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Abstract

Aromaticity - the delocalization of electrons along a closed atomic circuit - has its
manifestations in the energetic, structural, electronic, and spectroscopic properties of
molecules and in how they react with each other. This phenomenon is central in chem-
istry, and the history of chemists using the concept as an “intuition pump” to understand
and design new molecules goes back to the 1800s when Kekulé first time came up with
the snake-eating-its-tail model of benzene.

Those days predate the discovery of the electron and quantum mechanics, and the
concept has evolved since. While the physics of chemistry is understood, the utility
of intuitive concepts still remains. Science as of today is still a human business, and
to most of us chemists the fluctuations of the fermionic field, or their computational
representation as tensors, don’t give much food for thought.

In this Ph.D. thesis, I present my research in which quantum chemical methods were
used to study different types of aromatic compounds. The focus is on assessing their
aromaticity by probing the ring currents of molecules - the net flow of electrons around
when it’s placed in a magnetic field. Calculation of this magnetically induced current
density and the bond currents yield an accurate measure for electron delocalization.

The studied systems present different types of aromaticities and aromatic molecules:
through-bond aromaticity in the substituent ring of benzene derivatives, the intrica-
cies of current pathways in naphtalene-fused porphyrinoids and in copper coordination
complexes, and the magnetic-field orientation dependence of aromaticity in gaudiene,
a spherical aromatic, but not spherically aromatic compound. The presented results
disprove old conclusions for some compounds and enrich the understanding of others.
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Yleistajuinen tiivistelmä

Kemiassa aromaattisuuden käsite ei tyypillisesti viittaa tuoksuihin, vaikka sen juuret
ulottuvatkin näiden eriskummallisten molekyylien aromiin. Kemistit kutsuvat aromaat-
tisuudeksi ilmiötä, jossa molekyylin elektronit eivät tyydy kohtaloonsa kahden atomiy-
timen välimaastossa, vaan leviävät yli atomikehikon muodostaen suljetun virtapiirin.

Tuon syklisen delokalisaation myötä aromaattisilla molekyyleillä on erityisiä omi-
naisuuksia. Vastaavasti kuten elektroniikan virtapiirissä hieman vääränlainen resistori
voi saada aikaan ennalta arvaamattoman oikosulun, myös atomitasolla nämä näennäi-
sen pienet muutokset voivat kytkeä aromaattisuuden pois päältä ja muuttaa molekyylin
ominaisuuksia suuresti - kokonaisuus on enemmän kuin osiensa summa.

Aromaattisia molekyylejä on kaikkialla, arkkityyppinä niistä on kuusikulmion muo-
toinen bentseeni. Evoluutio on valjastanut nämä aromaattiset molekyylit osaksi olevai-
suuttamme: geeniperimämme on kirjoitettu DNA:n vakailla aromaattisilla emäspareilla.
Solujemme toiminta pyörii aromaattisuutensa keinoin elektroneja välittävillä koentsyy-
meillä, ja aromaattisuudella on mitä keskeisin rooli porfyriinimolekyylien kyvyssä niin
sitoa happea kuljettavat rauta-atomit verisoluissamme kuin vastaanottaa auringon sä-
teilemä energia kasvien viherhiukkasissa.

Luonto on löytänyt aromaattisille molekyyleille paljon käyttöä, ja näistä prosesseis-
ta kummunneet kemistit jatkavat sen työtä. Aromaattisuuden käsite on tärkeä väline
tässä työkalupakissa. Toinen tärkeä työkalu on kvanttifysiikka - sen avulla olemme noin
sadan vuoden ajan kyenneet kunnolla ymmärtämään molekyylejä, sekä sittemmin tie-
tokoneiden kehittymisen myötä onnistuneet laskemaan niiden ominaisuuksia tarkasti.

Väitöstutkimuksessani sovelsin laskennallisen kvanttikemian menetelmiä aromaat-
tisuuden määrittämiseksi. Väitöskirja rakentuu neljän tieteellisen julkaisun ympärille,
joissa tarkastelemme erilaisten molekyylien aromaattisuutta laskemalla rengasvirtoja -
ulkoisen magneettikentän aiheuttamaa elektronien virtausta atomiydinten muodosta-
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man virtapiirin ympäri.
Tulosten avulla kykenimme ymmärtämään tiettyjen molekyylien aromaattisuutta

paremmin sekä kumoamaan joitakin väärinkäsityksiä. Tehdyn perustutkimuksen löy-
dökset todentavat rengasvirtojen antavan tarkan ja fysikaalisesti perustellun kuvan
aromaattisuudesta - erityisesti jos sitä vertaa 1800-luvun hajunvaraiseen toimintaan
- ja rengasvirtojen olevan tärkeä menetelmä aromaattisuuden ymmärtämisessä.
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Chapter 1

Introduction

Aromatic molecules, or more precisely, their aromatic states, are ones in which electrons
are delocalized in a closed two- or three-dimensional circuit. This phenomenon has
many manifestations in the energetic, structural, spectroscopic, and magnetic response
properties of molecules, making it a central topic in chemistry. In this thesis, the latter
one, ring currents induced by a magnetic field, are studied with the computer as a
laboratory.

In Chapter 2, I present the quantum chemical methods that allow us to take these en-
tities of the physical world to objects that we can calculate the properties, and overview
the theory and methods for calculating magnetically induced ring currents. Chapter 3
first discusses the utility of chemical concepts and the history of aromaticity and then
presents the physicochemical manifestations and the various computational metrics de-
veloped for assessing the aromaticity of molecules. The Chapter ends with a section
presenting an overview of the chemical space of aromatic compounds, highlighting the
richness, complexity, and possibilities of these special molecules.

In Chapter 4, I present the results of Articles I-IV, in which we used ring current cal-
culations to study four distinct classes of aromatic compounds. These calculations act
as a microscope to the through-space aromaticity and its switching of double aromatic
benzenes. They allow us to understand the intricacies and correct misunderstandings
of the aromaticity of naphtalene-fused porphyrinoids. They are used to enrich the
understanding aromaticity of organometallic [Cu6(dmPz)6(OH)6], and to elucidate the
aromaticity of the spherical gaudiene molecule.

The thesis ends in Chapter 5, in which I discuss the results in the context of the

1



CHAPTER 1. INTRODUCTION 2

computational assessment of aromaticity. I also give future directions, presenting iden-
tified bottlenecks and ways to overcome them. Overcoming these would make the
automated analysis of aromatic compounds possible, a task needed in the upcoming
era of computational molecular discovery.



Chapter 2

Theory and methods

2.1 Schrödinger equation

Molecules consist of atomic nuclei and electrons, and their interactions and dynamics
are described by quantum mechanics.

In quantum mechanics, the state of the system is represented by a wave function ψ,
an element of the Hilbert space. We use state vector formalism, in which a wave function
is written as ket-vector ψ = |ψ⟩, its complex conjugate as a bra-vector ψ∗ = ⟨ψ|, and
the inner product as ⟨ψ|ψ⟩.

Physical quantities are represented by Hermitian operators Ω. Upon measurement
of the quantity, the state of the system is changed to some of its eigenstates |ω⟩, and
the observed quantity is the corresponding eigenvalue with a probability of | ⟨ω|ψ⟩ |2.
The position and momentum of a particle are represented by the operators x and p,
which do not commute:

[x,p] = xp− px = iℏ. (2.1)

Noncommuting operators, i.e., those with [a,b] ̸= 0, have different eigenstates and
can not be determined simultaneously. Heisenberg’s uncertainty relation relates the
variances of momentum and position: they are inversely proportional to each other:

∆x∆p ≥ ℏ/2. (2.2)

Undisturbed by external influences, the time evolution of a state is described by the
Schrödinger equation:

3
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iℏ
d |ψ(r, t⟩

dt
= H(t) |ψ(r, t)⟩ (2.3)

Here, H is the Hamiltonian operator, or briefly Hamiltonian, which represents the
total energy of the system. It is obtained from its classical analog by replacing position
and momentum variables with the corresponding operators and requiring that their
commutation relation is fulfilled [1]. When the Hamiltonian operator is independent
of time, we obtain the time-independent Schrödinger equation. The eigenstates of
time-independent Hamiltonian are called stationary states, and their time evolution is
explained by a phase-factor [1]:

H(r, t) = T(r) +V(r, t) (2.4)

V(r, t) = V(r) → H |Ψ⟩ = E |Ψ⟩ (2.5)

|Ψ(t)⟩ = e−iEt |Ψ(t0)⟩ (2.6)

2.2 Electronic problem

We are interested in solving the electronic problem – obtaining the stationary states
for a molecule by solving the time-dependent Schrödinger equation. For this, we need
to specify our Hamiltonian and the form of the wave function.

The molecular Hamiltonian consists of kinetic and potential energy terms, T and
V, that describe the interactions of atomic nuclei and electrons, referred with the n

and e subscripts:

Hmol = Tn +Te +Vne +Vee +Vnn, (2.7)

Two approximations are made to the Hamiltonian. In the Born-Oppenheimer ap-
proximation, the nuclear motion is ignored, and in the adiabatic approximation, the
wave function is constrained to one electronic state. The nuclear kinetic energy term is
thus ignored, and the positions of the nuclei enter the equation only as parameters. This
results in the molecular electronic Hamiltonian Hel, expressed here in atomic units1 and
using the one- and two electron operators hi and gij:

1ℏ = e = a0 = me = 1
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Hel = Te +Vne +Vee +Vnn (2.8)

=

Nelec∑
i

hi +

Nelec∑
i<j

gij +Vnn (2.9)

hi = −1

2
∇2

i −
∑
K

ZA

|RA − ri|
(2.10)

gij =
1

|ri − rj|
. (2.11)

Here, the lower-case indices refer to electrons and capital indices to atomic nuclei. We
use this to solve the Schrödinger equation to obtain the electronic wave function |Ψel⟩:

Hel |Ψel⟩ = Eel |Ψel⟩ (2.12)

The molecular electronic wave function is built from one-electron functions called
molecular orbitals ϕ(x). Electrons are defined by their position, and as fermions, by
their spin angular momentum s = 1

2
, which can have z-component values ms = ±1

2
.

These are included by multiplying the spatial orbitals by spin functions σ, giving spin
orbitals ϕiσ = ϕi(r)σ with σ = α corresponding to ms =

1
2

and σ = β to ms = −1
2
.

Both the spatial orbitals and spin functions orthonormal functions:

⟨ϕi|ϕj⟩ = δij (2.13)

⟨α|α⟩ = ⟨β|β⟩ = 1 (2.14)

⟨α|β⟩ = ⟨β|α⟩ = 0. (2.15)

We will continue the presentation of theory and methods dealing mostly with the
closed-shell case, in which the spin is disregarded and orbitals are taken to be doubly
occupied. The starting point for constructing a wave function for molecules is the
Hartree product of MOs:

Θ(1, . . . , n) = ϕ1(1) · · ·ϕN(N) (2.16)

Electrons are fermions, and the electronic wave function is antisymmetric: when
the electron coordinates are interchanged, the wave function changes its sign. This
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property is obtained by operating on Hartree product with antisymmetrizer operator
A, or equivalently, by writing it as a Slater determinant [2]:

ΦSD = AΘ (2.17)

=
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

ϕ1(1) ϕ2(1) · · · ϕN(1)

ϕ1(2) ϕ2(2) · · · ϕN(2)
...

... . . . ...
ϕ1(N) ϕ2(N) · · · ϕN(N)

∣∣∣∣∣∣∣∣∣∣∣
(2.18)

A =
1√
N !

N−1∑
p=0

(−1)pP =
1√
N !

[
1−

∑
ij

Pij +
∑
ijk

Pijk − · · ·

]
. (2.19)

2.3 Hartree-Fock method

The variational principle states that the ground state energy E0 of the system is min-
imized by its true wave function Ψ0, giving a computational recipe for calculating the
wave function of the system. The method for finding such a Slater determinant is known
as Hartree-Fock (HF) method. It is an iterative mean-field method, transforming the
n-body problem into a two-body problem, in which an electron interacts with a frozen
set of other electrons.

