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1) Species distribution models (SDMs) are currently the main tools to derive species 
niche estimates and spatially explicit predictions for species geographical distribution. 
However, unobserved environmental conditions and ecological processes may con-
found the model estimates if they have direct impact on the species and, at the same 
time, they are correlated with the observed environmental covariates. This, so-called 
spatial confounding, is a general property of spatial models and it has not been studied 
in the context of SDMs before.

2) We examine how the estimation accuracy of SDMs depends on the type of spa-
tial confounding. We construct two simulation studies where we alter spatial structures 
of the observed and unobserved covariates and the level of dependence between them. 
We fit generalized linear models with and without spatial random effects applying 
Bayesian inference and recording the bias induced to model estimates by spatial con-
founding. After this we examine spatial confounding also with real vegetation data 
from northern Norway.

3) Our results show that model estimates for coarse scale covariates, such as climate 
covariates, are likely to be biased if a species distribution depends also on an unob-
served covariate operating on a finer spatial scale. Pushing higher probability for a 
relatively weak and smoothly varying spatial random effect compared to the observed 
covariates improved the model’s estimation accuracy. The improvement was indepen-
dent of the actual spatial structure of the unobserved covariate.

4) Our study addresses the major factors of spatial confounding in SDMs and pro-
vides a list of recommendations for pre-inference assessment of spatial confounding 
and for inference-based methods to decrease the chance of biased model estimates.

Keywords: estimation bias, Gaussian process, spatial confounding, spatial random 
effect, species distribution model
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Introduction

Species distribution models (SDMs) are popular tools in ecol-
ogy to study the spatial and temporal distributions of species 
populations, and the impact of environmental variables on 
species occurrence probability (Elith and Leathwick 2009, 
Franklin 2010). However, species distributions may depend 
also on unobserved covariates, such as unmeasured environ-
mental conditions, or ecological processes such as interspe-
cific interactions (Wisz et al. 2013), dispersal (Shurin et al. 
2009) or population dynamics (Mielke et al. 2020). Owing 
to their impacts on species distribution, traditional ‘covari-
ates-only’ models may be subject to spatially autocorrelated 
residual errors which create overly optimistic uncertainty esti-
mates for the covariate effects (Legendre 1993). Moreover, 
a physical or an ecological dependence, or a dependence 
through sampling design, between the observed and unob-
served covariates may confound the estimation of covariate 
effects in an SDM (Feng et al. 2019b). We can speculate that, 
in such a case, the estimated covariate effects reflect the real-
ized distribution and habitat of a species, and do not inform 
about the pure physical constraints of the environment on 
the species population (Soberón and Nakamura 2009).

A popular and well-documented solution to explain varia-
tion in species occurrence pattern originating from an unob-
served covariate is to include a spatial random effect into an 
SDM, applied for example by Ver Hoef  et  al. (2018) and 
Soriano-Redondo et al. (2019). Here, we refer to such models 
as spatially explicit SDMs (see Supporting information for a 
more thorough description of the inference with a spatial ran-
dom effect). Previous studies have shown that a spatial random 
effect successfully explains the residual spatial autocorrelation 
in the model and returns higher and more realistic variance 
estimates for the covariate effects (Legendre 1993) and predic-
tions (Guélat and Kéry 2018). However, there are also results 
showing that including a spatial random effect in a model does 
not necessarily account for the effect of the unobserved covari-
ate, and may even affect the estimates of the covariate effects 
in a counterintuitive manner (Hodges and Reich 2010). 
Generally, in a spatially explicit SDM, the covariate effect esti-
mate depends on the associations between the covariate and the 
response variable, and between the observed and unobserved 
covariates (Paciorek 2010). Moreover, correlation between the 
supposedly independent model components (covariates and 
a spatial random effect) may increase bias in covariate effect 
estimates, which is generally referred to as spatial confounding 
and has been found in many study settings (Diniz-Filho et al. 
2003, Hodges and Reich 2010, Hanks  et  al. 2015). Spatial 
smoothness (i.e. large spatial autocorrelation range) of a 
covariate tends to increase the correlation between a covariate 
and a spatial random effect increasing the risk of spatial con-
founding (Paciorek 2010). Thus, including a spatial random 
effect in a model can bias the estimate for the covariate effect 
(Reich et al. 2006). In SDM applications, there are contradic-
tory results about how spatial autocorrelation ranges impact 
the estimation accuracy of a spatially explicit model: some 
results support the dependence of estimation accuracy on the 

spatial autocorrelation range of the covariate (Lichstein et al. 
2002, Hawkins et al. 2007) and others oppose that (Kissling 
and Carl 2008, Betts et al. 2009, Bini et al. 2009).

