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We present an analysis of positron lifetimes in solids with unprecedented depth. Instead of modeling
correlation effects with density functionals, we study positron-electron wave functions with long-range
correlations included. This gives new insight in understanding positron annihilation in metals, insulators,
and semiconductors. By using a new quantumMonte Carlo approach for computation of positron lifetimes,
an improved accuracy compared to previous computations is obtained for a representative set of materials
when compared with experiment. Thus, we present a method without free parameters as a useful alternative
to the already existing methods for modeling positrons in solids.
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Positron annihilation is an elementary component of
quantum electrodynamics [1]. Measurable annihilation
parameters such as positron annihilation rate and momen-
tum density of annihilation radiation are governed by
many-body interactions between the positron and the
surrounding electronic system. Theoretical predictions
and experimental measurements can provide a good match
for few-electron systems; for example, the binding energies
of positrons bound to molecules can be reproduced [2].
Theoretical studies of homogeneous electron-positron sys-
tems provide a starting point for understanding positron
annihilation in more complex systems [3,4], but real,
inhomogeneous systems are nevertheless often problem-
atic. Better description of the correlations is needed to
improve theory and applicability of positron physics.
Positron annihilation spectroscopy [5] is a powerful,

nondestructive method for studying systems including
metals, alloys, semiconductors and insulators [6], polymers
and soft matter [7,8], and porous materials [9]. The method
involves injecting positrons into a sample where they first
thermalize rapidly and then either continue diffusing as a
delocalized wave or become trapped in voidlike open
volumes. Eventually, each positron annihilates with an
electron, emitting two detectable 511 keV γ photons. As the
positrons are very sensitive to open volumes within a
sample, measured lifetime components and their intensities
provide information on the size and concentration of
vacancies trapping the positrons [5].
Positron lifetime techniques can be combined with, for

example, in situ irradiation [10] or optical illumination [11]
to study damage production and various defect properties.
Pulsed slow positron beams [12] can be used for lifetime
studies of thin films or scanning surfaces with a microm-
eter-scale lateral resolution [13]. Also the study of pore size

distribution in thin films is possible [9]. On the other hand,
the local electronic momentum density of the annihilation
site is directly connected to the Doppler broadening of the
annihilation γ radiation, enabling the study of the chemical
surroundings of lattice defects [5] or Fermi surfaces of
metals [14].
Theoretical models associate measured lifetime compo-

nents to microscopic traps in the material. Single-particle
models, such as Hartree-Fock (HF) theory, ignore many-
body correlation effects between particles. Suchmodels give
smaller positron-electron overlaps, overestimating the posi-
tron lifetimes by nearly an order of magnitude [15]. Better
description of positrons is provided by two-component
density functional theory (DFT) [3], where the many-body
correlation effects are included in approximate correlation
functionals of the particle densities. In the local density
approximation (LDA), the electron-positron correlation
energies are obtained from functionals of the local densities,
and the electron-positron overlap enhanced by correlations is
computed with another local functional, the so-called
enhancement factor. Generalized gradient approximations
(GGAs) [16–18] can improve lifetime calculations in com-
parison to the underlying LDA parametrizations.
Despite successes with LDA or GGA functionals, DFT is

an insufficient theory for positron annihilation studies. A
correlation functional may accurately predict the lifetime in
some systems while failing in others. The lifetimes by
different functionals in a given system can differ even by
30 ps (see below). Moreover, there is no a priori means to
determine a functional best suited for a given task, but
experimental benchmarking is needed; and the construction
of a functional can require both higher level calculations,
such as quantum Monte Carlo calculations [4], and fits to
experimental data [18].
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For a given positron lifetime setup, the statistical
accuracy achievable for a defect-free sample is on the
order of 1 ps. In general, DFT does not reach this accuracy.
Moreover, local or semilocal correlation functionals are
bound to fail in solid-state systems with large open volumes
or surfaces. Thus, often it is not possible to adequately
assign the components of the measured lifetime spectra to
different microstructures of the sample. Development of a
practical many-body theory that is accurate and able to
describe complex correlation effects has been a long-
standing problem in the field of positron physics and its
applications. More accurate many-body theory could
improve the applicability of positron annihilation and
provide new research areas. For example, the correlation
functionals could be evaluated and improved using a more
descriptive theory. A many-body theory also enables the
study of positrons in systems with multideterminantal
nature, impossible with current methods but unavoidable
with many lattice defects [19].
Importantly, the dependence of positron lifetime on