The energy of a Slater determinant can be derived by writing it as an antisym-
metrized Hartree product, and calculating the expectation values of the electronic
Hamiltonian:

ESD = ⟨AΘ|Hel|AΘ⟩ (2.20)

Due to the orthogonality of MOs, only the first and second terms in the expansion
of the antisymmetrizer remain, giving the following terms [2]:

Vnn : Vnn (2.21)

h1 : ⟨Θ|h1|Θ⟩ = ⟨ϕ1(1) |h1|ϕ1(1)⟩ = h1 (2.22)

g12 :

{
⟨Θ |g12|Θ⟩ = ⟨ϕ1(1)ϕ2(2) |g12|ϕ1(1)ϕ2(2)⟩ = J12

⟨Θ |g12|P12Θ⟩ = ⟨ϕ1(1)ϕ2(2) |g12|ϕ2(1)ϕ1(2)⟩ = K12

(2.23)



CHAPTER 2. THEORY AND METHODS 7

The equation for energy becomes the following, which can be written with Coulomb
and exchange operators J and K [2]:

E =

Nelec∑
i=1

hi +
1

2

Nelec∑
i=1

Nelec∑
j=1

(Jij −Kij) + Vnn (2.24)

=

Nelec∑
i

⟨ϕi |hi|ϕi⟩+
1

2

Nelec∑
ij

(⟨ϕj |Ji|ϕj⟩ − ⟨ϕj |Ki|ϕj⟩) + Vnn (2.25)

Ji |ϕj(2)⟩ = ⟨ϕi(1) |g12|ϕi(1)⟩ |ϕj(2)⟩ (2.26)

Ki |ϕj(2)⟩ = ⟨ϕi(1) |g12|ϕj(1)⟩ |ϕi(2)⟩ (2.27)

The set of MOs that minimize the energy can be calculated with the method of
Lagrange multipliers. In it, a set of multipliers λij are found that make the variation
of the Lagrangian δL equal zero under the constraint of orbital orthonormality [2]:

L = E −
Nelec∑
ij

λij (⟨ϕi | ϕj⟩ − δij) (2.28)

δL = δE −
Nelec∑
ij

λij (⟨δϕi | ϕj⟩ − ⟨ϕi | δϕj⟩) = 0 (2.29)

Inserting the energy expression 2.24 and doing calculus gives the Hartree-Fock equa-
tions, where Fi is the Fock operator [2]:

Fiϕi =

Nelec∑
j

λijϕj (2.30)

Fi = hi +

Nelec∑
j

(Jj −Kj) (2.31)

The Slater determinant is invariant upon unitary transformations, and the Lagrange
multipliers λij can be diagonalized. These new resulting MOs ϕ′

i are called canonical
MOs, and the eigenvalue equation is called canonical HF equation, with eigenvalue ϵi
being the energy of the canonical MO [2]:

Fiϕ
′
i = ϵiϕ

′
i (2.32)
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In further discussions, MOs are assumed to be canonical, and the prime is dropped.
The MO energies are matrix elements of the Fock operator, ϵi = ⟨ϕi|Fi|ϕi⟩. They have
a physical meaning in being connected to ionization potentials and electron affinities
via Koopman’s theorem [3].

These equations are commonly solved by Roothaan-Hall’s method. The MOs ϕi are
written as linear-combination of atomic orbitals (LCAO), expanding them as a linear
combination of Mbasis atom centered basis functions χα:

ϕi =

Mbasis∑
α

cαiχα. (2.33)

These basis functions are typically Gaussian or Slater-type functions, and the basis
sets built from them to represent the molecule’s wave function are discussed more in
Section 2.4. The Roothaan-Hall equations are obtained by inserting the expanded MOs
into the HF equation 2.32:

FC = SCϵ. (2.34)

. Here, S is the overlap matrix and F is the Fock matrix [2], both defined within the
AO basis as:

Sαβ = ⟨χα|χβ⟩ (2.35)

Fαβ = ⟨χα|h|χβ⟩+
Mbasis∑

γδ

Dγδ (⟨χαχγ|g|χβχδ⟩ − ⟨χαχγ|g|χδχβ⟩) (2.36)

= hαβ +
∑
γδ

GαβγδDγδ. (2.37)
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Here, hαβ is a matrix containing the one-electron integrals, Gαβγδ is the four-
dimensional tensor containing two-electron integrals, contracted using the density ma-
trix Dγδ [2]:

⟨χα|h|χβ⟩ =
∫
χα(1)

(
−1

2
∇2

)
χβ(1)dr1 (2.38)

+

Nnuclei∑
a

∫
χα(1)

(
Za

|Ra − r1|

)
χβ(1)dr1 (2.39)

⟨χαχγ|g|χβχδ⟩ =
∫
χα(1)χγ(2)

(
1

|r1 − r2|

)
χβ(1)χδ(2)dr1dr2 (2.40)

Dγδ =
occ.MO∑

j

cγjcδj . (2.41)

The self-consistent field (SCF) procedure for solving the HF equations in the Roothaan-
Hall formalism starts by forming an initial guess of the density matrix. Then, the Fock
matrix elements are calculated, the matrix is diagonalized, and a new density matrix
is formed. If the change of energy or the density matrix is below some threshold, the
calculation is converged, if not, the procedure is repeated.

The derivation here ignored the spin of the electrons, and the method is known as
the restricted Hartree-Fock (RHF) method. In it, the α and β are paired to the same
spatial orbitals. Lifting this restriction leads to the unrestricted Hartree-Fock method
(UHF), in which the α and β electrons have their own spatial orbitals. In the restricted
open-shell Hartree-Fock method (ROHF), doubly occupied orbitals are restricted to be
spatially the same.

2.4 Basis sets

The atomic orbitals χ are commonly built from Gaussian (GTO) or Slater-type orbitals
(STO), which are products of a spherical harmonic function Yl,m(θ, φ) and a distance-
dependent exponential term. STOs decay as e−ζr from the atom center, similarly to
hydrogen-like molecules, whereas GTOs decay as a e−ζr2 :

STO : χζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)r
n−1e−ζr (2.42)

GTO : χζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)r
2n−2−le−ζr2 . (2.43)
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Here, n, l, and m are the principal, angular, and magnetic quantum numbers. The
spread of the orbital is controlled by the ζ parameter - a larger value leads to a tighter
function, smaller to a more diffuse one.

STOs describe the wave function more accurately, capturing the cusp of the electron
density at the atom center, and being more accurate at the tails. Integrals with GTOs
are, however, easier to compute, and they are more commonly used, although more
functions are needed to obtain the STO-like behavior.

A minimal basis set contains only one basis function for each occupied orbital,
called a single-ζ basis set (SZ). Variational flexibility is obtained by adding more basis
functions with the same angular momentum l. Doubling this leads to a double-ζ (DZ),
tripling to triple-ζ basis sets (TZ), and so on. The basis functions are typically added
to valence orbitals, as they are relevant for most of the chemical phenomena. These are
called the split-valence basis sets.

Commonly higher angular momentum functions - polarization functions - are added
to increase the flexibility - p type functions for s orbitals, d for p orbitals, and so on.
Additionally, diffuse functions, ones with small ζ value, are used to better describe
states that have electrons further away from the nucleus, such as anions or polarizable
systems.

As chemistry often happens at the level of valence electrons, a common strategy is
to replace the core electrons with a pseudopotential, known as effective core potential
(ECP). ECPs differ by the number of electrons they replace, and to which reference
where they were fit to. In addition to lowering the computational cost by lowering the
amounts of electrons to consider, the use of ECPs can also include scalar relativistic
effects.

The balance of accuracy and efficiency enters the choice of the size of the basis
set. One typically calculates the property of interest with varying sizes of basis set to
see where the results start to converge. One commonly used trick is complete basis
set extrapolation, in which nZ level energy is calculated using (n − 2)Z and (n − 1)Z

level energies [4]. One effect arising from the use of a finite basis set is the basis
set superposition error, in which an atom uses the basis functions of other atoms to
artificially lower its energy. This can be treated to some extent with counterpoise
correction in the case of intermolecular interaction energies.
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2.5 Treating electron correlation

The mean-field approximation for solving the many-body problem of electron-electron
interactions in the HF method is surprisingly accurate, being able to capture around
99% of the total energy of the system. The chemical phenomena happen at the valence
level, and the energetic difference between these options is very small relative to the
total energies. Different electron correlation methods bridge this gap between the true
and mean-field representations.

The electron correlation can be split into dynamic and static correlation. The dy-
namic correlation arises from the mean-field treatment of electron-electron interactions,
whereas the static correlation arises from the inability of a single Slater determinant
(SD) to describe the ground state of the system. Electron correlation can be described
by a many-electron wave function built of SDs corresponding to different electron con-
figurations. Three common approaches to dealing with dynamic electron correlation are
configuration interaction, coupled cluster, and Møller-Plesset perturbation methods.

2.5.1 Configuration interaction

In Configuration interaction (CI), the many-electron wave function is built as a linear
combination of HF and excited state SDs:

Ψ = a0ΦHF +
∑
S

aSΦS +
∑
D

aDΦD + . . . (2.44)

Here, the singles term
∑

S aSΦS contains all the states generated by moving one elec-
tron from an occupied to the unoccupied orbital of the HF solution ΦHF. Equivalently,
the term D contains all the double excited states. In Full CI all N -fold excitations
are considered for an N electron system, giving an exact wave function with the given
basis set. Due to the combinatorial scaling arising from the different ways to distribute
N electrons to K orbitals, the CI expansion is truncated. Including single and double
excitations leads to CISD method, and so on. The expansion coefficients of states are
calculated with a variational method, with many matrix elements being zero.

Truncated CI methods are not size-extensive: the correlation energy does not scale
correctly with the amount of particles [5]. It is also not size-consistent, meaning that the
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energies of two non-interacting systems do not equal the energies of individual systems
[6].

2.5.2 Coupled cluster

Coupled cluster (CC) method is based on generating excitations through the exponenti-
ated excitation operator [7]. The excitation operator T is a sum of n’th order excitation
operators Tn:

T =

Nelec∑
i

Tn = TS +TD + . . . (2.45)

Here, the operator TS generates singly excited states when applied to a reference
wave function, giving the single’s term in CI. The CC wave function is calculated by
operating on the reference wave function with the exponentiated excitation operator
expanded as a Taylor series [2]:

ΨCC = eTΦHF (2.46)

eT =
∑
k=0

1

k!
Tk (2.47)

= 1+TS +

(
TD +

1

2
T2

D

)
+

(
TT +TDTS +

1

6
T3

S

)
+ . . . . (2.48)

Similarly to CI, an exact result is obtained when all terms are included, but the ex-
pansion is truncated at some level to make the calculation viable. The "gold standard"
in quantum chemical calculations is CCSD(T), in which the series is expanded to single
and double excitations, and the triple excitations are included as a perturbation.

2.5.3 Perturbation theory

In the perturbation theory approach, the true Hamiltonian H is written as a sum of
an unperturbed Hamiltonian H0 and a perturbed Hamiltonian, assumed to be small in
comparison to the unperturbed Hamiltonian H′ [2]:

H = H0 + λH′, (2.49)
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where the λ controls the strength of the perturbation. Using the perturbed Hamiltonian,
we get the Schrödinger equation:

HΨ = WΨ. (2.50)

The energy W and the wave function Ψ as a power series with respect to the
perturbation parameter λ:

(H+ λH′)

(∑
i

λiΨi

)
=

(∑
i

λiWi

)(∑
i

λiΨi

)
(2.51)

Here, the term i = 0 is the non-perturbed case Ψ0 with energy W0 = E0, and
the higher order terms are the 1st, 2nd, . . . order corrections. The higher order wave
functions are defined to be orthonormal to the Ψ0. These terms are grouped, collecting
together terms with the same power of λ:

λn : H0Ψn +H′Ψn−1 =
n∑

i=0

WiΨn−i. (2.52)

From this, it follows that the nth order energy can be calculated using (n − 1)th
order wave function:

Wn = ⟨Ψ0 |H′|Ψn−1⟩ (2.53)

In Møller-Plesset (MP) perturbation theory [8], the unperturbed Hamiltonian H0

is the sum of operators, and the perturbation term is the difference between the true
electron-electron repulsion and the average one obtained by HF, ⟨Vee⟩:

H0 =

Nelec∑
i=1

Fi =

Nelec∑
i=1

hi + 2 ⟨Vee⟩ (2.54)

H′ = H−H0 = Vee − 2 ⟨Vee⟩ , (2.55)

where the factor of two is due to the double counting of the Vee term in Fock operators.
The n’th order perturbation is denoted as MPn. The MP0 energy is the sum of MO

energies, MP1 is equal to the HF energy, and the MP2 energy is [2]:
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E(MP2) =
occ∑
i<j

vir∑
a<b

(⟨ϕiϕj | ϕaϕb⟩ − ⟨ϕiϕj | ϕbϕa⟩)2

εi + εj − εa − εb
, (2.56)

where the indices i and j refer to occupied MOs, a and b to unoccupied ones, and ϵ is
MO energy.

MP is not a variational method - instead of asymptotic convergence to an exact
result by including higher-order terms, the results oscillate around the true energy.
Most commonly, the MP2 is used, which captures around 80-90% of the correlation
energy [2].

2.6 Density functional theory

The combination of Hartree-Fock method with electron correlation methods allows the
accurate determination of energy and molecular properties. However, they become
computationally expensive due to the scaling that the methods have, and in their most
accurate form are typically used for small compounds or ones with high symmetry.

The workhorse in computational quantum chemistry and materials science is the
Kohn-Sham formulation of density functional theory (KS-DFT). It is a mean-field
method that uses the same computational machinery as the HF method, but it is
able to include some effects arising from the electron correlation. This is done with
some clever tricks. The method has its shortcomings, but when used properly, it allows
one to solve some real problems and deal with large and complex molecules.

2.6.1 Hohenberg-Kohn theorems

The basis of DFT is formed by Hohenberg-Kohn theorems [9], written originally for
ground-state systems. The first theorem states that the external potential is, within
the addition of a constant, a unique functional of the electron density. In the absence
of external fields, the external potential is the potential of the nuclei. From this follows
that the Hamiltonian operator, and thus the ground state of the system, is a unique
functional of the electron density. This can be intuitively understood from electron
density maps: the cusps and heights of electron density give the location and the
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charge of the nuclei, and the integral of electron density gives the number of electrons
of the system.

The second theorem states that the energy of a system is minimized by true electron
density. This allows one to use the variational method to obtain the true electron density
of the system.

