
effect of RSS uncertainty can be compensated for by increasing
the number of APs.

Keywords— 5G, beamforming, deep learning, fingerprint-
ing, UE positioning.

I. INTRODUCTION

Outdoor localisation has been an active field of research in
recent years with accuracy and robustness being key enablers
for several emergency and commercial location-based services
[1]. In United States, the Federal Communications Commis-
sion (FCC) has set the requirements for positioning error to
be a maximum of 50m for horizontal error and less than 5m
for vertical error for emergency calls [2]. Moreover, the 3rd
Generation Partnership Project (3GPP) has set even tighter
accuracy values depending on the application. For instance,
the positioning requirements for emergency calls are in tens
of meters, while the requirement decreases to a few decimeters
within indoor factories and one decimeter for vehicle-to-
everything (V2X) in autonomous driving vehicles [3]. While
global navigation satellite systems (GNSS) are capable of
providing both meter level accuracy in open and rural areas,

the GNSS positioning accuracy degrades significantly in urban
and densely built-up areas due to various reasons including
blockage, scattering and multipath propagation [4]. This work
considers the positioning of UEs operating in an urban area
scenario.

It is envisioned that in 5G and beyond 5G (B5G) net-
works the user equipment (UE) will be capable of run-
ning machine learning algorithms. In addition, 5G networks
have already adapted millimetre wave (mmWave) along with
massive multiple-input-multiple-output (MIMO) technologies
to provide extremely high data rates to users. But using
high-frequency bands has its own drawbacks including a
severely high pathloss. In order to compensate for such losses,
beamforming techniques are used to direct the transmission
by providing a large directional gain [5]. Additionally, the
spatial distance between the mmWave transmitters is reduced
to the order of a hundred meters. Thus, it is desired to be
able to perform localisation at both network and UE ends.
Several works in the literature have considered cellular-based
localisation systems for both indoor and outdoor scenarios [6].
Typical and low complexity approaches such as the K nearest
neighbour (KNN) machine learning approach does not provide
sufficient UE location accuracy due to the large fluctuations
in the received signal strength [7].

Deep learning approaches have been utilised recently for
both indoor and outdoor fingerprinting [8–14]. In [8] the
authors demonstrated the correlation in the received signal
strengths (RSS) in time and their impact on improving the
localisation accuracy. Our work is different in the sense that
we benefit from the spatial correlation of different RSSs and
their impact to improve the localisation accuracy. The authors
in [10] used the RSSs from multiple beams as input to the
fingerprinting multilayer perceptron (MLP). In [11] and [12],
the authors extracted features from the signal and beams
such as angle of beam departure, cell identity and channel
bandwidth and combined them using an MLP.

While the mentioned works have utilised deep learning for
fingerprinting, they do not provide a comprehensive under-
standing for the outdoor urban radio environment and how the
RSSs are correlated among locations at relatively close prox-
imity (in meters). In this work, we aim to exploit such spatial978-1-6654-0575-1/22/$31.00 c©2022 IEEE
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Fig. 1. Schematic diagram of the offline and online phases for machine learning (ML) fingerprinting process. RSSn
i, j is the received signal strength from

the ith BS, jth beam at the nth location.

correlation in the RSSs to improve the localisation accuracy
using a deep learning approach. Another open question we aim
to answer is how many access points (APs) representing base
stations (BSs) are required in order to achieve sub-meter level
localisation accuracy. Lastly, this work considers the horizontal
localisation accuracy (in terms of x and y coordinates) thus
the horizontal term will be omitted during the discussion in
the rest of the work.

The contributions of this work are outlined as follows:
1) Investigated the performance of multiple deep learning

algorithms to estimate the fingerprinting accuracy on a
dataset generated by a specialised ray-tracing simulation
approach in a built-up city scenario and the algorithms
capability to learn from the available spatial correlation
in RSS.

2) Analysed different AP deployment strategies in the con-
sidered area by evaluating the positioning errors in terms
of the number of APs used for UE positioning.