lattice vibrations is a theoretical question unaddressed to
date and should clearly be studied for complete under-
standing of positron annihilation in solids.
We present quantum Monte Carlo (QMC) as a new

method, devoid of free parameters, for simulation of
positrons in solids. To our knowledge, this is the first
QMC study of positrons in real crystals, although such
studies exist for molecules [20,21] and electron gases [4].
Calculation of positron lifetimes in the perfect bulk of
materials is the first and the most critical test for bench-
marking how well the electron-positron correlations in
inhomogeneous solid-state systems can be described before
we move on to other experimentally relevant quantities,
such as the momentum density of annihilating pairs.
Annihilation studies in defect systems, such as vacancies,
in which also the detailed ionic structure in the presence of
the trapped positron poses a challenge, can follow after we
have validated the capability of QMC to describe correla-
tions in defect-free lattices.
We perform a detailed study of finite-size effects

involved and how to best describe annihilation with core
electrons. Besides QMC, we study vibrational effects on
positron lifetime.
The studies were performed for C and Si in the diamond

structure, body-centered cubic Li, and wurtzite AlN, a set
that consists of materials of past and present interest in the
field of positron annihilation spectroscopy and includes
insulators (C), semiconductors (AlN, Si), and metals (Li).
The choice of the test set was limited by the need of
experimental reference data and by the available pseudo-
potentials. Si and AlN have well-known experimental
reference results. C is a less correlated system and expected
to be easy to model with QMC. The positron lifetime in Li
has been overestimated by many state of-the-art two-
component DFT correlation functionals, making the results
by QMC theoretically interesting.

We use variational and diffusion Monte Carlo (VMC and
DMC) methods [22,23] as implemented in the CASINO code
[24,25]. The fermion-sign problem is treated in DMC by
imposing a fixed-node approximation [26] that constrains
the nodal surface of the wave function to be that of the
VMC-optimized wave function.
The VMC many-body wave functions are represented as

Slater-Jastrow (SJ) or Slater-Jastrow-backflow (SJB) wave
functions [27,28]. The former is a product of single-particle
Slater determinants and a Jastrow factor. The determinants
fix the nodal surface, and the Jastrow factor is a para-
metrized function describing the interparticle correlations.
The SJB wave function goes beyond the single-particle SJ
nodal surface by introducing parametrized shifts into the
particle coordinates. Optimizing backflow parameters both
increases variational freedom in VMC and reduces the
DMC fixed-node error.
The trial wave functions can be written for a system with

one positron as

ΨSJðRÞ ¼ eJðRÞ½ϕlðri↑Þ�½ϕmðrj↓Þ�ϕðrþÞ;
ΨSJBðRÞ ¼ eJðRÞ½ϕlðri↑ − ξi↑ðRÞÞ�½ϕmðrj↓ − ξj↓ðRÞÞ�

× ϕðrþ − ξþðRÞÞ; ð1Þ

where r↑, r↓, and rþ denote the positions of up- and down-
spin electrons and the positron, respectively. N is the
number of particles in the system. R is a 3N-dimensional
vector of the particle coordinates. JðRÞ and ξðRÞ are the
Jastrow exponent and backflow displacement, respectively,
parametrized with respect to different spin groupings. The
ϕ functions are single-particle Kohn-Sham orbitals [29],
computed with DFT using Quantum ESPRESSO [30] and our
own positron package [31]. We assume that the delocalized
positron density does not affect the average electron density
and take the zero-positron-density limit of the e − p
correlation energy functional [32]. The ½…� signs denote
Slater determinants over the orbitals. The Perdew-Burke-
Ernzerhof [33] GGA and Boroński-Nieminen [3] LDA
functionals were used to solve electron and positron
orbitals, respectively. The orbitals were in a localized B
spline, or blip, basis [34] (see Supplemental Material [35]).
Periodic boundary conditions generalize the definition of