In DFT, the molecular energy is written as a functional of the electron density

E[ρ] = Te[ρ] + Vee[ρ] + Vne[ρ]. (2.57)

Here, the nuclear-electron potential energy Vne[ρ], that defines the external potential,
is system-specific. It can be calculated exactly from the Coulomb interaction between
the electron density and the nuclear charges. The electron kinetic energy and electron-
electron potential energy, Te[ρ] + Vee[ρ], are universal terms and not dependent of the
system, and they are grouped to universal functional F [ρ]:

E[ρ] = Vne[ρ] + F [ρ] (2.58)

The electron-electron potential energy can be split into two terms, the exactly cal-
culable classical Coulomb part J [ρ], and nonclassical part Encl[ρ], which captures the
effect of exchange and Coulomb correlation, and fixes the nonphysical interaction energy
of the electron with itself.

The early versions of DFT did not use orbitals: they worked directly on electron
density. These so-called orbital-free methods reduce the dimensionality of optimizing
the wave function from 4N to 4 dimensions. The early methods had shortcomings: the
kinetic energy part has wrong asymptotic behavior, and the models did not reproduce
chemical bonding [2].

2.6.2 Kohn-Sham density functional theory

DFT is made usable in chemistry by Kohn-Sham DFT (KS-DFT) [10]. It introduces
MOs of a hypothetical non-interacting reference system with the same density as the
interacting electrons in order to ease the calculation of kinetic energy.

Similarly, as in splitting the electron-electron potential energy to Coulombic and
nonclassical parts, this way the true kinetic energy can be split to one calculated using
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orbitals TS[ρ], and the correction term TC [ρ]. The exact kinetic energy is calculated
with the KS orbitals ϕi as:

TS =

Nelec∑
i=1

〈
ϕi

∣∣∣∣−1

2
∇2

∣∣∣∣ϕi

〉
(2.59)

The universal functional can then be divided into exactly calculable parts, and the
unknown terms are grouped into the exchange-correlation (XC) functional EXC[ρ]:

F [ρ] = TS[ρ] + J [ρ] + EXC[ρ] (2.60)

EXC[ρ] = (T [ρ]− TS[ρ])− (Vee[ρ]− (J [ρ])) (2.61)

= TC [ρ] + Encl[ρ]. (2.62)

The exact form of the XC-functional EXC is not known. The next subsection de-
scribes different approximations developed, which perform reasonably well.

As in the HF method, the energy and the KS wave function are solved by determin-
ing the set of orthogonal orbitals that minimize the energy. Lagrangian optimization
scheme gives analogous eigenvalue equations with one-electron operator hKS in place
of the Fock operator given previously in Equation 2.31 [2]:

hKSϕi = ϵiϕi (2.63)

hKS =
1

2
∇2 + veff (2.64)

veff(r) = Vne(r) +

∫
ρ (r′)

|r− r′|
dr′ +Vxc(r) (2.65)

(2.66)

The effective potential consists of nuclear-electron, electron-electron, and XC-potentials,
where XC-potential is functional derivative of XC-energy with respect to the electron
density [2]:

Vxc(r) =
δExc[ρ]

δρ(r)
= εxc[ρ(r)] +

∫
ρ (r′)

δεxc (r
′)

δρ(r)
dr′ (2.67)
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By expanding the KS orbitals as basis functions, one obtains Roothaan-Hall equa-
tions for DFT. The calculation of nuclear-electron interactions and Coulomb repulsion
is done similarly as in HF method, but numerical integration is needed for calculat-
ing integrals in the XC-potential. The choice of a proper numerical integration grid is
important [11], with some XC-functionals being more sensitive than others [12].

2.6.3 Exchange-correlation functionals

The search for more performant XC-functionals (denoted simply as functionals from
now on) is guided by the physical and mathematical properties of an exact functional.
Functionals are often grouped in a hierarchy known as Jacob’s ladder [13]. However,
unlike in wave function methods, there is in general no systematic way to obtain a
better functional.

The XC-functional is commonly split to exchange and correlation functionals EX

and EC, and the XC-functional be built of parts from different families [2]:

EXC[ρ] = EX[ρ] + EC[ρ]. (2.68)

On the first rung of this Jacob’s ladder is the Local Density Approximation (LDA),
in which the electron density is treated locally and as a homogeneous electron gas. It
underestimates the correlation energy and overestimates the exchange energy. Next in
the rank is the Generalized Gradient Approximation (GGA), where the exchange and
correlation energies depend on the first derivative of the density. The inclusion of the
second-order derivatives of electron density leads to meta-GGA functionals.

One fundamental issue of KS-DFT is the self-interaction error (SIE), the nonphysical
interaction of an electron with itself. In HF, this is canceled by the exchange operator,
but in DFT, the canceling is the responsibility of the approximate density functional.
As a consequence, the electron density is too localized [14, 15]. Correction schemes
exist [16], but commonly this is alleviated by the use of hybrid functionals.

Global hybrid functionals mix a fraction of HF exchange EHF
X , calculated using the

KS orbitals, to the exchange functional. In range-separated hybrid functionals, the
exchange functional is split into short- and long-range parts, and different functionals
are used for them. As SIE manifests commonly as incorrect asymptotic behavior of the
XC-potential, a common way is to use a DFT exchange functional for the short-range,
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and mix a fraction of HF exchange to the exchange functional used for the long-range
parts.

In the final rung of Jacob’s ladder are the double hybrid methods, which include
the virtual KS orbitals to the correlation functional, commonly in the form of MP2-like
perturbational treatment.

The approximate functionals are poor in describing dispersion interactions. The
most popular way to overcome this is through the dispersion correction scheme of
Grimme, in which a correction term consisting of pairwise semi-empirical potentials is
added [17, 18].

A large collection of different functionals exist - in the libxc library, over 400 func-
tionals are implemented [19]. Functionals have different performances in different appli-
cation areas, and selecting the right one is a sort of art form itself. A recent perspective
article by the group of Grimme collected the hidden knowledge of applying DFT to
molecules [20]. Large benchmark studies have been done for different applications [21,
22]. Commonly, the choice is guided by intuition and knowledge of what usually works.
This intuition can be wrong, and it is advisable to test the performance of different
functionals for the task at hand.

2.7 Ring current calculations

An external magnetic field interacts with the electrons of a molecule by inducing a
current. These magnetically induced currents are useful as a measure for aromaticity,
as discussed in Section 3.4, and in understanding the nuclear magnetic shielding (NMR)
and magnetizability measurements of molecules. By including the magnetic field in the
quantum chemical description, the magnetically induced current density of a molecule
can be calculated and processed to yield a quantitative measure for aromaticity.

2.7.1 Hamiltonian in an external magnetic field

The molecular electronic Hamiltonian in Equation 2.7 does not include the effects of
external electromagnetic fields. The external magnetic field B is introduced to quantum
chemical calculations in the form of the magnetic vector potential A:
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B = ∇×A. (2.69)

This form leads to ambiguity known as gauge freedom. The gradient of any dif-
ferentiable function with a vanishing curl f(r) can be added to the magnetic vector
potential without changing the magnetic field, as ∇×∇f(r) = 0. The vector potential
can be chosen arbitrarily, and typically one that fulfills the Coulomb gauge condition
∇ ·A = 0 is used [23]. The magnetic vector potential for a uniform external magnetic
field is [24]:

A(r) =
1

2
B× rO, (2.70)

where the rO = r−O is the distance vector between the evaluation point to the gauge
origin O. The gauge origin can be set freely by choosing the gauge to be fr = 1

2
(B×d·r),

which displaces the gauge origin by a vector d while leaving the underlying magnetic
field unchanged. The change of gauge origin is called gauge-transformation.

The effect of an external magnetic field is included in Hamiltonian by replacing the
momentum operator p with a kinetic momentum operator π:

p → π = −iℏ∇+ eA. (2.71)

This leads to a Hamiltonian consisting of three terms: the original field-free Hamil-
tonian H(0), the paramagnetic term H(1) with a first-order dependency of the magnetic
vector potential, and the diamagnetic term H(2) with a second-order dependency:

H = H(0) +H(1)
para(A) +H

(2)
dia

(
A2
)

(2.72)

The paramagnetic term describes the interaction of the magnetic field and the elec-
tron’s angular and spin angular momentum. Based on the momenta, the paramagnetic
term can either increase or decrease the total energy. The diamagnetic term always
leads to an increase in energy. Using the form of the magnetic vector potential in Eq.
2.70, the terms are:
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H(1) = H
(1)
A +H

(1)
S (2.73)

=
1

2
B · LO +B · S (2.74)

H(2) =
1

8

(
B2r2 − (B · r)2

)
. (2.75)

The LO is the angular momentum operator that depends on the gauge origin:

LO = rO × p. (2.76)

Gauge transformation is equivalent to a unitary transformation of the Hamiltonian,
and does not change the total energy. The wave function, however, obtains a phase
factor [25]:

H(A′) = e−ifH(A)eif (2.77)

ψ(A′) = e−ifψ(A) (2.78)

While the solutions of the Schrödinger equation are gauge invariant, the same does
not hold for quantum chemical calculations done with a finite basis set. A common
way to mitigate this is the use of gauge-including atomic orbitals (GIAO) [26–28]. In
this approach, the basis functions are modified by multiplying them by an exponential
prefactor containing the magnetic vector potential AB

K with the gauge origin at the
atomic nucleus [24]:

χK

(
r,AB

K

)
= exp

(
−ir ·AB

K(r)
)
χK(r) (2.79)

AB
K =

1

2
B× (RK −O) (2.80)

While GIAOs remove the explicit reference to the gauge origin in molecular integrals
related to the calculation of magnetic properties, they do not lead to gauge invariance.
The properties however do have a rapid basis set convergence [23].

Another approach is the one presented in the continuous set of gauge transformations
(CSGT) [29] and the continuous transformation of the origin of the current density
(CTOCD) methods [30, 31]. In these, the gauge origin is set to the evaluation points
of the property, O = r.
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2.7.2 Magnetically induced current density

The conservation of probability density ρ = |Ψ|2 can be written as a continuity equation:

∂ρ

∂t
= −∇ · j, (2.81)

where j is the probability current density:

j(r) = −1

2
(ΨpΨ∗ +Ψ∗pΨ) (2.82)

In typical conditions, interactions between the electrons and the external magnetic
field are much weaker than the electrostatic interactions within a molecule. Assuming
that the magnetic field is uniform and infinitely weak, the response of the wave function
to it can be treated with perturbation theory and represented by a series [24]:

Ψ0 = Ψ
(0)
0 +Ψ

(1)
0 + . . . . (2.83)

The first-order magnetically perturbed wave function Ψ
(1)
0 is obtained from the un-

perturbed wave function Ψ0 using the angular momentum operator L̂O from Eq. 2.76
as the perturbation [24]:

Ψ
(1)
0 = ΨL̂O

0 ·B (2.84)

=
1

2

∑
j ̸=0

∣∣∣Ψ(0)
j

〉 〈Ψ(0)
j |L̂O ·B|Ψ(0)

0

〉
E

(0)
j − E

(0)
0

(2.85)

where the sum is over the excited states j. The numerator of the weight term is the
transition moment between ground and excited states Ψ

(0)
0 and Ψ

(0)
j , and the denomi-

nator is their energy difference energy. Inserting this first-order magnetically perturbed
wave function into the definition of probability current density in Eq. 2.82 gives equa-
tions for the corresponding first-order magnetically induced current density, JB. This
is commonly split into diamagnetic and paramagnetic terms [24]:
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JB = JB
dia + JB

para (2.86)

JB
dia = −1

2
B× rO

(
Ψ

(0)
0

)2
(2.87)

JB
para = −i

∑
I ̸=0

(
Ψ

(1)
I ∇Ψ

(0)
0 +Ψ

(0)
0 ∇Ψ

(1)
I

)
(2.88)

The diamagnetic term JB
dia corresponds to the classical Larmor current density. The

paramagnetic term has current density components arising from the mixing of excited
and ground states.

2.7.3 Calculation of the current densities and strengths of molecules

Current densities are typically calculated using perturbation theory. Similarly as in the
previous subsection, the magnetic field is assumed to be infinitely weak and uniform.
Expanding the current density as a series with respect to the magnetic field B [24, 32]:

JB(r) = j0(r) +
∑

β∈{x,y,z}

∂JB(r)

∂Bβ

∣∣∣∣∣∣
Bβ=0

Bβ + · · · (2.89)

The zeroth order term vanishes for closed-shell molecules, and the second term is
the current density susceptibility tensor (CDST) [24]:

J Bβ
α (r) =

∂JB
α (r)

∂Bβ

∣∣∣∣
Bβ=0

, where α, β ∈ x, y, z.. (2.90)

CDST is a second-rank tensor, describing the linear change in the magnitude of
the current density with respect to the change of the external magnetic field. Con-
tracting CDST with a magnetic field gives current density susceptibilities with units
nAT−1 m−2. Integration of current density susceptibility for a given domain gives cur-
rent susceptibility with units of nAT−1. In further sections, we will denote current
susceptibilities and current density susceptibilities as current and current densities for
brevity.

In the research presented in this thesis, we used the gauge-including magnetically
induced current method (GIMIC) for the calculation of current densities [33]. As the
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name implies, GIMIC uses GIAOs to deal with the gauge origin problem. The gauge
dependency arising from the use of a finite basis set leads to the loss of charge conser-
vation. As earlier discussed, the use of GIAOs lead to fast basis set convergence. The
theory behind GIMIC and its various applications have been reviewed earlier [24, 34,
35].

To calculate the CDST, GIMIC requires the unperturbed and first-order magneti-
cally perturbed density matrices, and is thus agnostic to the level of theory. The current
implementation2 supports the calculation of current density for both open- and closed-
shell systems [36], with basis sets containing ECPs [37], and has interfaces to several
quantum chemistry software.