Here, we formulate SDMs as generalized linear models 
with and without spatial random effects, and study their 
estimation and prediction accuracy with respect to two key 
aspects of the studied phenomenon: 1) the amount of correla-
tion between an observed and an unobserved covariate, and 
2) the spatial autocorrelation ranges of the covariates. These 
issues have already been studied in the context of general 
spatial models (Wakefield 2007) and maximum likelihood 
inference (Hodges and Reich 2010, Paciorek 2010). The nov-
elty of this work is that we combine and extend the earlier 
results (Bini et al. 2009, Hodges and Reich 2010, Paciorek 
2010) with the general theory of species distribution model-
ing (Austin 2007, Franklin 2010) and study the phenomenon 
from a Bayesian inference point of view (Clark 2004). Taking 
the Bayesian standpoint naturally raises the question: how 
prior distributions for the hyperparameters of the spatial ran-
dom effect (magnitude of variation and spatial autocorrelation 
range) affect the results (Soerbye et al. 2019). A typical choice 
is to prioritize low magnitude of variation of the spatial ran-
dom effect compared to the covariate effect (Kallasvuo et al. 
2017, Fuglstad  et  al. 2018, Mäkinen and Vanhatalo 2018) 
and use an informative (Kallasvuo et al. 2017, Fuglstad et al. 
2018, Mäkinen and Vanhatalo 2018, Soerbye  et  al. 2019, 
Soriano-Redondo et al. 2019) or a uniform (Tikhonov et al. 
2020) prior distribution for spatial autocorrelation range rela-
tive to the size of the study area. To our knowledge, there are 
no previous studies about comparing different priors in spa-
tially explicit SDMs. Hence, we tested different informative 
priors on the variance and range parameter in experiments 
with both simulated and empirical data.

Our final aim is to provide suggestions on how to design 
a spatial study setting for an SDM and prioritize differ-
ent components of the model to improve the accuracy of 
model estimation and spatial predictions. We do this with 
simulated species presence–absence data, where we vary the 
spatial autocorrelation ranges and cross-dependencies of the 
observed and unobserved covariates. We conduct the same 
analysis with an empirical presence–absence data set, and test 
how omitting a covariate from a model affects the estimates 
for other covariate effects. We focus on analyzing presence–
absence data and studying a species distribution through the 
species’ presence probability.

Material and methods

Data

This section reviews the method for simulating species data 
and presents the empirical species data.

Simulated data
We conducted two simulation studies for spatial confound-
ing: first studying bias of the estimator of the covariate effect, 

 16000587, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06183 by U

niversity O
f H

elsinki, W
iley O

nline L
ibrary on [07/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Page 3 of 12

and second studying absolute deviation of the estimators from 
the true values for two covariate effects. We conducted both 
simulation studies in a rectangular region of size (0,1) × (0,1) 
into which we generated species occurrence data with alterna-
tive spatial confounding scenarios. We divided the region into 
a grid of 50 × 50 cells and, for each set of simulated data, we 
first generated two spatially structured covariates in the grid 
cells: an observed one denoted with x(s) and an unobserved 
one denoted with z(s) (Fig. 1). Conditional on x(s) and z(s), 
we constructed a latent field f(x(s),s) over the grid cells. In 
the first simulation study f(x(s),s) = β1x(s) + β2z(s), and in the 
second simulation study f(x(s),s) = β1x(s) + β2x(s)2 + β3z(s) + β4z
(s)2. Finally, we randomly chose n = 200 grid cells at which we 
simulated species’ occurrences, denoted by y(s), by sampling 
from y(s) ~ Bernoulli (π(f(x(s),s))) and saving the values of si, 
yi = y(si) and xi = x(si) for i = 1, …, n. A probit-link function 
was used for π and the effects β1, β2, β3, β4 were set to one. 
The purpose of having two simulations is to empirically com-
pare the estimation accuracy in models that have linear and 
non-linear responses to a covariate and link the simulation to 
the empirical study, where the non-linear responses are eco-
logically reasoned and an essential part of the inference.

We used Gaussian processes with Matérn 3/2 type cova-
riance function to simulate smooth realizations of x(s) and 
z(s) (presented in the ‘Species distribution modeling’ section 
for the inference model). With different parameterizations 
of the covariance function, we controlled the expected spa-
tial autocorrelation range for x(s) and z(s). We refer to this 
parameter as length-scale parameter, and higher values of it 
create higher spatial correlations and more smoothly varying 
fields, for example mimicking mesoclimatic covariates, while 
low values of this parameter yield locally varying and on aver-
age less correlated covariates (see Supporting information for 
more detailed definition of the method). Methods to simu-
late variables and later infer these variables rely on the same 
parameterization of a latent Gaussian process.