orbitals in Eq. (1). Each orbital of band j at wave vector k
ϕj
kðrÞ is of the form ujkðrÞeik·r, i.e., a lattice periodic

function u multiplied by a plane wave exponential, accord-
ing to Bloch’s theorem. We use twist averaging, i.e.,
average results computed in a grid of Bloch k vectors,
but the positron orbital is always chosen from the minimum
of the parabolic positron band (k ¼ 0), as we focus on a
single thermalized positron in an infinite lattice.
The Jastrow factor contains terms representing one-,

two-, and three-body correlations [38], and the backflow
function contains one- and two-body terms. The Jastrow
factor is optimized with a variance minimization method

PHYSICAL REVIEW LETTERS 129, 166403 (2022)

166403-2



(except when core electrons are included we use energy
minimization, see below) [39] and the backflow is opti-
mized together with the Jastrow factor with an energy
minimization algorithm [40].
Multiple finite-size effects bias our simulations. The

long-range correlations are not described correctly by finite
cell sizes, and quasirandom finite-size noise arising from
the forcing of Friedel oscillations to be commensurate with
the simulation cell is difficult to remove from the calcu-
lation [25]. Momentum integrals are treated as discrete
sums, increasing the kinetic energy bias [41]. Noise due to
discrete momentum grid is reduced by twist averaging [42].
The relaxation energies are computed by fitting computed
energies to the twist vectors [25] (see Supplemental
Material [35]). Finite-size effects due to long-range inter-
actions can be reduced by increasing the simulation cell
size. Coulombic interactions are treated as Ewald sums,
with a constant negative background charge to compensate
the positive total charge due to the positron.
There are also systematic finite-size errors in energy

arising from the positron interacting with its periodic
images. In metallic systems, these errors should be small
when the simulation cell is large compared to the Thomas-
Fermi screening length. In semiconductors, the error
decreases with increasing simulation cell size as vM=2ϵ,
where vM is the Madelung constant of the simulation cell
that falls off with increasing number of atoms as 1=N1=3 for
a given cell shape, and ϵ is the dielectric constant [25].
Norm-conserving, nonlocal Dirac-Fock average relativ-

istic effective pseudopotentials (AREPs) [43,44] are mainly
used to approximate the ion cores. The positron-nucleus
interactions are calculated with inverted electron pseudo-
potentials. We also computed lifetimes in Si with SJ wave
functions, using effective core potential (ECP) [45] pseu-
dopotentials with two electrons within the frozen core, and
performed an all-electron SJ calculation for Li, enforcing
cusp conditions on the electron and positron orbitals by
adding short-ranged functions [46].
The electron-positron annihilation results from the over-

lap of electrons and the positron in the many-body wave
function [47]. The annihilation rate for 2γ annihilation is
(second form given in units of ns−1)

Γ ¼ πr20c
XNe

i¼1

hΨjÔs
iδðri − rþÞjΨi
hΨjΨi ¼ 100.9 gð0ÞN

↑
e

V
; ð2Þ

where r0 is the classical electron radius, c is the speed of
light in vacuo, Ne (N↑

e ) is the number of individual (spin
up) electrons, V is the volume of the simulation cell, and Ôs

i
is the spin-projection operator to the singlet state of the
positron-electron pair. gð0Þ is the rotationally and transla-
tionally averaged contact pair correlation function (PCF).
In the case of metals (here Li), we make an asymptotic
correction [48] and multiply the PCF with Ne=ðNe − 1Þ to

ensure that the effective electronic density is unchanged far
from the positron in the simulation cell.
The system-averaged PCF gðjre − rpjÞ is sampled with