3) Demonstrated the importance of increasing the number
of considered APs for localisation and their capability to
reduce the uncertainties in RSS measurements.

The remainder of this paper is organised as follows. First,
Section II discusses the RSS-based fingerprinting approach.
Section III presents the system setup for the conducted exper-
iments. Section IV presents the considered machine and deep
learning models for UE localisation. The performance of the
considered models is evaluated and discussed in Section V.
Finally, Section VI summarises and concludes this work.

II. RSS-BASED FINGERPRINT POSITIONING

The fingerprinting localisation includes two phases, the
offline and online phase as shown in Fig. 1. During the
offline phase, mmWave RSSs are either measured or generated
using a ray-tracing tool at several known locations. For the
case of a real-life measurements scenario, either a Real-Time

Kinematic (RTK) positioning [15] or a sensor fusion approach
[16] can be used to accurately extract the RSS measurements’
locations (ground truth labels). The RSS values are labelled
with their locations to form the database (also referred to as
radio environment map [17]). The collected database is used
to train the fingerprinting model. During the online phase,
all the collected RSS values for the unknown location are
compared with the radio environment map to retrieve the
measurement location. This work considers a deep learning
regression approach to infer the UE coordinates (in terms of
x and y) which corresponds to the given RSS values as can
be seen in Fig. 1.

III. SIMULATION ENVIRONMENT

In this section, the system setup considered in this work
is described. In order to generate a realistic simulation envi-
ronment, the 5G mmWave signals are generated using a ray-
tracing-based approach, as recommended by 3GPP [18], and
for the city layout, the Madrid grid is selected as recommended
by the METIS project in [19]. Furthermore, the ray-tracing-
based channel measurements are obtained by Wireless InSite
software [20]. A similar simulation environment setup can also
be found in [21]. For our research, a specific segment of the
Madrid grid is selected with 7 APs operating at 28GHz. The
AP height is set to 9m and each AP includes two sectors. Each
sector includes a patch antenna element arranged in a uniform
linear array. The transmitted power per sector is set to 30dBm.

During the simulation, a single UE moves along the blue
line (as can be seen in Fig. 2). The measurement resolution
is 1m which gave us a total of 1118 unique locations. In
total, 250432 measurements were recorded where each mea-
surement corresponds to the RSS from a specific beam and a
measurement location (i.e., x, y coordinates). The simulated
RSS observed at each UE location is based on the beam
RSS. In practice, the RSS measurements obtained by the UE
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TABLE I
SIMULATION PARAMETER

Parameter Value
Number of sites 7
Number of sectors per site 2
Number of beams per sector 16
AP height 9m
Carrier frequency 28GHz
Resolution of data points 1m
AP Tx Power per sector 30dBm
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Fig. 2. Urban area network visualisation with 7 beamforming capable BSs.
A user is navigating in the environment and measuring RSS.

are based on 3GPP-specified synchronization signal blocks
(SSBs) transmitted by each BS over 32 beams [22]. The
utilised beamforming is implemented following the phased-
array principle. Each of the two sectors found in a single BS
is designated to cover 90 degrees and the 16 beams set for each
sector are uniformly spaced (i.e., each AP covers 180 degrees).
The detailed simulation parameters used for the simulation are
provided in Table I and Fig. 2 shows the considered Madrid
grid segment along with the user path and BS locations in the
map. Furthermore, in order to evaluate the system’s ability
to suppress uncertainty in RSS measurements due to various
reasons such as noise, interference and human body blockages,
we follow a similar approach to [21] and additionally add
uncertainties to the RSS measurements generated following a
Normal distribution N (µ, σ2) with mean µn = 0 and standard
deviation σn ∈ {0,1,2,3} in dB. Thus, we have 4 datasets in
total with different uncertainty levels in RSS.

IV. MACHINE AND DEEP LEARNING TECHNIQUES

This section discusses the considered machine and deep
learning models for the UE positioning.

A. KNN model

For baseline machine learning fingerprinting approach, the
K-nearest neighbour algorithm is considered as it is one of the
most popular algorithms for RSS-based fingerprinting [23]. In

a traditional KNN, the position of the UE is estimated based
on the mean of K number of the nearest neighbours locations.
The Euclidean distance is used to find the nearest neighbours
from the accumulated database.