By smoothing and appropriately weighting the same white 
noise when generating both x(s) and z(s), we were able to cre-
ate data with potential for spatial confounding and mimic a 
situation in which the observed and unobserved covariates 
have a common driver. Different weights for the common 
white noise generated different levels of dependency between 
the two fields. We narrowed down the possibilities of differ-
ent scenarios and created only positive dependence between 
fields that realized as positively correlated samples of x(s) and 
z(s) on average. For each realization, we computed the sample 
correlation between x and z and the spatial autocorrelation 
ranges in x and z. The latter was defined as the length-scale 
of Gaussian process regression models fitted to the observed 
values of x and z (see Supporting information for details; 
Gaussian process is introduced in ‘Species distribution mod-
eling’ section). We defined four categories for the realized 
correlation [0.0–0.2; 0.2–0.4; 0.4–0.6; 0.6–0.8] and five cat-
egories for the estimates of length-scale parameters [0.0–0.2; 
0.2–0.4; 0.4–0.6; 0.6–0.8; 0.8–1.0]. Examples of covariates 
with different length-scale parameter estimates are shown in 
Fig. 1 (panel b). We sampled 50 realizations of simulated data 
from each of the 100 different combinations of the spatial 
autocorrelation ranges of the covariates and the correlation 
between the covariates.

Empirical data
We conducted the real data experiment on 85 vascular 
plant species distributions in northern Norway (70°0′N, 
26°14′E) (species list in Supporting information). The study 
area is located around two mountain massifs, which create 
strong elevation and climate gradients (120–1064 m a.s.l.), 
where vegetation consists of Arctic, alpine and boreal spe-
cies (Niittynen and Luoto 2018). The full data set consists 
of 1325 vegetation plots (1 × 1 m) with recorded occur-
rence of all vascular plant species. The study area covers  
195 km2, where the minimum distance between plots is 

Figure 1. Panel (a) shows the expected spatial correlation as a function of distance for different values of the length-scale parameter (dashed 
line denotes the 5% correlation, which is used as a threshold for practical independence between two points). Panel (b) shows realizations 
of spatial covariate surfaces generated with a Gaussian process (going from the smallest length-scale estimate to the largest one). Sub-plot 
titles in panel (b) summarize the length-scale estimates of spatial Gaussian process regression models fitted to 200 observation locations 
shown as black points in the rightmost sub-plot. Panel (c) shows how a species distribution was simulated in the first simulation study by 
sampling from the latent function which is a sum of an observed covariate (x) and an unobserved covariate (z).
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19 m and the maximum distance is 18 900 m (Fig. 2). We 
derived six covariates describing habitat characteristics from 
remotely sensed data (snow cover duration, surface deposit 
quality), and spatial statistical models (growing degree days, 
potential incoming radiation, slope and topographic wet-
ness index). Surface deposit quality is a categorical covariate 
and other covariates are continuous. Spatial resolution of the 
original environmental covariate layers varies between 2 and 
30 m. The data are presented more thoroughly by Niittynen 
and Luoto (2018) and Niittynen et al. (2020).

For each species, we constructed six data sets that dif-
fered in their covariate composition. The first data set con-
tained all the covariates and from the remaining five data 
sets we dropped in turn one of the continuous covariates. 
The first data set plays the role of reference data where all 
covariates are present whereas the six other data sets cor-
respond to data sets from which a potentially important 
covariate is missing. We estimated the relationship between 
the omitted and retained covariates through their spatial 
autocorrelation ranges and mutual correlations, which were 
estimated separately prior the fitting of SDMs (see more 
thorough description of the method in Supporting infor-
mation). Thus, we were able to compare how the covariate 
effect estimates behave with respect to the spatial autocor-
relation ranges and cross-correlations of the observed and 
unobserved covariates. Spatial coordinates were scaled so 
that they are comparable to the spatial coordinates in the 
simulation data.

Species distribution modeling

In the analysis of simulated and empirical data sets, we for-
malized spatially explicit SDMs under a hierarchical Bayesian 
modeling framework, where the hierarchical model for spe-
cies observations y(s) at location s is (Eq. 1):

y s y s f x s s

f x s s x s g s

( ) ( ) ( )( )( )( )
( )( ) = + ( ) + ( )

~ p

a b

Bernoulli | ,

,
	  (1)

where y(s) is modeled conditionally on a latent function, 
f(x(s),s). The latent function was squeezed to vary between 
zero and one to represent the species presence probability 
with a probit-link function (π). The latent function in (Eq. 1) 
depends on the environmental covariates x(s) and the spatial 
random effect, denoted by g(s) (Cressie and Wikle 2015). The 
parameter α is a model intercept that captures the average 
presence probability over the observations and β is a vector 
of linear weights for spatially varying covariates x(s). In the 
first simulation study, x(s) consisted of the simulated covari-
ate. In the second simulation and empirical study, we used 
both (standardized) covariates and their squares, since previ-
ous studies have provided evidence for non-linear covariate 
effects on the species in the vegetation data (Niittynen and 
Luoto 2018).