QMC by binning electron-positron distances. The leading-
order errors inΨVMC are removed by extrapolating the final
result as gðrÞ ¼ 2gDMCðrÞ − gVMCðrÞ [49]. The estimate of
gðjre − rpjÞ has poor statistics near the contact region
jre − rpj ≈ 0. We estimate the gð0Þ by fitting an Nth-order
polynomial pðrÞ¼a0−rþa2r2þ���þaNrN to log½gðrÞ� in
the range 0 < r < rcut, so that gð0Þ ¼ expða0Þ. By setting
a1 ¼ −1 in the polynomial, we assure that the fitted
exp½pðrÞ� satisfies the Kimball cusp conditions [50]. The
Supplemental Material [35] describes the details of the
fitting procedure.
With pseudopotentials, the annihilation and screening

interactions due to core electrons are not considered. We
calculate reference DFT results and estimate the annihila-
tion rate Γc due to core electrons using a number of
enhancement functionals: Drummond et al. LDA (D-LDA)
[4], Boroński-Nieminen LDA (BN-LDA) [3], Kuriplach-
GGA (KUR-GGA) [17], and GGAs by Barbiellini et al.
from Ref. [16] (B95-GGA) and [18] (B15-GGA). Hence,
the total annihilation rate is Γ ¼ ΓQMC þ Γc.
For C and Si, we used 2 × 2 × 2 and 3 × 3 × 3 face-

centered cubic (fcc) simulation cells, including 16 and 54
atoms (64 and 216 electrons with AREPs). For Si, also a
4 × 4 × 4 fcc cell with 128 atoms (512 electrons) was
investigated. Cubic Li 3 × 3 × 3 or 5 × 5 × 5 cells had 54
or 250 atoms, with one valence electron per atom. AlN was
modeled with 2 × 2 × 1 and 3 × 3 × 2 hexagonal primitive
cells, resulting in 16- and 72-atom (64- and 288-electron)
supercells. ECP pseudopotential and all-electron calcula-
tions had 3 times more electrons per atom than in AREP
simulations.
We have also studied the convergence of the positron

relaxation energy, defined as the energy difference between
a system with and without the positron, Er ¼ Eþ − E−.
Figure 1 shows the QMC results of relaxation energies

gð0Þ and lifetimes as a function of electron number. The
Monte Carlo errors are shown in the error bars. Lifetimes
from DFT and experiment are also included. Twist averag-
ing was done in a Γ-centered 4 × 4 × 4 grid in the
irreducible wedge of the Brillouin zone of the supercells.
The backflow function was optimized separately for each
twist, but with SJ wave functions the Jastrow factor
optimized in the Γ point was used for all of the twists.
B15-GGA was used to approximate Γc. Other functionals
gave mainly similar results (see Supplemental Material
[35]). ECP pseudopotential and all-electron results are
shown against AREP results with the same number of
atoms.
In AlN, Si, and Li the backflow decreases the relaxation

energy by 100–400 meVand increases it by 200 meV in C.
The larger cell size increases the relaxation energy by
approximately 600 (C), 400 (AlN), 25 (Si), and 150 (Li)
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meV. The backflow increases the gð0Þ values. Only in Si
we see convergence in PCF with respect to cell size, but
changes in gð0Þ and lifetimes between different cell sizes of
the same material are small.
In the largest cells with SJB wave functions, QMC with

AREPs overestimates the experimental lifetimes by 2 and
10 ps in C and Si and underestimates them by 2 and 4 ps in
AlN and Li. The larger cells with SJ wave functions
decreased the lifetimes in C, AlN, and Si by 1 ps and
increased by 4 ps in Li. In Si, SJ ECP and core-corrected
AREP results agree within error bars. The all-electron
lifetime of Li provides a 10 ps increase to the core-corrected
AREP result.
We studied the impact of atomic vibrations to lifetime

values in Si. We used DFT to calculate the dynamical
matrix in a cubic 64-atom simulation cell and diagonalized
it to obtain the eigenfrequencies and modes of the atomic
vibrations. At temperatures of 0 and 300 K, we sampled a
set of occupied states out of the Boltzmann distribution.
Displacements were sampled with the Neumann algorithm
based on the occupied states. By repeatedly occupying
vibrational states and sampling atomic displacements, we

produced a set of 100 atomic configurations distributed
according to the occupied phonon modes. The average
DFT lifetimes increased 2(1) ps compared to the lifetime of
the static structure (see Supplemental Material [35]).
The SJB results with AREPs and the reference ex-

perimental values are gathered in Table I. See the
Supplemental Material [35] for QMC results with core
corrections by different DFT functionals.
The SJB lifetime values in C and AlN match almost

perfectly with experimental values. Li matches also very
well, but the all-electron SJB result could be overestimating