B. MLP

An MLP is a feed-forward type neural network based on the
backpropagation algorithm [24]. The considered MLP model
is a sequential one with three hidden layers, which takes
RSS measurements as input and returns the inferred location
as output. The considered MLP’s architecture for the RSS
fingerprinting is given as follows:
• Input layer with Z×I×J RSS measurements vector, where

I is the number of APs (from 2 to 7), J=32 is the number
of beams and Z is the number of look-backs (from 1 to
40).

• Densely connected layer with 1024 neurons and a Recti-
fied Linear Unit (ReLU) activation function.

• Densely connected layer with 512 neurons and a ReLU
activation function.

• Densely connected layer with 64 neurons and a ReLU
activation function.

• Densely connected output layer with 2 neurons and a lin-
ear activation function for the UE positioning estimation.

The activation function is used to describe the non-linear
properties between neuron input and output. For MLP, a ReLU
activation function which is defined as positive part of it is
argument and given as ψ(p) = max(0,p) [25]. We define the
look-back as how many previous RSSs (i.e., RSSs from the
previous locations) are used in order to predict the current
location. The model is trained with a mean squared error
(MSE) loss function which represents the error of the Eu-
clidean distance between the UE true and estimated locations.
In addition to the proposed model, other MLP models such as
the ones considered in [14] and [13] were also tested, but we
found out that the proposed model provided a slightly higher
UE position estimation accuracy.

C. LSTM and GRU models

The long short-term memory (LSTM) network is a variation
of recurrent neural networks (RNNs) which is typically used
for time series data types. It was first proposed in [26] as
an improvement over RNN to solve long-term dependency.
For this work, several architectures have been tested, such as
increasing the number of hidden layers and it was found that
three hidden layers gave the highest localisation accuracy. The
considered LSTM architecture for the RSS fingerprinting is
given as follows:
• Input layer with (Z, I×J) RSS measurements array, where

I is the number of APs (from 2 to 7), J=32 is the number
of beams and Z is the number of look-backs (from 1 to
40).

• An LSTM layer with 1024 neurons and a hyperbolic
tangent (Tanh) activation function.

• An LSTM layer with 512 neurons and a hyperbolic
tangent (Tanh) activation function.
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Fig. 3. The correlation coefficient as a function of distance for AP1. The x
axis represents the separation between RSSs.

• An LSTM layer with 64 neurons and a hyperbolic tangent
(Tanh) activation function.

• Densely connected output layer with 2 neurons and a lin-
ear activation function for the UE positioning estimation.

The LSTM model is also trained with a mean squared error
(MSE) loss function.

Another RNN variant is the gated recurrent unit (GRU) [27].
The GRU generally has a comparable performance to LSTM
but it is computationally more efficient (has a less complex
structure). The same model is considered for both LSTM and
GRU as the two models are associated with time series datasets
and we wanted to compare their accuracy.

V. EXPERIMENTAL EVALUATION

In this section, the positioning accuracies of the considered
models are presented. For this work, two metrics, namely
the mean (Ē) and variance (σ2), of the Euclidean distance
between the estimated UE position and the actual position are
considered and they are defined as,

Ē =
1
N

N∑
n=1

xn , (1)

σ2 =
1
N

N∑
n=1

(xn − Ē)2, (2)

where, xn is the Euclidean distance between estimated and
actual UE position for the nth sample.

In this work, Python 3 language is used alongside Ten-
sorFlow [28] as backend. Adam optimiser [29] was used
as it is by far the most commonly utilised optimiser in the
current deep learning domain [30]. The dataset is split into
training, validation and testing subsets with 55-20-25 ratios
with shuffling. In addition, k-fold validation was also used
which yields in different training, validation and testing sub-
datasets at each training. Given that neural networks models
are stochastic, hence, different weights will result at each

TABLE II
KNN UE LOCATION ESTIMATION ACCURACY (HORIZONTAL ACCURACY)

FOR DIFFERENT K VALUES, LOOK-BACK = 1 AND ALL 7APS.