The model (Eq. 1) is a basic building block in most of the 
state-of-the-art single and joint species distribution models 
that are used for predictive analyses (Ovaskainen et al. 2015, 
Thorson et al. 2015, Vanhatalo et al. 2020). In these applica-
tions, the spatial random effect g(s) models explicitly spatial 
autocorrelation in residual error and explains the effects of 
those processes that were not captured with the covariate data 
(Ovaskainen et al. 2015). The model structure is applicable 
to different data types used for fitting SDMs, such as pres-
ence-only data with a point process observation model, or 
abundance data with a log-normal observation model. It also 

Figure 2. Panel (a) shows the spatial distributions of the vegetation 
sampling sites (black dots) and growing degree days (temperature 
sum of the growing season). Panel (b) shows the location of the 
study area in an Arctic context. Panel (c) shows the spatial distribu-
tion of snow cover duration (days).
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corresponds to many of the statistical models used in large 
SDM model comparisons (Valavi et al. 2021).

We modeled the spatial autocorrelation with 
a Matérn covariance function with 3/2 degrees 
of freedom, such that Cov[g(s), g(s′)] = σ2k(s − 
s′/l) = s2 1 13 3( ) ( )( / ) exp ( / )+ ¢ - ¢- -s s l s s l  where σ2 is 
a variance parameter, k(·) gives the correlation as a function 
of Euclidean distance ||·|| and l is a length-scale parameter 
governing the spatial autocorrelation range (a third of the dis-
tance at which the autocovariance has dropped to 5% of its 
maximum) of the spatial random effect. The Matérn covari-
ance function is presented in more detail by Minasny and 
McBratney (2005).

The inference of a spatially explicit SDM in a hierarchical 
Bayesian framework is steered with the prior distributions of 
the parameters. Without a strong prior belief, we assigned α 
and β (in Eq. 1) priors with a zero mean Gaussian distribu-
tion and high variance (σ2 = 10). These are generally consid-
ered as valid priors which allow the response to vary from 
strongly negative to strongly positive (Lemoine 2019). For 
the length-scale parameter we tested priors that prefer either 
large or small autocorrelation ranges relative to the size of 
the study region. For the variance parameter, we tested priors 
that prefer either high or low variance relative to anticipated 
covariate effects. We were able to apply these priors for simu-
lated and empirical data sets, since covariates and coordinates 
were standardized on the same scales in both data sets.

We tested different default prior settings for length-scale 
and variance used in common ecologically oriented statis-
tical softwares, such as HMSC (Tikhonov et al. 2020) and 
SPBayes (Finley et al. 2007). We compared them with manu-
ally configured priors, which represent a higher level of prior 
belief about the characteristics of a spatial random effect. The 
uniform prior for length-scale in HMSC and SPBayes was 
approximated with an uninformative log-Normal distribu-
tion. The priors, along with their ecological interpretation, 
are shown in Table 1.

For both the simulated and empirical data sets, we con-
ducted the inference for covariance function parameters of 
the spatial random effect with Markov Chain Monte Carlo 
(MCMC) sampling. We took first the Maximum A Posteriori 
estimate with Laplace approximation (Vanhatalo et al. 2010) 
and used the point estimate as the initial value for MCMC 

sampling. We took 600 samples of which we discarded first 
100 samples and treated the last 500 as posterior distribu-
tion. We checked that samples converged by computing 
potential scale reduction factor (PSRF) and kept only models 
that had PSRF less than 1.1. All models in simulation and 
empirical tests passed the evaluation. Model estimation and 
evaluation, and sampling evaluation, were conducted with  
GPstuff toolbox (Vanhatalo  et  al. 2013) (the development 
branch from <https://github.com/gpstuff-dev/gpstuff>) in 
Matlab (2018b).

Estimation and prediction accuracy

In the first simulation study, we compared models with respect 
to the bias of the posterior mean for the covariate effect and 
the average posterior variance of the covariate effect over the 
simulated data sets. We defined bias as the expected differ-
ence of the posterior mean ( b̂ ) and the true data generating 
value (βtrue), Bias( ) trueb b b= -E[ ]ˆ , where the expectation is 
taken as an average over the 50 realizations of each simulation 
scenario. The average posterior variance of the estimate was 
defined as E[Var[β|Data]] where Data denotes a simulated 
data set and the expectation is again taken over simulations.

In the second simulation study, we compared models 
with respect to the expected absolute deviation of the esti-
mated first and second order effects from the true covariate 

effect values so that Deviation( )true true
ˆ ˆ, [ [[ , ] ]]bb bbbb bb= åE 2 , 

where b̂b  is a vector containing the estimated first and second 
order effects and βtrue is a vector containing the true values. 
Expected deviation is calculated over the 50 realizations of 
each simulation scenario. The deviation informs only about 
absolute accuracy of model estimates and not about the sign 
(positive or negative) of the shift in estimates compared to 
the true values.

For empirical data sets, we did not have a data-generating 
value to which we would have been able to compare the esti-
mated covariate effects. Hence, we fitted the covariate-only 
and the five spatially explicit models to all 6 × 85 empirical 
data sets described in the ‘Empirical data’ section. For each 
of the 85 species, we treated the covariate-only model condi-
tional on all six covariates as the ‘true’ model, after which we 
compared it to the six missing covariate models. The omitted 

Table 1. Priors for the length-scale (l) and variance (σ2) of a spatial random effect.