The equation that GIMIC uses for the calculation CDST is derived by equating the
analytical derivative and Biot-Savart expressions of nuclear magnetic shielding tensor
σI
αβ. The analytical derivative expression is obtained by differentiating the total energy

with respect to nuclear magnetic momenta and magnetic field [38]:

σI
αβ =

∂2E

∂mI
α∂Bβ

∣∣∣∣
B=0
mI=0

=
∑
µν

Dµν
∂2hµν

∂mI
α∂Bβ

+
∑
µν

∂Dµν

∂Bβ

∂hµν
∂mI

α

. (2.91)

Here hµν is the matrix containing one-electron integrals in atomic orbital basis, Dµν

is the density matrix, and the derivatives are given with respect to magnetic fields Bβ

and nuclear magnetic momenta mI
α.

The equation for the Biot-Savart expression is [32]:

σI
αβ = −ϵαδγ

∫
(rδ −RIδ)

|r−RI |3
J Bβ

γ dr (2.92)

where ϵαδγ is the Levi-Civita tensor. Combining these leads to the final form of equations
used in GIMIC to calculate the CDST [33]:

J Bτ
γ (r) =

∑
µν

Dµν

∂χ∗
µ(r)

∂Bτ

χν(r) +
∑
µν

Dµνχ
∗
µ(r)

∂h̃

∂mI
α

∂χν(r)

∂Bτ

(2.93)

+
∑
µν

∂Dµν

∂Bτ

χ∗
µ(r)

∂h̃

∂mI
α

χν(r)− ϵvτδ

[∑
µν

Dµνχ
∗
µ(r)

∂2h̃

∂mI
α∂Bδ

χν(r)

]
. (2.94)

2https://github.com/qmcurrents/gimic

https://github.com/qmcurrents/gimic
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Here, χν are the GIAOs, and the operators ∂h̃/∂mI
α and ∂2h̃/∂mI

α∂Bδ are:

∂h̃

∂mI

∣∣∣∣∣
m=0
mI=0

= (r−RI)× p (2.95)

∂2h̃

∂mI∂B

∣∣∣∣∣
B=0
mI=0

=
1

2
[(r−RO) · (r−RI)1− (r−RO) (r−RI)] , (2.96)

where RI are the nuclear coordinates and RO is the gauge origin, both of which cancel,
latter due to the use of GIAOs. These equations are implemented in GIMIC in a slightly
less daunting tensorial form [33]:

J B
α = vTPβdα − bT

βDdα + vTDqαβ − ϵαβγ
1

2

(
vTDv

)
rγ. (2.97)

Here v is a vector containing basis-function values at each grid point r, D is the AO
density matrix, Pα is the magnetically perturbed AO density matrix, and bα,dα, and
qαβ are the following derivatives of the basis functions:

bα =
∂v

∂Bα

; dα =
∂v

∂rα
; qαβ =

∂2v

∂rαBβ

, where α, β = x, y, z (2.98)

GIMIC contracts the CDST tensor with a defined magnetic field to give current
densities. The induced current depends on the orientation of the magnetic field. To
study the ring current, the magnetic field is oriented parallel to the norm axis of the
ring, i.e., the molecule is oriented in xy-plane and the magnetic field is pointed in the
z-direction. The choice of the magnetic field is more ambiguous for non-planar systems,
and it is important to have consistency in comparing different systems.

For calculating a bond current IAB between atoms A and B, the JB(r) is contracted
by the norm vector n of the integration domain S:

I =

∫
S

∑
β∈x,y,z

Bβ

|B|
J Bβ(r) · nds. (2.99)

The domain is chosen so that it contains all the current contributions between
the two atoms. GIMIC implements a numerical integration procedure using two-
dimensional Gaussian quadrature, and allows the manual definition of an integration
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domain [33]. In the manual procedure of GIMIC, two atoms are given, the order of
which defines the direction of the normal n, along with a distance defining the location
on this vector, typically a mid-point of the bond. Additionally, a third point is given
for defining the orientation of the rectangular domain and the distances that define its
height and width.

Such a manual process is error-prone, and ensuring the validity requires painstaking
analysis to ensure that only the relevant current contributions are captured. Automated
procedures have recently been implemented. In AIMAll program, the integration do-
main is the intersection of two atomic surfaces as defined by QTAIM framework [39].
Irons et al. used a circular grid placed on bond cross-sections, with the radius defined
based on the atomic radii of the bonding atoms [40]. In SYSMOIC program, the inte-
gration domain is defined as an area within the contour of certain cutoff of the current
density at a plane bisecting the bond [41]. The latter approach is the most sensible, as
the QTAIM approach uses electron density, not current density in the determination,
and the use of a circular grid ignores the tails of current density distributions.



Chapter 3

Aromaticity

3.1 The fuzziness of aromaticity

Chemical models have existed long before quantum mechanics [42]. The roots of aro-
maticity date back to Faraday’s discovery of benzene in 1825 [43]. This class of carbon
compounds was found, in addition to their aroma, to have special reactivity and ther-
modynamic stability. The structure of benzene was a matter of debate. In 1865, Kekulé
came up with the structure of benzene with alternating double and single bonds [44].
He later came up with the model of the two equivalent structures existing in resonance
[45], the legend being that it came to his dream as an image of a snake eating its tail.

Figure 3.1: Two resonance structures of benzene

Upon the discovery of electrons and finally, with the advent of quantum mechanics,
better models appeared. Much of chemical intuition is rooted in Lewis structures, in
which two nuclei are bonded by sharing electron pairs to obtain an octet. Benzene
has two equivalent resonance structures, indicating delocalization, the incapability of
describing the bonds with a set of two-center two-electron bonds. Pauling formulated
chemical bonding with hybrid orbitals in the valence bond (VB) framework, in which
the resonance of localized structures describes aromaticity [46]. In MO theory, Hückel
came up with the 4n+ 2 rule for aromaticity with an effective Hamiltonian describing

26
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the π framework [47–49].
With quantum chemical methods, the properties of molecules can be calculated,

often with high accuracy. However, a large part of chemistry is rooted in intuitive
concepts, many of which predate the discovery of the electron, that lack a clear physical
basis [50], and are "fuzzy". Aromaticity is one of the most intensely debated ones, but
others are as common for the chemist, starting from the chemical bond, to atomic
charges, strain, conjugation, and others. These concepts are a tool for intuition, an
explanatory mechanism, and a heuristic for making sense of protons and electrons.
Using these concepts, chemists can explain observations, predict outcomes, and perhaps,
most importantly, design new molecules and materials. This has led to various methods
and debates on how to extract them from the calculated wave function [50, 51]

The fuzzy nature of aromaticity has the confusing manifestation of a vast num-
ber of different types of aromaticities, rules, and measures. The definition adopted
in this thesis follows that of Schleyer et al. [52]: "Aromaticity is a manifestation of
electron delocalization in closed circuits, either in two or in three dimensions. This
results in energy lowering, often quite substantial, and various unusual chemical and
physical properties. These include a tendency toward bond-length equalization, unusual
reactivity, and characteristic spectroscopic features. Since aromaticity is related to in-
duced ring currents, magnetic properties are particularly important for its detection and
evaluation."

The list of different aromaticities described in the literature is vast, Grunenberg list-
ing the following types [51]: σ, π, δ, ϕ, Y, double, anti, homo, pseudo, Hückel, Möbius,
Craig–Möbius, Hückel-Möbiusquasi, 3D, metal, multiple, conflicting, Shannon, hetero,
super, bishomo, bicyclo, homo-anti, bishomoanti, spiro, trishomo, antihomo, chelato,
cruci, dihydro, heteroanti, heterohomo, homohetero, hydro, hyper, hyperconjugative,
mono, monohomo, non, pro, disk, quasianti, sila, pre. As the quantification of aromatic-
ity is done using measures connected to its different physicochemical manifestations,
dozens of methods exist. Some of these are covered in Sections 3.3 and 3.4, and a more
extensive, yet still non-exhaustive list is given by Solà [53]: ASE, RE, ISE, AI, HOMA,
Julg index, Jug index, Bird index, PDI, FLU, FLUπ, MCI, Iring, ING, ING, INB, EDDB,
AV1245, ELFπ , ATI, θ, PLR, η, ρ, RCP, Λ, ACID, ARCS, NICS, NICSzz, NICSπ,
NICS-XY-scan. These methods have their advantages and shortcomings and can give
conflicting results.
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The search for the Holy Grail of aromaticity measures is a long and still ongoing
one, and brings to mind the comic by Munroe shown in Figure 3.2:

Figure 3.2: "Standards", a comic by Randall Munroe, published with CC BY-NC 2.5
license, https://xkcd.com/927/

3.2 Aromaticity rules

Why is one molecule aromatic and one not? Several rules exist to answer this question
for molecules with different dimensions, topologies, and electronic states, as recently
reviewed by Solà [54, 55].

The seminal rule for aromaticity was formulated by Hückel for planar monocycles
in 1931, leading to the 4n + 2 rule carrying his name [47–49]. It is based on the
energy levels of π orbitals, calculated using a simplified MO theory approach for Dnh

symmetric systems. The lowest energy MO is non-degenerate, and the latter ones
are doubly degenerate. Each MO takes in two electrons, and when there are 4n + 2

electrons, the electron shells are filled. When there are 4n electrons, there is a half-filled
degenerate MO, and the system has a tendency to undergo a Jahn-Teller distortion -
lowering its energy by undergoing a distortion that breaks the degeneracy. The 4n+ 2

rule can also be understood from the eigenfunctions of a Hamiltonian for a particle on
a ring [56]. The eigenfunctions for a particle on a sphere Hamiltonian lead to Hirsch’s
rule: a system being spherically aromatic if there are 2(n + 1)2 delocalized electrons
surrounding a roughly spherical nuclear scaffold [57].

https://xkcd.com/927/
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In the case of planar open-shell molecules, the rules are changed. Baird’s rule states
that those molecules antiaromatic in their singlet ground state become aromatic in their
lowest-lying triplet state, and aromatic compounds become antiaromatic [58]. This was
generalized by Soncini and Fowler by noting that molecules with 4n + 2 electrons are
aromatic and 4n electrons are antiaromatic in the lowest-lying electronic state with
even spin, and this is reversed when the spin is odd [59]. This was further generalized
by both Mandado et al. and Valiev et al. by noting that systems with an odd number
of α- and β electrons in the conjugation pathway are aromatic, and those with even
number are antiaromatic [60, 61]. The Hirsch’s rule was extended to open-shell systems
by Poater and Solà, leading to a rule stating that spherical compounds with 2n2+2n+1

electrons and a multiplicity of S = n+ 1
2

are aromatic [62].
Another change occurs when the topology of the conjugation circuit changes to a

Möbius-like state. Heilbronner found the molecules with one twist are aromatic when
they have 4n electrons, and antiaromatic with 4n+2 electrons [63]. This was generalized
by Rappaport and Rzepa [64] using the topological concept of linking number LK , which
represents the number of times that each curve winds around the other in an annulene
[54]: those with an even LK follow Hückel’s 4n+2 rule, which is then inverted for those
with 4n electrons. This holds for even-spin systems and is again inverted for those with
odd-spin. The rules for planar systems were condensed to a cube by Ottosson [65] and
extended by Solà to include Soncini-Fowler rule and different linking numbers [54]:

Figure 3.3: Ottoson’s cube, adapted from Reference [54]

The aromaticity of polycyclic compounds is more complicated. While the spherical
compounds described with Hirsch’s rule are built from several cycles, the rules work
under the assumption of the jellium model, where the nuclear scaffold can be treated
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as an isotropic positively charged sphere. The delocalization circuits in polycyclic com-
pounds in general are much more complex, arising from an intricate interplay between
local and global aromaticities. One way to make sense of it is Clar’s π-sextet rule [66,
67], which describes the dominant resonance structure of a polycyclic carbon molecule
being the one with the maximum amount of drawn benzene rings, as shown for phenan-
threne in Figure 3.4a. The rule was extended by Glidewell and Lloyd to non-benzenoid
systems in stating that the preferred structure is the one in which the structures form
the smallest 4n+2 groups and avoid forming the smallest 4n groups [55, 68], as shown
in Figure 3.4b for bicyclodeca[6.2.0]pentaene.

(a) (b)

Figure 3.4: (a) Preferred Clar structure of phenanthrene and of (b) bicy-
clodeca[6.2.0]pentaene as predicted by Glidewell-Lloyd rule.

The ability of these simple rules to make predictions is a beautiful example of using
theory to find simple and powerful models that aid chemists in their task of designing
and understanding molecules. They are not without their shortcomings and fail in
many cases as discussed by Solà in his review [55]. As the chemical space of possible
aromatic compounds with varying aromaticities is vast, and these rules are a guide for
molecular designers, the development and unification of these rules is an important line
of development.

3.3 Physicochemical manifestations and quantification

of aromaticity

The aromaticity of a molecule is evaluated by focusing on its physicochemical manifes-
tations. Aromatic compounds have distinctive energetic stabilization, reactivity, and
magnetic, optical, and structural properties. The delocalization can also be evaluated
by wave function analysis. These different categories are called aromaticity criteria - in
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this thesis, we study aromaticity based on magnetic criteria of aromaticity.
As listed in Section 3.1, many metrics exist for each criterion. It is common for them

to have their shortcomings, and a knowledge of their form and applicability is needed to
choose the proper one. Even if the most physically sound method is chosen, the results
for aromaticity as per different criteria can give contradictory results. This is often
termed the multidimensionality of aromaticity [53, 69–71]. The use of this description
is criticized, with critics calling for better scrutiny for selecting methods [70, 72].