TABLE I. The largest-cell SJB lifetime results obtained with
AREPs with (1=Γ) and without (1=ΓQMC) core corrections against
experimental lifetimes.

Lifetime (ps) 1=ΓQMC 1=Γ Experimental Ref.

C 101.7(2) 100.1(2) 98 [51]
AlN 165.1(3) 154.8(3) 157 [52]
Si 237(1) 228(1) 218 [53]
Li 320(1) 287(1) 291 [54]

FIG. 1. Positron relaxation energies (top row), contact pair correlation functions (center row), and lifetimes (bottom row) for C, AlN,
Si, and Li. The figure shows twisted SJ (empty square) and SJB (full square) wave function results with AREPs as well as the ECP
pseudopotential (red circle) and all-electron SJ results (red triangle) as a function of the inverse of the number of electrons in the
simulation. The ECP pseudopotential and all-electron results are compared against AREP results with the same cell sizes. Monte Carlo
error bars are shown for each result. We present the lifetime estimates against experiment (black solid line) for C [51], AlN [52], Si [53],
and Li [54]. We also computed DFT lifetime estimates with different positron correlation functionals (dash-dotted lines): D-LDA
(violet), BN-LDA (green), B95-GGA (cyan), B15-GGA (red), and KUR-GGA (blue).
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the experimental value by 7–10 ps, based on the SJ results,
although it has to be noted that measurements on Li in the
literature are scarce. The overestimation in Si (and Li)
might result from the omission of relativistic and bound-
state effects in Eq. (2) (both beyond the scope of the present
Letter), finite-size effects, fixed-node errors, core electron
approximations, or vibrational effects. Finite-size effects
have been studied above. Because the backflow decreases
the lifetime estimate, the QMC results are not converged
with respect to the variational freedom in the wave
function, and further improvements might be obtained
by, e.g., multideterminant wave functions. The ECP and
all-electron calculations with SJB wave functions cannot be
computed with current computing resources.
On average, QMC shows better match with experimental

lifetimes than DFT for this set of test materials. The mean-
square error of QMC predictions against experimental
values is 31.3ð8Þ ps2, as opposed to the best performing
DFT functional B95-GGA with corresponding value of
89.4 ps2 (see Supplemental Material [35]). The QMC
method is parameter-free, whereas all of the GGA func-
tionals apart from B15-GGA involve one semiempiric
parameter, determined by fitting to experimental data
[16,17]. The LDA construction is unique and parameter-
free, but does not work for the positron lifetime.
In conclusion, we have successfully simulated electron-

positron wave functions and computed the positron life-
times in crystalline C, Si, Li, and AlN with QMC. We
studied finite-size effects and different pseudopotentials
and included an all-electron calculation. The possibility of
vibrational effects greatly affecting lifetimes of thermalized
positrons in Si was ruled out.
The results prove that positron lifetime spectroscopy can

benefit from the support of parameter-free many-body
methods such as QMC calculations. The largest simulation
cells in this study are applicable to vacancy calculations,
and thus the presented method can be applied to support all
fields of modern positron annihilation spectroscopy.

We acknowledge the generous computational resources
provided by CSC (Finnish IT Centre for Science) and the
use of DECI resource Archer based in Edinburgh, UK, with
support from the PRACE aisbl. This work was partially
supported by the Academy of Finland Grants No. 285809,
No. 293932, No. 319178, No. 334706, and No. 334707.

*Corresponding author.
kristoffer.simula@helsinki.fi

[1] R. A. Ferrell, Theory of positron annihilation in solids, Rev.
Mod. Phys. 28, 308 (1956).