Prior p(l) p(σ2) Interpretation

Prior 1 log − N(−2.2,0.4)
95% credibility interval (CI) = [0.05,0.25]

log − N(−1.5,0.4)
95% CI = [0.1,0.5]

Spatial range is small and variation low.

Prior 2 log − N(−2.2,0.4)
95% CI = [0.05,0.25]

log − N (0.3,0.2)
95% CI = [1,2]

Spatial range is small and variation high.

Prior 3 log − N(−0.5,0.1)
95% CI = [0.45,0.8]

log − N(−1.5,0.4)
95% CI = [0.1,0.5]

Spatial range is large and variation low.

Prior 4 log − N(−0.5,0.1)
95% CI = [0.45,0.8]

log − N (0.3,0.2)
95% CI = [1,2]

Spatial range is large and variation high.

Prior 5 (HMSC/SPBayes) log – N(0.80,0.76)
95% CI =[0.5,10]

Gamma(1,0.3)
95% CI = [0.01,1.12]

Spatial range varies from small to large and 
variation alternates from low to high.
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covariate in empirical data sets corresponds to the unobserved 
covariate in the simulated data set, creating analogy between 
the simulated and empirical tests.

For the full analysis, we chose only the species whose dis-
tributions we were able to explain with the environmental 
covariates and which did not have strong spatial autocorrela-
tion. We computed the proportion of the variation explained 
by a spatial random effect when all covariates were included 
in the model and chose the species with less than 10% of 
the variation explained by a spatial random effect (in total, 
42 out of 85 species). We used prior 1 from Table 1 as the 
spatial model to measure spatial autocorrelation. To compare 
the true model to the missing covariate models, we used the 
deviation of the estimated covariate effects, as we did for the 
second simulation study.

In the simulation tests, we validated models with respect 
to their predictive accuracy in spatial interpolation and 
extrapolation. For spatial interpolation, we randomly chose 
200 locations from the study grid. For spatial extrapolation, 
we simulated a test data set and placed it geographically far 
from the training data set so that the spatial random effect 
cannot impact the mean of the predictive distribution. We 
used the log posterior predictive density (Vehtari and Ojanen 
2012) and Tjur-R2 as the measures of predictive accuracy. 
The log posterior predictive density measures the goodness of 
the predictive probability density as a whole whereas Tjur-R2 
measures the discriminatory ability of the prediction.

To summarize, we tested estimation accuracy (bias and 
deviation) and precision (variance) with respect to depen-
dence between observed and unobserved covariates, and spa-
tial autocorrelation ranges of the observed and unobserved 
covariates, as well as prior specifications for the spatial ran-
dom effect parameters in the inference model.

Results

Simulated data

Estimates of the covariate-only model were negatively biased 
when there was low correlation between x and z (less than 
0.2), regardless of the spatial autocorrelation ranges of x and 
z (Fig. 3: panel (a)); whereas they were unbiased in most cases 
when there was moderate correlation (0.2–0.4) between x 
and z, and positively correlated when there was significant 
correlation (over 0.4) between x and z. In the covariate-only 
model, bias varied only little with respect to the spatial auto-
correlation ranges of x and z.

In spatially explicit models, unbiased covariate effect esti-
mates were obtained only when the correlation between x 
and z was low (0–0.2) or moderate (0.2–0.4). However, also 
in those cases, the estimates were unbiased only for certain 
combinations of spatial autocorrelation ranges of z and pri-
ors for the covariance function parameters (Fig. 3). When 
correlation between x and z was low (< 0.2), the bias in 
spatially explicit models was consistently smaller than in the 
covariate-only model. When the correlation between x and 

z was greater than 0.4, the spatially explicit models returned 
covariate effect estimates that were positively biased, and 
bias was larger in the spatially explicit than in the covariate-
only model in these cases. Moreover, the bias in spatially 
explicit models was systematically larger when x had a larger 
spatial autocorrelation range than z compared (cells below 
the diagonal in Fig. 3) to the simulations where x had a 
smaller spatial autocorrelation range than z (cells above the 
diagonal in Fig. 3).

Comparisons of different prior specifications for the spa-
tially explicit model showed that the bias was the smaller the 
more the prior reduced the variance of the spatial covariance 
function towards zero (Fig. 3: compare panels n, p and r to 
panels o and q). This difference was most evident in cases 
where x had a larger spatial autocorrelation range than z 
(Fig. 3: in each panel cells below the diagonal). Comparisons 
with respect to the prior for the length-scale showed that 
priors favoring long length-scale had lower bias than priors 
favoring short length-scale (when comparing between pri-
ors 1 and 3 and between priors 2 and 4). Uniform prior for 
length-scale ranked between the priors 1 and 3. The differ-
ences were small and independent of the spatial autocorrela-
tion ranges of x and z.