Here, we present an overview of various physicochemical manifestations of aromatic-
ity along with some of their quantification methods.

3.3.1 Energetic stabilization

Energetic stabilization owing to aromaticity, or destabilization due to antiaromaticity,
is one of the most important properties of aromatic compounds. This effect is somewhat
tricky to calculate, and many of the other criteria are commonly used as a proxy measure
for it.

The original measure for the stabilizing effect of aromaticity is resonance energy
(RE), which quantifies the energy difference of a delocalized molecule to its hypothetical
localized resonance structure [73]. Two types of REs exist: the vertical resonance energy
(VRE), in which the delocalized and localized states have the same geometry, and the
adiabatic resonance energy (ARE), in which the localized version has a bond-length
alternating structure. One method to calculate this is the block-localized wave function
(BLW) approach [74], which for benzene gives a VRE of 91.6 kcalmol−1 and ARE of
57.5 kcalmol−1 [75], the difference being distortion energy.

Resonance energies are measures of the total stabilization of the aromatic system
compared to the hypothetical localized system. Often a more interesting quantity is
the energetic stabilization of aromatic compounds with reference to a conjugated, but
non-aromatic reference system [73]. This is known as the aromatic stabilization energy
(ASE). The choice of the reference system is challenging: there are multiple causes
for energy differences, and it may be challenging to select one in which only difference
arises from aromaticity [76].

One way to calculate ASE is via isodesmic or homodesmotic reactions. Isodesmic
reactions retain the same number of single and double bonds, homodesmotic reactions
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retain the same number of bonds in each hybridization state, as shown below:

Isodesmic: 3H2C−−CH2 + 3H3C−CH3 −−→ C6H6 + 6CH4 (3.1)

Homodesmotic: 3H2C−−CH−CH−−CH2 −−→ C6H6 + 3H2C−−CH2 (3.2)

which lead to ASEs of −67 kcalmol−1 and −23 kcalmol−1, respectively [77], showing
the importance of the correct choice of a reference system.

The effect of other stereoelectronic effects on the energy can be made smaller by
computing isomerization stabilization energies. In it, the energy difference between the
aromatic compound with an added methyl group and one with the methyl hydrogen
transferred to the sp2 carbon of an aromatic ring is calculated, as shown in Figure 3.5.

Figure 3.5: Reference system for calculating the isomerization stabilization energy of
benzene

A clever way to dissect the different energetic interactions is the energy decomposi-
tion analysis (EDA) [78, 79]. In it, the interaction energies are divided into electrostatic,
Pauli repulsion, and orbital interaction contributions. The orbital interaction contribu-
tions can be further divided into different symmetry components:

∆Eint = ∆Velstat +∆EPauli +∆Eorb (3.3)

∆Eorb = ∆Eσ +∆Eπ +∆Eδ . . . (3.4)

The ∆Eπ component is a direct measure of the stabilization due of π-conjugation
in a molecule. It does not require a reference molecule for its calculation [80]. For a π
aromatic molecule, the ASE based on EDA can be calculated by comparing the ∆Eπ

value of the cyclic system to an acyclic reference structure.
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3.3.2 Structural criteria

Geometric indices for aromaticity quantify the equalization of bond lengths in aromatic
compounds [81]. Julg index A [82] calculates the variances of bond lengths along the
circuit, while the harmonic oscillator model of aromaticity (HOMA) [83, 84] index
compares the mean square errors of bond lengths compared to a reference bond length
dref , which for hydrocarbons is the bond length of benzene 1.338 Å:

A = 1− a

n

n∑
i=1

(
1− di/d̄

)2 (3.5)

HOMA = 1− b

n

n∑
i=1

(di − dref)
2 . (3.6)

Here, the constants a and b are chosen to give zero to antiaromatic and one to
aromatic reference systems, dependent on the studied molecules - different values are
used for carbon and heterocyclic systems, for instance. Other forms of geometric mea-
sures have been developed, reviewed by Krygowski et al. [81], with an example of the
harmonic oscillator stabilization energy (HOSE) that connects the mean squared errors
in a slightly more complicatedly parametrized way to infer canonical pathways and
resonance energies [85].

The Julg index has a deficiency in recognizing any systems with no bond-length
alternation, such as cyclohexane. The geometric indices are formulated to reach a
maximum for benzene, unable to differentiate between molecules with a stronger delo-
calization as indicated by magnetic measures.

Interestingly, the bond length equalization in aromatic molecules is driven by the
σ electrons, while π electrons are distortive [86]. Pierrefixe and Bickelhaupt performed
EDA analysis along the distortion pathway from delocalized to distorted structures.
The propensity of π electrons to distort the structure is much higher in antiaromatic
systems than in aromatic systems, while localizing tendency as the electrostatic and σ

electrons is similar [87–89]. A similar effect holds for aromatic main-group molecules
[90].

3.3.3 Electron delocalization methods

Quantum chemical methods give access to the wave function, in its computational rep-
resentation of MOs and density matrices, and the corresponding electron density. As an
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alternative to aromaticity descriptors based on calculated or experimentally determined
molecular properties, one can work on the fundamental ψ and ρ directly [91].

Many of these electron delocalization methods are built on XC-density γXC (r1, r2).
It gives a measure of spatial exclusion of one electron due to another, and is defined as
the difference between uncorrelated densities and the true pair density of electrons [91]:

γXC (r1, r2) = γ (r1r2)− ρ (r1) ρ (r2) . (3.7)

Delocalization index (DI) δ(A,B) quantifies the delocalization for a pair of atoms
A and B [92]. It is calculated as an integral of XC-density over their atomic basins, 3D
region of an atom in a molecule, that is commonly done within the quantum theory of
atoms in molecules (QTAIM) framework [93]. DI is defined as:

δ(A,B) = −2

∫
B

∫
A

γXC (r1, r2) dr1dr2. (3.8)

Which is in practice calculated by summing over the overlap matrix elements of the
atomic basins. The comparison of these pairwise DIs to those of a reference system,
similarly as in the structure-based aromaticity descriptors in the previous section, gives
descriptors such as aromatic the fluctuation index [94]. DI can also be defined for mul-
tiple atoms. The ring delocalization index Iring is built of DIs of neighboring atoms [95,
96], and its extension multicenter delocalization index (MCI) [97] calculates the per-
mutations over all atoms in the conjugation pathway, which can capture through-space
effects with the penalty of increased computational cost. These multicenter extensions
are dependent on the number of ring atoms, requiring normalization to compare rings
of different sizes [98].

Electron localization function (ELF) is a scalar real-space function, showing large
values in regions where electrons are localized [99]. Topology analysis of the ELF field
allows one to classify bonds and understand delocalization [100, 101]. One way to
quantify bond strength is the bifurcation value, an isosurface value at which the ELF
is no longer continuous between atoms. The total ELF value however is not able to
quantify aromaticity. ELF function can be split to σ and π contributions[102], and the
bifurcation value of ELFπ is related to aromaticity of π aromatic systems [103, 104].

Electron density of delocalized bonds (EDDB) is a recent method for measuring
delocalization [105, 106]. It is based on an electron density decomposition scheme,
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which partitions the electron density of a molecule to the densities localized at atoms,
between atom pairs, and between multiple atoms. The latter quantity, EDDB(r) can
be visualized to show the aromatic parts of molecules, and its electron occupation can
be calculated to find the number of electrons involved. The EDDB for a peptide is
shown in Figure 3.6 [106], showing the delocalized electron density of aromatic rings,
and also in carboxylic acids.

Figure 3.6: EDDB(r) function for an peptide. Taken from [106], published with CC-
BY license.

Adaptive Natural Density Partitioning (AdNDP) is a method to identify N-center
2-electron bonds. It is based on natural bond orbitals (NBO), a method that transforms
the delocalized wave function obtained to more interpretable, 2c-2e Lewis-like hybrid
orbitals [107]. AdNDP extends it to delocalized bonding through an iterative algorithm
described in [108]. It is a powerful qualitative tool for understanding delocalized chem-
ical bonding, and has been applied to a wide variety of aromatic systems [109, 110].
AdNDP for benzene with the 2c-2e σ and the delocalized 6c-2e and 4c-2e π bonding
patterns is shown in Figure 3.7.

Some work has been done on assessing aromaticity using only the electron density,
a quantity that can also be obtained experimentally. Different measures of electron
density at the ring-critical points, as defined in QTAIM, correlate with other aromaticity
indices [93, 111, 112]. Similar correlations were found also for the information-theoretic
Shannon entropy [113, 114], which has a beautiful and simple form:

SS[ρ] = −
∫
ρ(r) ln ρ(r)dr (3.9)
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Figure 3.7: AdNDP for benzene, showing (a) 2c-2e σ, and the delocalized (b) 6c-2e
and (c) 4c-2e π bonding patterns. Reprinted with permission from Reference [109].
Copyright 2022 American Chemical Society.

3.3.4 Spectroscopic methods

The electronic structure of aromatic compounds results in characteristic spectral finger-
prints. In photoelectron spectroscopy, aromatic compounds have high electron detach-
ment energies, while antiaromatic molecules have low ones. In UV spectra of aromatic
compounds, the excitations occurring at frontier orbitals happen at higher energies, giv-
ing unique spectral fingerprints. These spectral fingerprints can be useful for qualitative
assessment of aromaticity, especially in the case of aromaticity switching [115, 116]. In-
frared spectroscopy can be used to obtain bond stretching force constants, which were
found to be good measures for π delocalization for both aromatic and antiaromatic
compounds [117].

3.3.5 Reactivity

In addition to the energetic stability due to aromaticity, aromatic compounds have
distinctive reactivities. Aromaticity and antiaromaticity of transition states are also
important in predicting reaction outcomes, for example in pericyclic reactions [118–
121].

One tendency of aromatic compounds is to react by substitution reaction, in which
the aromatic π system is retained, rather than by addition reactions, in which it would
be lost [122]. Mucsi et al. developed a scale for aromaticity using both experimental
and calculated enthalpies of hydrogenation [123]. They studied a set of monocyclic
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compounds in which one of the double bonds of an aromatic compound is hydrogenated
by cis addition. This hydrogenation enthalpy is compared to a hydrogen enthalpy of
a non-aromatic reference compound. The more aromatic the compound, the harder it
was to perform an addition reaction. A linear fit is done, giving benzene a value of
100% and cyclobutadiene a value of -100%. This measure was found to correlate well
with NICS values, and in further study by Kumar and co-workers also with ring current
strength and aromatic stabilization energies [124].

3.4 Magnetic criteria of aromaticity

3.4.1 Ring currents

An external magnetic field interacts with electrons by inducing currents. In aromatic
molecules, a perpendicular magnetic field induces a net current around the conjugation
pathway. This net current is called the ring current. In aromatic compounds, the ring
current is diatropic, meaning that it circulates in the classical direction, i.e., clockwise
when looking toward the negative direction of a magnetic field. Antiaromatic molecules
have a paratropic ring current that circulates in the opposite counter-clockwise direc-
tion.

The magnetically induced current density of benzene is shown in Figure 3.8. On
left, the current density is visualized in the molecular plane. Depending on the print
quality of the thesis, the image shows the local circulations at the chemical bonds. On
right, the current density is visualized 1 a0

1 above the molecular plane, emphasizing
the ring current of the π electrons.

The current density of a molecule is a vector field. It can be analyzed qualitatively
by visualizations, a common way being to draw arrows with a length corresponding
to the magnitude at the given point. Another way is to calculate the modulus of the
current density, |J(r)|, a scalar function which can be visualized as an isosurface.

For quantification, the current density is integrated at bonds in the conjugation
pathway, giving the strength and the direction of the ring current. At the B3LYP/def2-
TZVP level of theory, benzene has a diatropic ring current of 11.8 nA/T and cyclobu-
tadiene has a paratropic ring current of -19.9 nA/T [125].

11 a0 = 0.529 Å (10−10 m)
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(a) (b)

Figure 3.8: Current density of benzene at (a) the molecular plane and (b) 1 a0 above.

In CTOCD-DZ, a formulation of CTOCD in which the gauge origin is chosen in
a way that the diamagnetic contribution is annihilated, the current density can be
dissected to orbital contributions [30, 31, 126]. This makes it possible to divide the ring
current to σ and π contributions [127]. The π, σ, and total contributions of benzene’s
ring current are shown in Figure 3.9. At the HF/6-311+G(3df) level, the total ring
current is 12.8 nA/T, of which 91.4% originate from the π electrons and 8.6% from the
σ electrons.

Another result from the CTOCD-DZ formulation are the selection rules for diat-
ropic and paratropic ring currents [128, 129]. The diatropic response is determined by
translational and paratropic response by rotational transition matrix elements between
the ground and excited states, |ϕa⟩ and |ϕj⟩ [24]:

Diatropic :
⟨ϕj |p|ϕa⟩
εj − εa

(3.10)

Paratropic :

〈
ϕj

∣∣∣̂lO∣∣∣ϕa

〉
εj − εa

(3.11)
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Figure 3.9: π, σ and total contributions of benzene’s ring current. Reprinted with
permission from Reference [127]. Copyright 2022 American Chemical Society.