K nearest neighbour
Look-back = 1

Mean Ē
(m)

Variance σ2

(m)2

1 3.442 0.037
2 3.304 0.036
3 3.851 0.031
4 4.389 0.035
5 4.924 0.036
6 5.422 0.058

training time even when the same model configuration is
utilised. In order to address the model accuracy evaluation,
each model configuration is evaluated multiple times (20 times
in our case). The reported positioning accuracy is averaged
across all of the evaluations. The training batch size is set
to 64 and the learning rate is set to 0.001. All simulations
were conducted with a maximum number of epochs set to
4000. An early stopping algorithm is utilised to prevent
overfitting (during training stage) with an early stop value of
300 iterations [31]. A separate MinMax scaler was applied for
the RSS dataset and the UE coordinates as there is a significant
difference between their values (the RSS dataset is between
-19 and -100 dBm, while the UE coordinates are between 0
and 550 meters) [32].

First, the spatial correlation in the RSSs is discussed, which
is a feature exploited in this work. For instance, the averaged
spatial Pearson’s correlation coefficient of the RSSs (across
all 32 beams) from AP1 is shown in Fig. 3. As it can be
appreciated, the smaller the spatial separation between RSSs
is the higher the correlation coefficient value.

Next, the configuration of KNN is discussed. Given that the
number of K neighbours depends on the radio environment
and the UE path. Hence, several K values are investigated
to find the highest positioning accuracy. Table II, shows the
positioning accuracy of different K values for the considered
scenario. These results are obtained from a single look-back
(i.e., only the current RSSs are considered) and when all the
7APs are present under zero level uncertainty (i.e., σn = 0
dB). As it can be concluded, K = 2 provides the highest
location accuracy with an average positioning accuracy of
3.304 m. Higher K vales (K > 6) were also investigated, but
we only found them to reduce the positioning accuracy. Thus,
we decided not to include them in the results.

Next, Table III shows the localisation accuracy of different
deep learning (DL) algorithms (i.e., MLP, LSTM and GRU)
and machine learning (ML) algorithm (i.e., KNN) when all
of the seven APs are used for UE localisation. Moreover, the
capability of these models to learn from the spatial correlations
of the RSS dataset are investigated too. In other words,
the effect of different number of RSS historical values (i.e.,
look-backs) are investigated to demonstrate the importance
of adding more look-backs under a baseline scenario (i.e.,
under no uncertainties σn = 0 dB). The first observation
is that all models benefit from adding more look-backs and
experience a performance improvement with a larger number
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of look-backs. It is worth noting that such improvement did
not continue with larger look-backs and it saturates around
some look-backs value. For instance, the considered LSTM
saturates at 20 look-backs, while the GRU saturates at 30 look-
backs. In addition, both KNN and MLP have relatively similar
positioning accuracies but are worse than the other considered
algorithms (i.e., GRU and LSTM) in terms of both the average
Ē and the variance σ2. The LSTM and GRU models have
relatively similar positioning accuracies with an advantage
for the LSTM. For instance, at 20 look-backs, the LSTM
provided an average error and variance of 0.523m and 0.009m2

respectively, while the GRU provided an average error 0.655m
and variance of 0.011m2. Thus, it can be concluded that LSTM
is a better model to capture the spatial correlations in the RSS
dataset and is a better option for fingerprinting.

The cumulative distribution function (CDF) for the posi-
tioning error of the considered models (at their best look-
back value) are shown in Fig. 4. The results are consistent
with the ones obtained in Table III with having the LSTM
giving the best performance among the considered models in
this work. In addition, both the KNN and MLP have similar
performances. The stairs shape of the KNN’s CDF is due to
the fact that KNN is a clustering algorithm and therefore it
has a finite precision as a result of its discrete output.