Variance of covariate effect estimates over simulations 
behaved qualitatively similarly to the bias of covariate effect 
estimates (Supporting information). In general, variance was 
higher when x had a larger spatial autocorrelation range than 
z and when the prior preferred high variance of the spatial 
random effect.

In the second simulation study, deviation followed a simi-
lar pattern with respect to the spatial autocorrelation ranges 
and cross-correlation of x and z as in the first simulation 
study. Results from the second simulation were similar to 
those from the first, with respect to having a spatial random 
effect in the model or not, and with respect to different prior 
choices (Fig. 4). When there was strong correlation between 
the covariates, the deviation was less associated with the spa-
tial autocorrelation range of the unobserved covariate and 
more associated with the spatial autocorrelation range of the 
observed covariate.

Spatially explicit models performed better in spatial inter-
polation with respect to log-predictive density and Tjur-R2 
in both simulation studies (Supporting information). Priors 
for long length-scale and small variance (prior 3) improved 
spatial interpolation compared to other prior settings. In 
spatial extrapolation, all models except the spatially explicit 
model with uninformative prior for length-scale and prior 
preference for small variance (prior 5) performed equally 
well (Supporting information). Prior 5 had slightly lower 
log-predictive density than other models across different 
scenarios of cross-dependence and spatial autocorrelation 
ranges of x and z.

Empirical data

We focused on the scenarios where Saga wetness index (SWI), 
snow cover duration (SCD) or growing degree days (GDD) 
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Page 7 of 12

was omitted from a model (Fig. 5). Estimated deviation was 
strong for SCD and GDD when omitting either of them, 
which is due to their high cross-dependence. GDD and SCD 
were the most correlated pair of covariates followed by SWI 
and slope (see panel d in Fig. 5). Omitting SWI created the 
strongest estimate deviation for slope (see panel a in Fig. 5) 
which was likely due to a high correlation between them. 
Generally, the dependence between the omitted and observed 
covariates impacted the estimate deviation more strongly 
than the difference in their spatial autocorrelation ranges.

The estimated deviations were equally large in the covari-
ate-only and spatially explicit models. This was slightly 
contrary to the simulations, where spatially explicit models 
returned higher bias and estimate deviations if observed and 
unobserved covariates were correlated. The impact of priors 
on model estimation was in line with simulation results. In 
particular, when SWI was omitted from a model, a uniform 

prior for length-scale and a prior preferring high variance 
returned higher estimate deviation for slope, SCD and GDD 
(see panel (a) in Fig. 5).

Discussion

The ecological interpretation of SDMs relies on an accu-
rate estimation of the covariate effects. Despite high predic-
tive performance, spatially explicit SDMs have had issues 
with unintuitive model estimates (Kissling and Carl 2008, 
Bini et al. 2009, Lany et al. 2019, Renner et al. 2019, Kim 
2021). Our results showed that, given independent observed 
and unobserved covariates, the covariate-only model had 
negatively biased estimates (Fig. 3: panels (a)–(b)). The likely 
reason for this is that the unobserved covariate created over-
dispersion around the response along the observed covariate 

Figure 3. Comparison of estimation bias of a covariate effect (β) in a covariate-only model (column 1) and spatially explicit models (columns 
2–6) in simulation experiment 1 (see Table 1 for a description of the priors). Each plot corresponds to a specific category of correlation 
between an observed covariate (x) and an unobserved covariate (z). Each cell in a plot corresponds to a particular combination of spatial 
autocorrelation ranges of x and z, measured as the estimate of the length-scale parameter in a spatial Gaussian process regression model. The 
dashed line around cells in the diagonal of each plot shows the cases where x and z have equal spatial autocorrelation ranges.
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but the model was not able to account for this appropriately. 
Because the variance in the Bernoulli model (Eq. 1) attains 
its maximum at π = 1/2 and it decreases to zero when π = 0 
and π = 1, the covariate-only model was able to explain the 
over-dispersed species observations best by pulling species 
presence probability towards π = 1/2 throughout the study 
region. This effectively means that the model must underesti-
mate the strength of the response along the observed covari-
ate. A spatial random effect alleviated the over-dispersion 
caused by the unobserved covariate and improved the esti-
mation accuracy when correlation between x and z was low 
(Fig. 3 and 4).

The dependence between the observed and unobserved 
covariates exposed both covariate-only and spatially explicit 
models to positive bias and higher deviation. Since the esti-
mate for the covariate effect accounted for the effect of the 
unobserved covariate, which positively correlates with the 
observed covariate, this was reasonable. For SDMs, this set-
ting is analogous to confounding the covariate effects by a 

species interacting with the focal species (Heikkinen  et  al. 
2007) or by having an unobserved environmental process, 
like snow cover (Niittynen and Luoto 2018) or topography 
(Luoto and Heikkinen 2008). Given that there is a strong 
dependence between the covariates (correlation over 0.4), a 
covariate-only model had lower levels of bias and deviation 
than a spatially explicit model. A likely explanation for this 
is that the over-dispersion caused by independent variation 
in z compensated for the positive bias induced by the cor-
relation between z and x. The over-dispersion issue is spe-
cific to Bernoulli distributed data and, to our knowledge, has 
not been well addressed for spatially explicit SDMs (but see 
Dupont et al. 2021).