[2] J. Hofierka, B. Cunningham, C. Rawlins, C. Patterson, and
D. Green, Many-body theory of positron binding in polya-
tomic molecules, Nature 606, 688 (2022).

[3] E. Boroński and R. M. Nieminen, Electron-positron density-
functional theory, Phys. Rev. B 34, 3820 (1986).

[4] N. D. Drummond, P. López Ríos, R. J. Needs, and C. J.
Pickard, Quantum Monte Carlo Study of a Positron in an
Electron Gas, Phys. Rev. Lett. 107, 207402 (2011).

[5] F. Tuomisto and I. Makkonen, Defect identification in
semiconductors with positron annihilation: Experiment
and theory, Rev. Mod. Phys. 85, 1583 (2013).

[6] R. Krause-Rehberg and H. S. Leipner, Positron Annihilation
in Semiconductors: Defect Studies (Springer Science &
Business Media, New York, 1999), Vol. 127.

[7] R. A. Pethrick, Positron annihilation-a probe for nano-
scale voids and free volume?, Prog. Polym. Sci. 22, 1
(1997).

[8] Y. C. Jean, P. E. Mallon, and D. M. Schrader, Principles and
Applications of Positron and Positronium Chemistry (World
Scientific, Singapore, 2003).

[9] D. Gidley, W. Frieze, T. Dull, J. Sun, A. Yee, C. Nguyen,
and D. Yoon, Determination of pore-size distribution
in low-dielectric thin films, Appl. Phys. Lett. 76, 1282
(2000).

[10] N. Segercrantz, J. Slotte, F. Tuomisto, K. Mizohata, and J.
Räisänen, Instability of the Sb vacancy in GaSb, Phys. Rev.
B 95, 184103 (2017).

[11] J.-M. Mäki, F. Tuomisto, A. Varpula, D. Fisher, R. U. A.
Khan, and P. M. Martineau, Time Dependence of Charge
Transfer Processes in Diamond Studied with Positrons,
Phys. Rev. Lett. 107, 217403 (2011).

[12] D. Schödlbauer, G. Kögel, P. Sperr, and W. Triftshäuser,
Lifetime measurements with a pulsed slow positron beam,
Phys. Status Solidi A 102, 549 (1987).

[13] A. David, G. Kögel, P. Sperr, and W. Triftshäuser, Lifetime
Measurements with a Scanning Positron Microscope, Phys.
Rev. Lett. 87, 067402 (2001).

[14] G. Kontrym-Sznajd, Fermiology via the electron momen-
tum distribution, Low Temp. Phys. 35, 599 (2009).

[15] In the HF theory, the particles are uncorrelated and the
contact pair correlation function is gð0Þ ¼ 1. However, in
correlated simulations the value increases as demonstrated
in Fig. 1.

[16] B. Barbiellini, M. J. Puska, T. Torsti, and R. M. Nieminen,
Gradient correction for positron states in solids, Phys. Rev.
B 51, 7341 (1995).

[17] J. Kuriplach and B. Barbiellini, Improved generalized
gradient approximation for positron states in solids, Phys.
Rev. B 89, 155111 (2014).

[18] B. Barbiellini and J. Kuriplach, Proposed Parameter-Free
Model for Interpreting the Measured Positron Annihilation
Spectra of Materials Using a Generalized Gradient Approxi-
mation, Phys. Rev. Lett. 114, 147401 (2015).

[19] R. Q. Hood, P. R. C. Kent, R. J. Needs, and P. R. Briddon,
Quantum Monte Carlo Study of the Optical and Diffusive
Properties of the Vacancy Defect in Diamond, Phys. Rev.
Lett. 91, 076403 (2003).

[20] Y. Kita, R. Maezono, M. Tachikawa, M. Towler, and R. J.
Needs, Ab initio quantum Monte Carlo study of the
positronic hydrogen cyanide molecule, J. Chem. Phys.
131, 134310 (2009).

[21] Y. Kita, M. Tachikawa, N. D. Drummond, and R. J. Needs,
A variational Monte Carlo study of positronic compounds
using inhomogeneous backflow transformations, Chem.
Lett. 39, 1136 (2010).