In the language of group theory, diatropic currents for planar molecules in XY plane
arise from excitations in which the product of representations of initial orbital Γ(ϕa),
final orbital Γ(ϕj) and the in-plane translational operator Γ(Tx, Ty) contains the totally
symmetric component Γ0. For paratropic the selection rule the translational operator
is changed with in-plane rotation operator Γ(Rz) [130]:

Diatropic : Γ(ϕa)× Γ(ϕj)× Γ(Tx, Ty) ⊃ Γ0 (3.12)

Paratropic : Γ(ϕa)× Γ(ϕj)× Γ(Rz) ⊃ Γ0 (3.13)

The strength of this response is modulated by the energy difference of unoccupied
and occupied orbital in the denominator of the transition matrix elements. The largest
contributors for ring currents are thus the frontier MOs, especially the HOMO-LUMO
transitions. For planar annulenes, this selection rule gives an even simpler rule for
qualitative determination of aromaticity: if the HOMO and LUMO differ by one angular
node, the ring current is diatropic, and if by none, the ring current is paratropic [129].

The magnetically induced current density is dependent on the orientation of the
magnetic field. For ring current calculations of planar molecules, the choice is unam-
biguous, as the magnetic field is oriented perpendicular to the molecular plane. Two
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approaches to overcome this have been reported in the literature, one based on decom-
positions of the current density susceptibility tensor, and another on the vorticity of
the current density.

The current density susceptibility tensor J Bβ
α (r) can be decomposed to antisym-

metric and symmetric components, T = S + A. Using this decomposition, one can
derive the anisotropy of induced current density (ACID) method [131] by calculating
the standard deviation of eigenvalues si of the symmetric part S:

ACID =

√∑
i

(si − s̄)2 (3.14)

ACID is a scalar function, which can be visualized as densities showing the regions
of delocalization. To obtain information on the direction of the current, the current
density is overlaid as arrow plots. However, in a study by Fliegl and co-workers [132],
the quantification of the ACID through integration did not yield consistent values. The
obtained integrals were dependent on the location of the integration plane, and the
quantitative picture is not always related to the qualitative one given by the visual-
ization. Another quantity is the Anisotropy of the Asymmetric magnetically Induced
Current Density (AACID) [133], calculated from the eigenvalues of the total current
density susceptibility tensor:

AACID =

√
1

3

∑
i

(
ti − t⃗

)2
. (3.15)

Integrated AACID on a plane bisecting a ring bond was shown to have a good agreement
with Hückel delocalization energies by Monaco and Zanasi [134].

Another orientation-independent method derive from the vorticity tensor VBδ
α . Vor-

ticity tensor is the derivative of the curl of current susceptibility tensor with respect to
magnetic field [135, 136]:

VBδ
α =

∂(∇× JB)

∂Bδ

= εαβγ∇βJ Bδ
γ . (3.16)

where the Latin letters denote Cartesian directions. Scalar functions from its trace
[137, 138] or the asymmetric component [139], are independent of the orientation of the
magnetic field, and can be used to visualize the delocalization of electrons. The trace
of the tensor also carries information on the tropicity of the current.
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3.4.2 Magnetic shielding

The induced currents give rise to a secondary magnetic field Bloc, as depicted in Figure
3.10a. The relation of the secondary magnetic field to the current is given by Biot-
Savart’s law:

Bloc =
µ0

4π

∫
r× JB(r)

r3
dr. (3.17)

The induced magnetic field can either weaken or strengthen the applied field, called
the shielding or deshielding effect, respectively. In aromatic compounds, the diatropic
ring current induces a magnetic field that shields the inner part of the ring and deshields
the outer part, and the paratropic ring currents have the opposite effect.

The induced magnetic field of benzene is shown in Figure 3.10b [140]. The shielding
region is shown in blue, and it has a cylindrical shape, extending below and above the
benzene ring, while the deshielding region, shown in red, is a hoop at the ring periphery.

(a) (b)

Figure 3.10: (a) Schematic illustration of the secondary magnetic field induced by
a magnetically induced ring current, and (b) induced magnetic field of benzene. Blue
indicates shielding and red deshielding regions. Reprinted with permission from Refer-
ence [140]. Copyright 2022 Wiley

The induced magnetic field is related to the applied magnetic field Bext through the
shielding tensor σ:

Bloc = −σBext (3.18)

This effect can be observed experimentally through nuclear magnetic resonance
(NMR) spectroscopy, wherein the liquid phase the average of the diagonal components
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of the shielding tensor is obtained in the form of chemical shift δ, given by the resonance
frequencies of the nuclei relative to that of a standard:

δ =
νmol − νref

νref
. (3.19)

This can be calculated reasonably accurately for most systems using quantum chem-
ical methods [141] as the difference between shielding constants of reference and nuclei
of the molecule:

δ = σref − σmol (3.20)

The equations for calculating the tensor elements were given previously in Equations
2.91 and 2.92. The Biot-Savart expression describes the relation between the current
density susceptibility tensor and the shielding tensor elements:

σI
αβ = −ϵαδγ

∫
(rδ −RIδ)

|r−RI |3
J B

γ dr. (3.21)

The integrand is called the magnetic shielding density. Its calculation was recently
implemented in the GIMIC program [142, 143], and it can be visualized to show spatial
origins of the shielding and deshielding contributions to the shielding constants of a
nucleus. The regions with shielding (blue) and deshielding (red) spatial contributions
of σzz for the lower-right proton of benzene are shown at the molecular plane in Figure
3.11a and one 1a0 above the molecular plane in Figure 3.11b.

The most commonly used computational method in the determination of the ring
current is the nuclear-independent chemical shift (NICS) method [144]. In it, the shield-
ing tensor σαβ is calculated at different points, typically at the center or above of the
ring, and the negative of some of its tensor components are used to deduce the sign and
the tropicity of the ring current. Commonly, either the isotropic or the zz component
is used, denoted as:

NICS(n)iso = −1

3
(σxx + σyy + σzz) (3.22)

NICS(n)zz = −σzz (3.23)

. (3.24)
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(a) (b)

Figure 3.11: zz component of magnetic shielding density of benzene’s lower-right pro-
ton, shown (a) on the molecular plane and (b) 1a0 above. Red regions show deshielding
and blue regions the shielding contributions. Figures taken from [142], published with
CC-BY license.

Here, the n is the height of the evaluation point from the ring center, given in Å.
Large negative NICS values indicate an aromatic diatropic ring current, while large
positive values indicate an antiaromatic paratropic ring current. The values calculated
at the level of the molecular plane contain significant contributions from σ electrons, and
the evaluation is commonly done 1Å above the molecular plane to limit this effect [145].
Furthermore, the isotropic contribution was found to contain contributions from many
origins, and the σzz component for molecules aligned to xy plane was recommended
for evaluating the π delocalization [146, 147]. The chemical shielding tensor can be
dissected to orbital contributions, either via localized MOs [148] or with canonical MOs
[149], allowing the dissection of NICS to σ and π contributions.

As NICS is sensitive to several effects, it can lead to spurious results. This is
especially relevant in molecules with transition metals, where multiple examples exist
of NICS giving qualitatively incorrect results of their aromaticity [150–156]. The reason
for the discrepancies is the sensitivity of NICS to the strong local circulations.

The evaluation of NICS is not limited to single points. It can be calculated on
a 3D grid to yield chemical-shielding isosurfaces [140, 157], evaluated as a 1D scan
normal to the main symmetry axis of the ring yielding NICS-scan [158, 159], or in the
perpendicular axes parallel to molecular plane yielding NICS-XY-scan [160].

Several schemes exist to calculate ring currents from NICS values by using Biot-
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Savart’s law [161–165]. However, these schemes can be problematic for molecules with
more complex current patterns. Van Damme and co-workers studied the mapping be-
tween NICS values and current density, and concluded that the current density can not
be reverse-engineered from NICS values [166]. In recent work, Paenurk and Gershoni-
Poranne developed NICS2BC method for mapping NICS values to the bond currents
of polycyclic aromatic hydrocarbons [167]. The bond currents obtained with their ad-
ditive scheme based on Biot-Savart’s law led to a nearly perfect correlation with the
ones obtained by CSGT method.

3.4.3 Magnetizability

Magnetization is the process in which a magnetic moment is induced in a material due to
an applied magnetic field. Their relationship is captured in the magnetic susceptibility
tensor χαβ

Mα = Bβχαβ,whereα, β ∈ x, y, z (3.25)

(3.26)

Diamagnetic molecules have negative magnetic susceptibilities, the induced mag-
netic moment opposes the magnetic field and the molecules are repelled by a magnet,
opposite to paramagnetic molecules with a positive magnetic susceptibility. The mag-
netic susceptibility tensor is related to the current susceptibility tensor via [24]:

χαβ =
1

2

∑
δγ

εαδγ

∫
rδJ

Bβ
γ (r)dr (3.27)

Analogously to the case of magnetic shielding density, the integrand above can be
visualized to obtain the spatial contributions for magnetizability [168].

Ring currents manifest in the out-of-plane component of the magnetic susceptibility
tensor, which can be assessed by the anisotropy of the magnetic susceptibility ∆χ [32,
169]:

∆χ = χm
zz −

1

2

{
χm
xx + χm

yy

}
. (3.28)
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Similar to NICS, the magnetic susceptibility is also affected by other phenomena
aside ring currents [170]. As the other magnetic descriptors are easier to calculate and
interpret, magnetic susceptibility is these days rarely used for quantifying aromaticity
[171].

3.5 Bird’s eye view of aromatic chemical space

3.5.1 Chemical space

We have now discussed the rules and the physicochemical properties that can be used
to quantify aromaticity. Now it is time for a bird’s-eye view of the chemical space of
aromatic compounds.

The emergent nature of aromaticity is fascinating: due to delocalization, the proper-
ties of the whole system are more than a simple sum of its parts. Analog for aromaticity
can be found in electric circuits, where the interplay of different components gives rise
to its function, and the change or removal of any component most probably leads to
the lack of it.

This is contrasted to cases where atomic fragments serve just a spatial and electro-
static role, such as in the problem of finding a drug that fits in a binding pocket of
a protein. While the change of the compound’s protonation or redox state will surely
modulate this binding, such a change may completely kill the aromaticity of a com-
pound, drastically changing its physicochemical properties. If one adopts the definition
of chemistry as the science of understanding molecules and the art of designing new
ones, the emergence arising from delocalization opens a conceptually new level, forcing
one to think at the systems level.

Chemical space, defined as the set of all possible molecules, is a central concept
in molecular design, and the territory explored by nature through evolution and by
chemists with their intuition. The tools and language of chemoinformatics and mathe-
matical chemistry are useful in making the practically infinite set amenable.

Here, we present some aromatic sections of the chemical space, with an attempt to
highlight its vastness, different hierarchies, and the utility of simple aromaticity rules
to make sense of it all.
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3.5.2 Monocycles

In aromaticity, everything starts with monocycles. If one takes the archetypal benzene,
and replaces CH with one or more isoelectronic fragments, such as N or O+, one already
obtains a dozen or so different structures. Guided by the Hückel rule, one can do similar
substitutions to other aromatic carbon monocycles. For the pentagonal cyclopentadiene
anion, C5H

–
5 , leads to pyrroles, imidazoles, thiazoles, oxazoles, and a plethora of other

aromatic five-rings. Some of these are presented in Figure 3.12, showing what sort of
richness can be obtained with a few atomic shuffles for single rings.

Figure 3.12: Some (a) six-membered and (b) five-membered heterocycles.

There is no need to limit the elements to main-group elements - one can throw in
isoelectronic transition metal groups to obtain metalloaromatic compounds [172–178].
Metalloaromatic compounds have complicated bonding and can exhibit σ, π, δ, and ϕ

delocalization. The aromaticities along these different conjugation channels may occur
in combination - or, fascinatingly, may conflict with each other, being antiaromatic in
one and aromatic in others.

Aesthetically and theoretically interesting monocycle is the carbomer, shown in
Figure 3.13a. It is a hexagonal benzene-like molecule with an ethylene bridge between
the hexagon nodes. First conceptualized by Chauvin [179, 180] and then synthesized by
the group of Ueda [181, 182], they have also been made in naphthalene form, and have
been investigated for electron capture properties. Another interesting large monocycle
is C18, shown in Figure 3.13b which was synthesized mechanically on a surface by Kaiser
et al. in 2019, and extensively studied theoretically by Baryshnikov et al. [183]. The
all-carbon rings have been previously observed by spectroscopic signatures, and their
aromaticities and properties have been studied at varying ring sizes [184–186].
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(a) (b)

Figure 3.13: (a) Carbomer and (b) C18

Under certain conditions, substituent ring of a monocycle can also be aromatic, as
we will discuss in Section 4.2 presenting the findings of Article II.

3.5.3 Polycycles

The set of monocycles is a small drop in the sea of the aromatic space chemical space.
When one fuses these rings, the number of possible unique molecules explodes. As some
examples of works dealing with their enumeration in the field of drug discovery, Pitt
et al. formed a dataset of one and two ring aromatic structures with C, N, O, and S,
yielding 25,000 compounds [187], Ertl et al. generated 600,000 structures combining
one to three five- and six-membered heterocycles [188], and Visini et al. enumerated
a large set of carbon ring structures, generating for a subset of ring structures their
aromatized counterparts, yielding 900,000 aromatic structures with up to four rings
[189].