Estimates of a spatially explicit model were more biased 
and had higher deviation when the observed covariate had 
a larger spatial autocorrelation range than the unobserved 
covariate (Fig. 4 and 5: lower triangular), as found also by 
Paciorek (2010) in the context of linear models. This happens 
because, by default, a spatial random effect avoids overfitting 

Figure 4. Comparison of deviation of covariate effects (β) in covariate-only (column 1) and spatially explicit models (columns 2–6) with 
different prior specifications (specified in titles) in simulation experiment 2. The subplots correspond to different simulation scenarios  
as in Fig. 3.
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Page 9 of 12

the data and pushes the estimate of the length-scale param-
eter to higher values (Hodges and Reich 2010). If z had a 
relatively large spatial autocorrelation range, a spatial random 
effect more likely correctly captured its variation, and there-
fore more likely also explained the shared variation between 
x and z. This alleviated spatial confounding compared to the 
opposite case, where z had a relatively small spatial auto-
correlation range and a spatial random effect was unable to 
capture its structure. These results guide modelers in assess-
ing the sensitivity of covariate effect estimates based on the 
spatial autocorrelation range of the covariates, which can be 

estimated prior to model fitting. Covariates that have large 
spatial autocorrelation range, like climatic covariates, may 
expose spatially explicit SDMs to biased covariate effect esti-
mates, since the effects of unobserved covariates operating 
at a fine spatial scale are difficult to capture with a spatial 
random effect. Here our simulation studies tested estima-
tion accuracy only when correlation between observed and 
unobserved covariates was positive. However, we can expect 
that creating negative correlation between unobserved and 
observed covariates flips bias to be negative, and does not 
reduce the estimate bias towards zero.

Figure 5. In panels (a)–(c) boxplots correspond to the distribution of the deviation associated to the covariate effect estimates between omit-
ted covariate models and the full model over the 42 species. The bars show the distribution of deviations over species. Panels (d)–(e) show 
the correlation matrix of continuous covariates and the length-scale (l.-s.) estimates of the Gaussian process regression models fitted to each 
covariate. SWI = saga wetness index, SCD = snow cover duration, SDQ = soil deposit quality, GDD = growing degree days.
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Page 10 of 12

Our study shows that, in the presence of dependence 
between the observed and unobserved covariates, informative 
priors improve the covariate effect estimates. This supports 
their use against uniform priors, as suggested by Keil et al. 
(2014) and Lemoine (2019), but especially for spatial ran-
dom effects as suggested by Soerbye  et  al. (2019). We also 
found support for how to formulate informative priors. In 
the simulation case, increasing the variance of a spatial ran-
dom effect improved the fit of the spatial random effect on 
the unobserved covariate. Thus, counterintuitively, higher 
variance of a spatial random effect decreased the impact 
of over-dispersion caused by the unobserved covariate and 
strengthened the biasing effect of the unobserved covariate. 
Preferring long length-scale improved estimation accuracy 
despite the unobserved covariate having a short spatial auto-
correlation range (cells below diagonal in plots in Fig. 3 and 
4). In the case of preferring low variance, pushing more prior 
probability to a long length-scale increased overdispersion, 
which corrected for the bias that originated from correlation 
between x and z. Optimal prior choice for magnitude of vari-
ance and length-scale parameters may conflict with our prior 
belief about the unobserved covariate due to the inability of 
the model to account for the correlation between covariates 
and a spatial random effect, or due to biased prior beliefs. 
Based on the simulation and empirical tests, in cases where 
the unobserved covariate impacted the focal species equally 
much or less than the observed covariates, we recommend 
prioritizing low variance of a spatial random effect.

We base this recommendation also on the estimate’s uncer-
tainty, which increased to become overly high when priori-
tizing high variance. A preferable prior pushes probability 
density of variance parameter towards zero so that 95% of 
the probability mass is, for example, below 0.5. This can be 
generalized to different study settings and models, where con-
tinuous covariates are standardized to have mean zero and 
standard deviation one. For the length-scale parameter, we 
suggest formalizing prior candidates that support different 
length-scales compared to the spatial autocorrelation ranges 
of the observed covariates. Fitting a model with prior candi-
dates gives an idea about the sensitivity of the model to the 
prior choice and about the possible conflicts between a spa-
tial random effect and covariates. The main reason for spatial 
confounding is that the spatially explicit SDMs do not explic-
itly model the correlation between covariates and the spatial 
random effect. To partially get around this issue, previous 
studies have restricted a spatial random effect by orthogonal-
izing it to covariates (Hughes and Haran 2013, Johnson et al. 
2013, Hanks  et  al. 2015) and some have proposed mod-
els to explicitly model this correlation (Page  et  al. 2017, 
Dupont et al. 2021). The former approach increases posterior 
variance of the covariate effects appropriately but it does not 
remove the bias in the estimates (Hanks et al. 2015), since the 
covariate effect estimates from such a model correspond to 
covariate-only model estimates, which may be biased as well 
(Johnson et al. 2013, Hanks et al. 2015). Our approach con-
ducts the restriction through the priors of the parameters of 
the spatial random effect and does not restrict the posterior of 