Since LSTM provided the highest average localisation ac-
curacy among the tested models, next we study the effect of
changing the number of serving APs with LSTM and their
impact on positioning accuracy as can be seen in Table IV. As
it can be appreciated, having a larger number of APs generally
improves the UE location estimation accuracy and reduces
the variance of estimations. For instance, to ensure sub-meter
accuracy, having at least 3 APs with 10 look-backs is essential.
As for higher accuracies such as an average of around a
half meter, then the number of APs should be increased to
a minimum of 5 APs and with a relatively high number of
look-backs, in our simulation 20 look-backs were required to
reach such high accuracy as it can be concluded from Table
IV.

Fig. 5 shows the empirical CDF of localisation error of
multiple APs combinations and different look-backs. As it
can be appreciated, 5 APs have similar localisation accuracy
compared to 7 APs at 20 look-backs.

The results obtained from Table IV and Fig. 5 imply the
possibility of obtaining a high level of accuracy while using
less number of APs by increasing the number of look-backs. In
practice, maintaining a large number of APs is not guaranteed
and it can be compensated by increasing the number of
look-backs which only requires slightly increasing the UE or
operator memory space to store RSS values.

Finally, we analyse the capability of the LSTM model to
mitigate different uncertainty values in the measurements. As
can be inferred from Table V, having a small uncertainty value
(i.e., σn = 1 dB) does not impact the prediction accuracy and
an average of around 1 m accuracy could be attained for both 5
APs and 7 APs. For the case of high RSS uncertainty (i.e., σn

= 3 dB), having 7 APs can improve the localisation accuracy
by 1 meter over only having 5 APs. From these results, it can
be concluded that APs diversity improves the LSTM capability
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Fig. 4. Empirical CDF of the UE horizontal positioning estimation error of
RSS fingerprinting for 7 APs.
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Fig. 5. Empirical CDF of the UE horizontal positioning estimation error of
RSS fingerprinting versus the number of APs.

to deal with RSS uncertainty and increasing the number of APs
can overcome the degrading impact of RSS uncertainty on the
UE localisation.

Fig. 6 shows the CDF of positioning accuracy of different
RSS uncertainty levels for 5 APs and 7 APs. As it can be ap-
preciated, 5 APs have similar localisation accuracy compared
to 7 APs at σn = 0 dB. However, once the uncertainties are
included, 7 APs positioning accuracy surpasses 5 APs with a
significant margin. Thus it can be concluded that having more
number of APs is essential to alleviate the uncertainties in
RSS.

VI. CONCLUSIONS

This work has demonstrated that the spatial correlation in
the RSS is an essential feature and having it alone is sufficient
to achieve sub-meter level positioning accuracy without the
requirement to modify current standards nor applying fusion
methods.
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TABLE III
POSITIONING HORIZONTAL ACCURACY FOR THE CONSIDERED MACHINE AND DEEP LEARNING ALGORITHMS.

Look-back KNN MLP GRU LSTM
Ē σ2 Ē σ2 Ē σ2 Ē σ2

1 3.304 0.036 2.663 0.785 2.202 0.927 1.929 0.450
2 2.565 0.028 2.367 0.278 2.286 0.512 1.351 0.223
5 1.755 0.011 1.949 0.441 1.457 0.116 1.067 0.326
8 1.412 0.014 1.529 0.332 1.181 0.025 0.774 0.040
10 1.271 0.006 1.440 0.234 1.256 0.028 0.697 0.018
15 1.125 0.007 1.395 0.190 1.170 0.074 0.647 0.007
20 1.065 0.005 1.235 0.332 0.877 0.017 0.523 0.009
30 0.986 0.004 0.998 0.063 0.655 0.011 0.535 0.010
40 0.984 0.003 1.247 0.058 0.809 0.008 0.551 0.080

TABLE IV
POSITIONING HORIZONTAL ACCURACY WITH LSTM AND VARYING NUMBER OF APS.