While these projects do good work in enumerating usable scaffolds for new drugs,
they are still a slightly less small drop in the space of polycyclic compounds. The
vastness is exemplified by the study of polycyclic benzenoid compounds, like those
shown in Figure 3.14, with graph theoretical methods [190–192]. One can consider a
graphene lattice and think of the number of different ways to color adjacent hexagons.
With 21 hexagons, the amount of unique compounds is in the range of 1014 [193–195]
- and this is just for the all-carbon structures. Chakrabotry et al. took a subset of
some dozen of these PAHs and enumerated all the permutations doing isoelectronic
replacements with B and N atoms, resulting in the order of 1013 molecules [196].

A beautiful member of the polycyclic compounds are the superbenzenes, in which
a benzene-like structure is obtained from fused monocycles. Smallest superbenzene is
the coronene, shown in Figure 3.15a, which one can view either as a benzene with a
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Figure 3.14: Some small polycyclic benzenoid compounds

benzene fused at each edge, or as a cyclic arrangement of benzenes with a hexagonal
hole. Kekulene, shown in Figure 3.15b synthesized by Staab and co-workers in 1978
[197], is a larger superbenzene with a coronene sized hole in its center.

(a) (b)

Figure 3.15: (a) Coronene and (b) kekulene

3.5.4 Macrocycles

The mono/polycyclic fragments can be joined to each other via linker groups, leading
structures that are called in this thesis macrocycles2. The linker can be as simple as
having a single bond between two rings, or it may consist of several atoms. Similar to
coronene, there is some freedom in choosing how to look at these compounds: is the
phenanthrene shown in Figure 3.16a a polycyclic compound, or a macrocycle made of
two benzenes with a single bond and an ethene bridge?

Porphyrinoids are ubiquitous macrocycles in the context of aromaticity, with their
archetype, porphyrin, shown in Figure 3.16b. It has four pyrroles linked with sp2

carbon bridges. The pyrroles could also be other monocycles, such as thiophenes, and
2Macrocycle can also refer to e.g. cyclic polypeptides - we are interested in conjugated ones
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(a) (b) (c)

Figure 3.16: (a) Phenanthrene and two porphyrinoids, (b) porphyrin, and (c) corrole

pyridines. They can also be polycycles, such as naphthalenes. The bridges can be just
a bond between two rings, as in corrole shown in Figure 3.16c, or they can one, two,
or more atoms, which could be carbon, nitrogen, or sulfur. The bridges may attach
to different parts of the ring, and new rings can be formed by connecting the bridging
atom to the pyrrole ring. Porphyrins also have a rich coordination chemistry and can
bind many metals, which again can bind axial ligands. Nothing of course limits the
number of rings in porphyrin to just four - subporphyrins with three rings, hexaphyrins
with six rings, and so on have been made. The modular structure of porphyrins nicely
elucidates the utility of viewing molecules from the point of view of building blocks -
if they would be forgotten, the zinc porphyrin could be seen as a polycyclic compound
with five and six-membered rings consisting of carbons, nitrogens, and a zinc atom.

The combinatorial explosion arising from different possibilities was exemplified in
work by Nandy et al. [198], in which the chemical space of tetrapyrrolic coordination
compounds spanned by 15 rings and 9 bridges yielded 16,986 molecules were generated
in the process of exploring methane oxidation catalysts. Porphyrins can be fused in sev-
eral different ways from the edges to yield porphyrin tapes [199]. They can be extended
in one dimension, branched in L and T shape [200], and constructed in two dimensions
to yield porphyrin sheets [201]. Porphyrins can be connected with bridging groups,
commonly attached to the meso-carbons. An impressive feat of this is a synthesis of
directly meso-meso singly linked porphyrin tapes with 1024 porphyrin units with an
850 nm length [202]. The three-dimensional arrangements of these are discussed in the
next section.

The richness of the heterocyclic polycyclic compounds and macrocycles was recently
collected in two seminal reviews by Stępień and co-workers [203, 204], amassing over
2400 references.
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3.5.5 Nanobelts and Möbius-aromatic molecules

Aromaticity is not constrained to two dimensions. One interesting class of compounds
are the helicenes [205]. Phenanthrene in Figure 3.16a loses its planarity owing to the
steric repulsion of hydrogens in the bay area. Adding benzenes leads to the formation
of a helical corkscrew structure, as shown in Figure 3.17a, with a strong diatropic
ring current circulating along the edge of the whole structure [206]. The diatropic ring
current is affected only a little by the size of the helix. Recently the synthesis of infinitine
was reported [207], shown in Figure 3.17b, a molecule with an infinity loop structure
consisting of two fused helicenes with different chiralities. Current density calculations
found that the molecule non-crossing diatropic currents around the scaffold [208, 209].

(a) (b)

Figure 3.17: (a) Helicene and (b) infinitene

Linking benzenes from para positions via single bonds, as shown on the upper
left part of Figure 3.18, leads to the formation of cycloparaphenylenes (CPP), first
synthesized in 2008 with 9, 12 and 18 benzenes [210]. A beautiful example of chemical
ingenuity is the recent synthesis of an interlocked CPP [211]. The direct fusion of
benzenes leads to carbon nanobelts, with the para-fused one shown on the upper right of
Figure3.18. These nanobelts and nanohoops can be seen as arising from the stacking of
cis or trans ethene fragments to rings, as depicted in the upper row of Figure 3.18, which
lead to an armchair or zigzag nanotubes, respectively. In an armchair nanotube, the
continuous line of benzenes is vertical along the tubular axis, while in zigzag nanobelts
it is horizontal. A third type is the chiral nanotubes, in which the continuous line is
diagonal. Similar to the coloring of a hexagonal lattice, different nanobelt structures
can be formed by coloring adjacent hexagons. A recent review by Itami et al. [212]
describes the process of synthesizing various nanobelts, and their unique geometric and
optoelectronic properties open many possibilities in supramolecular and optoelectronic
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applications [213].

Figure 3.18: Stacking of cycloparaphenylenes (left) and nanobelts (right) to form
nanotubes

The building blocks of these belt-like structures are not limited to monocycles.
Porphyrin nanohoops with varying ring sizes have been built by a template-induced as-
sembly approach by the group of Anderson [214–216], a six-member porphyrin nanoring
is shown in Figure 3.19a. These have also been stacked to form nanotubes and spherical
structures [217, 218], shown in Figures 3.19b and 3.19c. The largest nanoring contains
40 porphyrin rings [219], starting to bridge the gap between molecular chemistry and
mesoscale physics [220, 221].

These systems are analogous to CPPs. There has also been recent work in synthe-
sizing porphyrin nanobelts, built from directly fused porphyrins. The group of Sessler
has synthesized carbaporphyrinic belts [222, 223] and the group of Yamada has synthe-
sized one with all the inner ring atoms being pyrrolic, allowing one to utilize porphyrin
coordination chemistry [224].

The first synthesis of Möbius aromatic carbon molecule was done by Herges et al.
[225, 226], shown in Figure 3.20a. It consists of two anthracenes, joined at the central
benzene ring via a single bond, and a cyclo-octatetraene. Expanded porphyrins dis-
tort into three-dimensional structures and often exhibit Möbius aromaticity [227–229].
Hexaphyrin is the smallest of these, shown in Figure 3.20b. The Möbius conduction
pathway in these compounds is single-stranded - the π pathway occurs in one strand of
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(a) (b) (c)

Figure 3.19: Porphyrin (a) nanoring (b) nanotube (c) nanoball

atoms, although the current splits in pyrrolic rings of heteroporphyrins [230, 231]. A
double-stranded Möbius nanobelt with a single twist was synthesized by Itami’s group
in 2022, shown in Figure 3.20c [232], with twist moiety was found to move quickly
around the ring in solution.

(a) (b) (c)

Figure 3.20: (a) [16] Möbius annulene (b) Hexaphyrin (c) Möbius nanobelt

3.5.6 Spherical compounds

When smaller or larger rings are included in polycyclic benzenoid compounds, the
molecules become curved, gaining either negative or positive curvature [233]. Two
examples of negative curvature are the corannulene [234, 235] and sumanene [236],
shown in Figures 3.21a and 3.21b.

These bowl-shaped molecules are fragments of buckminsterfullerene C60, the most
famous of the fullerenes, shown in Figure 3.21c. It was first observed spectroscopically
in 1985 [237] and synthesized in 1990 [238]. Fullerenes are pseudo-spherical compounds
consisting of sp2 carbon atoms and can be considered polyhedral analogs to the 2D
graphene sheets [239]. The smallest fullerene is C20, shown in Figure 3.21d, which
is formed of pentagonal carbon rings. It is highly reactive but has been shown to
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(a) (b) (c) (d)

Figure 3.21: (a) Corannulene, (b) sumanene, (c) C60, (d) C20

exist in the gas phase [240]. Fullerenes with isolated pentagons are thermodynamically
most stable, and C60 is the smallest of such fullerenes [241]. The amount of possible
fullerene isomers for ones consisting of N carbon atoms grows as O (N9) [239]. When
one considers again the ways one can color adjacent rings in these to generate fullerenes
with holes, and then the different ways one can shuffle the carbons to other elements,
the space of fullerenes becomes practically infinite.

Spherical inorganic compounds have rich chemistry, and aromaticity has an impor-
tant role in understanding their properties [242]. These compounds often take beautiful
forms of Platonic solids. Two prime examples are the dodecaborate [B12H12]

– [243] and
the thiolate-protected nanoclusters, such as the Au25(SR) –

18 [244, 245], both having
icosahedral structures. The inorganic spherical compounds are often studied within the
framework of superatomic theory - their electrons are delocalized along the nuclear scaf-
fold, and those molecules following Hirsch’s rule of aromaticity are typically obtained
experimentally [246].



Chapter 4

Results

In Article I, we studied the aromaticity and the orientation dependence of ring currents
of gaudiene, a spherical carbon molecule. In Article II, we studied the phenomena of
double aromaticity in persubstituted benzenes, using an implementation of the Gauge-
Including Magnetically Induced Current method extended for the use of effective core
potentials. In Article III, we used ring current calculations to help our collaborators
understand the aromaticity of organometallic [Cu6(dmPz)6(OH)6]compound. In Article
IV, ring current calculations were used to elucidate the aromaticity of naphtalene-fused
heteroporphyrinoids and correct the incorrect deductions given by other methods.

4.1 Article I: Gaudiene

4.1.1 Setting

Gaudiene (C72), denoted 1, is a hypothetical spherical molecule envisioned Sundholm
in 2013 [247], inspired and named after the Spanish architect Antoni Gaudi. The
molecule can be seen consisting of triangular hexahydro[12]annulenes 2, fused at the
edges. Alternatively, one can see it being built of rectangular tetrahydro[12]annulenes
3. The molecular structure of gaudiene and these fragments are shown in Figure 4.1.

Spherically aromatic systems, as described by Hirsch’s rule [248], sustain sphere
currents with a uniform shell-like distribution around atom scaffold [249, 250]. While
gaudiene fulfills Hirsch’s rule for spherical aromaticity, the size of cavities does not allow
the current to take a uniform spherical distribution.

54
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Figure 4.1: Gaudiene 1 viewed through the four-fold and three-fold symmetry axes,
hexahydro[12]annulene 2 and tetrahydro[12]annulene 3.

Sundholm confirmed both that gaudiene is aromatic, with net diatropic RCs of
roughly 40nA/T, and that it is not spherically aromatic by deducing that the current
flows along the bonds via analysis of the current profile at varying radial distances.
Gaudiene thus is an interesting compound: while not spherically aromatic, it is spherical
and aromatic.

One of the hallmark properties of spherically aromatic compounds is the isotropicity
of their magnetic response properties, a manifestation of the uniform sphere current.
We wanted to better understand the chameleon nature of gaudiene, and we continued
the original study of gaudiene by examining the orientation dependence of its magnetic
response, at both the current density and at the magnetic shielding level.

4.1.2 Results

We first calculated the ring currents of the fragments. The fragments follow Hückel’s
rule: the neutral triangular 2 is antiaromatic with a paratropic RC of -34.0 nA/T,
while its dication is aromatic with a diatropic RC of 18.4 nA/T. The dicationic 3 is
aromatic with diatropic RC of 18.7 nA/T, similar to the dicationic 2 with both having
10 π electrons. The dianionic 3 is aromatic as well, with a larger diatropic RC of 22.3
nA/T. The findings were also reflected in the NICS calculations, showing characteristic
shielding/deshielding patterns of aromatic and antiaromatic molecules.

To study the orientation dependency of gaudiene’s magnetic response properties, we
did calculations with the magnetic field aligned through the three-fold symmetry axis
(through ring 2) and through the four-fold symmetry axis (ring 3). The orientations
along with the current pathways and strengths are shown in Figures 4.2a-b.



CHAPTER 4. RESULTS 56

The current density for the four-fold orientation is shown in Figure 4.2c. It shows
that the flow of current happens exclusively along the carbon framework, confirming
the earlier conclusion that gaudiene is not a spherically aromatic compound.

(a) (b) (c)

Figure 4.2: The bond current strengths (in nA/T) for gaudiene with magnetic field
aligned along the (a) three-fold and (b) four-fold symmetry axis, and (c) the current
density field

Gaudiene sustains a relatively constant net diatropic current of around 40 nA/T in
both configurations, consisting of currents at the poles and at the equator of gaudiene.
The current pathways are orientation-dependent: in the three-fold orientation, the
polar and equatorial flows are connected, whereas in the four-fold orientation they are
decoupled.