PHYSICAL REVIEW LETTERS 129, 166403 (2022)

166403-5

https://doi.org/10.1103/RevModPhys.28.308
https://doi.org/10.1103/RevModPhys.28.308
https://doi.org/10.1038/s41586-022-04703-3
https://doi.org/10.1103/PhysRevB.34.3820
https://doi.org/10.1103/PhysRevLett.107.207402
https://doi.org/10.1103/RevModPhys.85.1583
https://doi.org/10.1016/S0079-6700(96)00023-8
https://doi.org/10.1016/S0079-6700(96)00023-8
https://doi.org/10.1063/1.126009
https://doi.org/10.1063/1.126009
https://doi.org/10.1103/PhysRevB.95.184103
https://doi.org/10.1103/PhysRevB.95.184103
https://doi.org/10.1103/PhysRevLett.107.217403
https://doi.org/10.1002/pssa.2211020210
https://doi.org/10.1103/PhysRevLett.87.067402
https://doi.org/10.1103/PhysRevLett.87.067402
https://doi.org/10.1063/1.3224712
https://doi.org/10.1103/PhysRevB.51.7341
https://doi.org/10.1103/PhysRevB.51.7341
https://doi.org/10.1103/PhysRevB.89.155111
https://doi.org/10.1103/PhysRevB.89.155111
https://doi.org/10.1103/PhysRevLett.114.147401
https://doi.org/10.1103/PhysRevLett.91.076403
https://doi.org/10.1103/PhysRevLett.91.076403
https://doi.org/10.1063/1.3239502
https://doi.org/10.1063/1.3239502
https://doi.org/10.1246/cl.2010.1136
https://doi.org/10.1246/cl.2010.1136


[22] D. M. Ceperley and B. J. Alder, Ground State of the
Electron Gas by a Stochastic Method, Phys. Rev. Lett.
45, 566 (1980).

[23] W.M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal,
Quantum Monte Carlo simulations of solids, Rev. Mod.
Phys. 73, 33 (2001).

[24] R. J. Needs, M. D. Towler, N. D. Drummond, and P. López
Ríos, Continuum variational and diffusion quantum
Monte Carlo calculations, J. Phys.: Condens. Matter 22,
023201 (2010).

[25] R. J. Needs, M. D. Towler, N. D. Drummond, P. López Ríos,
and J. R. Trail, Variational and diffusion quantum
Monte Carlo calculations with the CASINO code, J. Chem.
Phys. 152, 154106 (2020).

[26] J. B. Anderson, A random-walk simulation of the
Schrödinger equation: Hþ

3 , J. Chem. Phys. 63, 1499 (1975).
[27] R. Jastrow, Many-body problem with strong forces, Phys.

Rev. 98, 1479 (1955).
[28] P. López Ríos, A. Ma, N. D. Drummond, M. D. Towler, and

R. J. Needs, Inhomogeneous backflow transformations in
quantumMonte Carlo calculations, Phys. Rev. E 74, 066701
(2006).

[29] W. Kohn and L. J. Sham, Self-consistent equations includ-
ing exchange and correlation effects, Phys. Rev. 140, A1133
(1965).

[30] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.
Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I.
Dabo et al., Quantum ESPRESSO: A modular and open-
source software project for quantum simulations of materi-
als, J. Phys. Condens. Matter 21, 395502 (2009).

[31] T. Torsti, T. Eirola, J. Enkovaara, T. Hakala, P. Havu, V.
Havu, T. Höynälänmaa, J. Ignatius, M. Lyly, I. Makkonen
et al., Three real-space discretization techniques in elec-
tronic structure calculations, Phys. Status Solidi (b) 243,
1016 (2006).

[32] I. Makkonen, M. Hakala, and M. J. Puska, Modeling the
momentum distributions of annihilating electron-positron
pairs in solids, Phys. Rev. B 73, 035103 (2006).

[33] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized
Gradient Approximation Made Simple, Phys. Rev. Lett. 77,
3865 (1996).
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