Look-back 2APs 3APs 4APs 5APs 6APs 7APs
Ē σ2 Ē σ2 Ē σ2 Ē σ2 Ē σ2 Ē σ2

1 3.333 1.163 3.435 1.064 2.284 0.631 1.809 0.560 2.098 0.759 1.929 0.450
2 2.994 0.948 2.300 0.521 1.875 0.430 1.874 0.454 1.900 0.400 1.351 0.223
5 2.377 0.723 1.546 0.034 1.435 0.041 1.158 0.033 1.060 0.041 1.067 0.326
8 1.955 0.123 1.068 0.116 1.328 0.058 0.995 0.011 0.930 0.080 0.774 0.040
10 1.802 0.023 0.991 0.002 0.839 0.051 0.748 0.060 0.738 0.069 0.697 0.018
15 1.600 0.048 0.697 0.011 0.633 0.021 0.582 0.014 0.764 0.074 0.647 0.007
20 1.402 0.057 0.707 0.081 0.618 0.051 0.527 0.007 0.534 0.011 0.523 0.009

TABLE V
HORIZONTAL POSITIONING ACCURACY FOR LSTM (7APS) VERSUS

DIFFERENT UNCERTAINTY-LEVELS IN RSS

Uncertainty level σn in dB 5 APs 7 APs
Ē σ2 Ē σ2

0 0.527 0.007 0.523 0.009
1 1.120 0.211 0.988 0.054
2 1.605 0.889 1.126 0.245
3 3.291 3.553 2.120 2.211
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Fig. 6. Empirical CDF of the UE horizontal positioning estimation error
under RSS uncertainties for 5 APs and 7 APs.

This work studied the accuracy of UE positioning in an
urban environment. The performance of state of the art ap-

proaches is explored for outdoor positioning including ma-
chine and deep learning algorithms with a large emphasis
on the capability of the considered models to learn from the
spatial correlation in the RSS dataset. The obtained numerical
results showed that deep learning approaches, specifically the
LSTM, provided the best capability in providing accurate UE
localisation with an average of around a half meter positioning
accuracy based on the RSS only. This result demonstrates
the importance of RSS spatial correlations in improving the
localisation accuracy even when the considered ray-tracing
dataset has a one meter UE separation. In addition, the effect
of varying the number of APs used for localisation has been
investigated.

The obtained numerical results demonstrated the importance
of utilising the spatial correlation in the RSS on improving UE
localisation accuracy. In addition, a lower number of APs can
be sufficient to have high localisation accuracy under no RSS
measurement uncertainties. While, the degrading effect of RSS
uncertainty can be mitigated by increasing the number of APs
(e.g., up to 1 meter accuracy improvement when increasing
from 5 to 7 APs).
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Granados, “Survey of cellular mobile radio localization methods: From
1G to 5G,” IEEE Communications Surveys Tutorials, vol. 20, no. 2, pp.
1124–1148, 2018.

[7] S. H. Javadi, H. Moosaei, and D. Ciuonzo, “Learning wireless sensor
networks for source localization,” Sensors, vol. 19, no. 3, 2019.
[Online]. Available: https://www.mdpi.com/1424-8220/19/3/635

[8] B. Xu, X. Zhu, and H. Zhu, “An efficient indoor localization method
based on the long short-term memory recurrent neuron network,” IEEE
Access, vol. 7, pp. 123 912–123 921, 2019.

[9] J. Gante, L. Sousa, and G. Falcao, “Dethroning GPS: Low-power
accurate 5G positioning systems using machine learning,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, vol. 10, no. 2,
pp. 240–252, 2020.

[10] N. Xu, S. Li, C. S. Charollais, A. Burg, and A. Schumacher, “Machine
learning based outdoor localization using the RSSI of multibeam an-
tennas,” in 2020 IEEE Workshop on Signal Processing Systems (SiPS),
2020, pp. 1–5.

[11] A. Mohamed, M. Tharwat, M. Magdy, T. Abubakr, O. Nasr, and
M. Youssef, “Deepfeat: Robust large-scale multi-features outdoor lo-
calization in LTE networks using deep learning,” IEEE Access, vol. 10,
pp. 3400–3414, 2022.

[12] M. M. Butt, A. Pantelidou, and I. Z. KovÃącs, “ML-assisted UE
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