the spatial random effect. Along with informative priors, we 
consider the approach of explicitly modeling the correlation 
between the covariates and the spatial random effect as a more 
reasonable way forward in building spatially explicit SDMs.

When interpreting results, we need to keep in mind that 
the method for simulating data was relatively simple com-
pared to how real species distributions are formed. In real 
species data, there are multiple unobserved spatially struc-
tured covariates, whose effects on focal species may be impos-
sible to capture with a single spatial random effect, and there 
are different levels of cross-dependencies between the covari-
ates. Thus, the impacts of spatial autocorrelation ranges of 
covariates and prior settings on model estimates were not 
fully identical between the tests on simulated and empirical 
data. Despite these uncertainties, both tests were consistent 
in their main conclusions about spatial confounding, which 
allowed us to give recommendations for future studies.

Based on this study, we suggest analyzing the spatial struc-
tures of the covariates before running SDMs (noted also by 
Kim (2021)). A pre-model analysis of covariates and their 
spatial autocorrelation ranges allows us to formulate reason-
able prior candidates for the length-scale parameter and gives 
prior insight into which covariates are the most susceptible to 
produce confounded estimates. Such spatial analysis would 
extend the recently published suggestions on which fea-
tures and processes should be considered in building SDMs 
(Araújo et al. 2019, Feng et al. 2019a). Furthermore, our study 
shows yet undiscovered benefits from including microhabitat, 
like microclimate variables in the model. Replacing mesocli-
mate variables with downscaled microclimate variables incor-
porates more detailed information about the environment 
(Lembrechts et al. 2019) but, based on our results, we expect 
that decreasing the spatial autocorrelation range of the climate 
variable through downscaling also improves the estimation 
accuracy as there is less conflict with a spatial random effect.

Our study showed that improperly formulated priors for 
a spatial random effect may decrease the predictive accuracy. 
Despite more biased estimates of spatially explicit models 
(priors 1–3) compared to covariate-only models, all mod-
els still had equally good predictive accuracy. This was likely 
due to more appropriate uncertainty estimation of spatially 
explicit models compared to covariate-only models. This 
shows that proper uncertainty estimation plays an impor-
tant role in spatial transferability of SDMs, although it has 
not been generally considered in previous model transfer-
ability assessments (Sequeira et al. 2016, Yates et al. 2018). 
However, in ecological risk assessments, realistic uncertainty 
estimates have been shown to significantly alter optimal eco-
logical risk mitigation strategies compared to approaches that 
ignore uncertainty (Helle et al. 2020).

Even though spatial confounding may result in a larger 
bias of covariate effects in spatially explicit than in covariate-
only models, we still recommend using the former. The rea-
son is that both models lead to biased inferences on covariate 
effects in the presence of spatial confounding, but spatially 
explicit models give larger uncertainty estimates compared 
to covariate-only models. Spatially explicit models had also 
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better predictive performance in interpolation and equally 
good predictive performance in extrapolation as the covari-
ate-only models (Supporting information). However, our 
study highlights the importance of technical improvements 
in formalizing SDM structures. In study settings where we a 
priori assumed collinearity between covariates and an unob-
served covariate (such as distribution of a strongly competing 
species, whose distribution partly depends on the observed 
covariates), the model structure can account for the corre-
lation between covariates and a spatial random effect with 
a separate function. Such approaches have been tested by 
Page et al. (2017) and Dupont et al. (2021) with promising 
results, but they have not been applied to SDMs. There is a 
demand for more informative prior settings, such as penalized 
complexity priors (Fuglstad et al. 2018), which would avoid 
overfitting but also avoid the spatial scales of the covariates.

Given the importance of SDMs for ecological research 
and environmental management, and that many SDMs are 
used for predicting species distributions far from the sam-
pled area, our results are topical for ecological research. Our 
study brings a new perspective to the role of spatial structure 
of environmental covariates in fitting SDMs and shows the 
general limitation of current SDMs. Most importantly, the 
spatial structures of the covariates matter with respect to how 
accurately the covariate effects can be estimated. Moreover, 
estimation accuracy can be improved by prioritizing smooth 
and weak spatial random effects compared to the covariates. 
Our results help practitioners of the current SDMs to allevi-
ate the problems related to spatial confounding.
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