In the three-fold orientation, shown in Figure 4.2a, the net current of gaudiene is 36.3
nA/T. In this orientation, gaudiene can be seen as consisting of alternatively arranged
three- and four-membered fragments 2 and 3, fused at their C4 edge. The branching
pattern of this repeating unit is shown in Figure 4.3. The direction and strength of the
current are shown with arrows, each arrow corresponding to a current of 6 nA/T. In
this orientation, gaudiene sustains currents at the equator and poles. Starting from the
center of the illustration and going left, at the C4 edge fusing the rings 2 and 3, there is
a current of 18 nA/T. At the junction, 12 nA/T of it takes the equatorial branch, while
6 nA/T goes to the lower pole. The 12 nA/T at the equatorial branch is combined with
a 6 nA/T coming from the upper pole to yield the same 18 nA/T current. The poles
consist of three-membered rings 2, with bond current strengths alternating from 7 to
12 nA/T.



CHAPTER 4. RESULTS 57

Figure 4.3: Current branching pattern of gaudiene in three-fold orientation

When the magnetic field is applied along the four-fold axis, the total ring current
is 40.5 nA/T. The current pathways are distributed to decoupled equatorial and polar
circulations, shown in Figure 4.2b. The equatorial current has a strength of 21 nA/T,
split equally in a diamond-like manner at the sp2 junctions, while the poles have their
own circulation of 10 nA/T each.

Finally, we studied how the orientation dependency of current pathways manifests
in the magnetic shielding of gaudiene. The isotropic contributions and components of
the four- and three-fold orientations of the magnetic shielding tensor of gaudiene are
shown in Figure 4.4. The upper row shows its isosurface with a ±5 ppm cutoff, and
the lower row shows the corresponding slices at a plane dissecting the sphere.

The magnetic shielding in the interior of gaudiene is highly isotropic. The tighter
horizontal distribution of the equatorial current in the three-fold orientation compared
to the diamond-like branching in the four-fold orientation manifests as orientation de-
pendency of the magnetic shielding outside of the ring, with deshielding regions reflect-
ing the shape of the equatorial branching patterns.

4.1.3 Conclusions

Our results show that the magnetic response of gaudiene is to some extent isotropic: it
has a nearly constant net diatropic current strength and interior shielding. However,
more detailed calculations reveal that this net diatropic current consists of distinct
current pathways, which is also manifested in the change of the shielding function at
the outside of the gaudiene.
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Figure 4.4: The magnetic shielding function of gaudiene

Based on these findings, one could describe gaudiene as a pseudo-spherically aro-
matic compound. While gaudiene is not a spherically aromatic compound, it is a
spherical aromatic compound with a relatively isotropic magnetic response. An inter-
esting future direction would be to continue the exploration of this border region by
envisioning new hypothetical molecules, with the aim to find the limit at which the
molecule becomes purely spherically aromatic.

4.2 Article II: Double aromaticity in persubstituted

benzenes

4.2.1 Setting

In 1988, Sagl and Martin presented their findings of double aromaticity of C6I
2+

6 [251].
The carbon NMR spectra of oxidized species showed a 42.6 ppm upfield shift with
respect to the neutral one, indicative of a diatropic ring current at the substituent
ring. Based on extended Hückel calculations, they arrived at an intuitive explanation
for the new aromatic pathway opened at the substituent ring. When the atoms in the
peripheral substituent ring increase in size, the repulsion between the electrons in the in-
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plane p-orbitals increase, increasing the energy of the associated σ MO. For the halogen
series, the energy of this MO increases going down the rows, until for C6I6 it becomes
the highest-occupied molecular orbital (HOMO). As each iodine atom contributes two
electrons, the double oxidation leads to the fulfillment of Hückel’s 4n+ 2 rule.

The aromaticity of C6I
2+

6 was studied by Ciofini et al. [252] using nuclear-independent
chemical shift (NICS) calculations, and by Havenith et al. [253] using ring-current maps
and multi-center bond indices (MCI). In the former study, double aromaticity showed as
an increase of isotropic NICS C6I

2+
6 increased with comparison to the neutral species,

and the scanned NICS values had a maximum at the molecular plane, indicating a σ

shape distribution of the ring current. In the latter study, ring current maps showed
the existence of ring current circulating in the iodine perimeter. The authors provided
selection rule arguments for the existence of the ring current: the transition from the e1u
HOMO to the a2g LUMO is translationally allowed and thus leads to a diatropic ring
current. The MCI results show that there the neutral molecule has no delocalization
on the substituent ring, while the dication had MCI values showing a delocalization
roughly half of that of benzene.

In 2014, Hatanaka and co-workers extended studied substituents from halogens [254].
In their computational study, they looked at benzene with group 14 (Ge, Sn), 15 (P,
As, Sb), and group 16 (S, Se, Te) substituents, assessing the aromaticity with NICS
calculations.

The substituent ring elements had different functional groups attached, and the sub-
stituent ring aromaticity was found to be modulated by their conformation. The singlet
state of C6(SH) 2+

6 was doubly aromatic when all the axis of S−H bond was perpen-
dicular to the molecular plane, having a HOMO and LUMO patterns and NICS(1)zz
value similar to that of C6I

2+
6 . The non-aromatic triplet state was however lower in

energy for this conformer, and it had no double aromaticity. The low energy conformer
with four of the SH groups parallel to the molecular plane was antiaromatic in its sin-
glet ground state, with the triplet state having similar NICS values as the one with
perpendicular SH groups. Similarly to the halogen series, the benzenes with heavier
substituents had their HOMO on the substituent ring, and the dications had singlet
ground states exhibiting double aromaticity.

In further work, one of the doubly aromatic compounds from their study, C6(SePh)6,
was synthesized [255]. Experimental data supported the predictions of double aromatic-
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ity. The authors performed bonding analysis and found a weak bonding interaction
between the selenium ring in the dication that was absent in neutral species.

After the publication of Article II, Havenith and Fowler extended the study of
doubly aromatic compounds to different ring sizes [256]. In their computational work,
they studied C8I8 in different charge states. The substituent perimeter of the octagonal
carbon scaffold is more crowded, leading to non-planar geometries. The molecules
were constrained to be planar during the geometry optimization, which lead to the
fragmentation of the studied systems. They found that the neutral C8I8, constrained
to have a planar D4h symmetry, is doubly antiaromatic as predicted by Hückel’s rule.

4.2.2 Results

The earlier studies assessed the double aromaticity with NICS values, qualitative ring
current maps, and MCI delocalization indices. We extended these by calculating current
strengths with the GIMIC method, which was extended to use effective core potentials
(ECP) for the heavier elements.

4.2.2.1 Benchmarking the methods

We tested the effect of using different functionals on the calculated current strengths,
and found that increasing the amount of HF exchange leads to an increase in the net
current strength J of benzene and C6I

2+
6 , as shown in Table 4.1. The difference is due

to the increase of the diatropic component Jdia, while paratropic component Jpara was
insensitive to the amount of HF exchange.

The effect of representing core electrons with Stuttgart family ECPs on the RCS
tested for C6I

2+
6 , C6At6, and C6At 2+

6 , shown in 4.2. We tested ECPs representing
a different number of core electrons, parametrized with non-relativistic (NR), quasi-
relativistic (QR), and fully relativistic (FR) calculations, and used different basis sets
for the rest of the electrons.

In the current density calculations, ECPs are able to approximate the core electrons,
as shown by the very small difference between RCS calculated with an all-electron basis
set and using a non-relativistic ECP. This allows one to reduce the computational cost:
by using ECPs, only 7 electrons of its 85 are included for astatine. This is also a great
example of how the ring current is a valence-level phenomenon.
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Table 4.1: Effect of different functionals with a varying amount of HF exchange EX
HF

on the ring current strength J and its dia- and paratropic components (in nA/T)

Molecule Functional EX
HF % J Jdia Jpara

C6H6 PBE 0 11.67 16.67 −5.00

BP86 0 11.72 16.70 −4.99

BLYP 0 11.65 16.58 −4.93

B3LYP 20 11.97 16.94 −4.96

PBE0 25 12.07 17.10 −5.03

BHLYP 50 12.41 17.38 −4.97

HF 100 13.08 18.05 −4.97

C6I6
2+ PBE 0 26.12 29.73 −3.61

BP86 0 27.21 30.87 −3.66

BLYP 0 25.91 29.49 −3.58

B3LYP 20 27.21 30.87 −3.66

PBE0 25 27.75 31.45 −3.70

BHLYP 50 29.03 32.79 −3.76

HF 100 31.84 35.77 −3.93

Scalar relativistic effects can be estimated by the use of ECPs. The effect of spin-
orbit coupling is however not included, and it is known to lead to differences in the
current densities [257]. The difference between using a relativistic and non-relativistic
ECP was quite found to be quite small, on the order of 1 nA/T.

4.2.2.2 Halogen series

Next, we studied the halogen series. In Figure 4.5a, the current density of C6I
2+

6 is
visualized, diatropic circulations colored in blue and paratropic circulations in red. The
current profile for C6I6 and C6I

2+
6 is shown in Figure 4.5b, calculated by computing

the ring current on slices starting from the center of the ring and extending out through
the center of C−C bond.

4.5b,
The RCS and NICS values for perhalogenated benzenes are shown in Table 4.3

for the neutral molecules and in Table 4 for the cationic molecules. We dissected the
total RCS J to the carbon and substituent ring components C6 and X6 and to dia-
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Table 4.2: RCS J (in nA/T) for C6I
2+

6 , C6At6, and C6At 2+
6 , calculated at the B3LYP

functional using the def2-TZVP basis set for C and the Stuttgart ECP basis sets for I
and At. Abbreviations NR, QR, or FR stand for non-relativistic, quasi-relativistic, and
fully relativistic ECPs.

Molecule Rel ECP Valence J

C6I6
2+ NR AE TZ 26.5

C6I6
2+ FR ECP28MDF TZ 27.2

C6I6
2+ FR ECP28MDF QZ 27.2

C6I6
2+ QR ECP46MWF TZ 29.9

C6I6
2+ QR ECP46MWF QZ 29.5

C6At6
2+ NR AE DZ 29.2

C6At6
2+ NR ECP78MHF DZ 29.7

C6At6
2+ FR ECP78MDF DZ 28.5

C6At6 NR AE DZ 7.2

C6At6 NR ECP78MHF DZ 7.6

C6At6 FR ECP78MDF DZ 9.1

(a) (b)

Figure 4.5: (a) Magnetically induced current density of C6I
2+

6 and (b) current profile
of neutral and dicationic C6I6

and paratropic contributions Jdia and Jpara, and calculated both isotropic NICS(0) and
NICS(1)zz values .

The perhalogenated compounds have 2-3 nA/T weaker ring currents than benzene.
Interestingly, a weak circulation was found at the substituent ring even for the neutral
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compounds. The dications of F, Cl, and Br substituted benzenes were calculated in
their singlet and triplet states. This can be seen in the current profile of 4.5b as the
negative dip near the marked I-I bond.

Table 4.3: Total RCS J , its carbon and substituent ring components C6 and X6, dia-
and paratropic contributions (in nA/T), isotropic NICS(0) and NICS(1)zz values (in
ppm) for neutral perhalogenated benzenes

Molecule J C6 X6 Jdia JPara NICS(0) NICS(1)zz
C6F6 9.7 9.4 0.3 12.6 −2.9 −17.6 −23.2

C6Cl6 9.0 8.1 0.9 13.5 −4.5 −9.2 −19.2

C6Br6 9.2 8.6 0.6 13.8 −4.7 −8.5 −18.6

C6I6 8.5 10.0 −1.5 14.2 −5.6 −7.8 −17.5

C6At6 7.8 11.1 −3.3 14.7 −6.9 −8.7 −17.1

The RCS and NICS values for cationic species are shown in Table 4.4. For C6C
2+

6

with X=F, Cl, Br, and I, both the singlet and triplet states were considered, with
their difference ∆ES−T given in eV. Both C6I

2+
6 and C6At 2+

6 are double aromatic with
diatropic ring currents of 27.4 nA/T and 30.0 nA/T, respectively. The radical C6I

+
6 is

also doubly aromatic, with a net ring current 50% larger than benzene.
The singlet C6C

2+
6 with X=F, Cl, Br had large current strengths, as reflected also

in the NICS values. C6F
2+

6 had a large paratropic current circulating in the carbon
framework, while C6Cl 2+

6 , this large current was diatropic. In C6Br 2+
6 the current

was circulating in the substituent ring. In their triplet ground states, all these had
net diatropic RCSs of roughly half of benzenes. Similar extreme results were reported
by Palusiak and co-workers in their study of dicationic substituted benzenes [258],
where they wrote "Nevertheless, NICS values estimated for charged systems escape any
rational interpretation, which may suggest that the NICS index is perhaps not a suitable
measure of p-electron delocalization in dicationic systems.". These large currents can
be understood with the inverse relationship of the magnetic response to the energy
difference of the unoccupied and occupied energy levels, presented in Equation 2.85 of
Section 2.7.2. It may also be that the used level of theory and methods do not properly
describe these states.
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Table 4.4: Total RCS J (in nA/T), spin multiplicity (2S + 1), isotropic NICS(0)
and NICS(1)zz values (in ppm), singlet–triplet energy difference ∆ES−T (in eV) for the
cationic perhalogenated benzenes.

Molecule 2S + 1 J NICS(0) NICS(1)zz ∆ES−T

C6F6
2+ 1 −40.7 46.0 124.2 0.39

C6F6
2+ 3 6.1

C6Cl6
2+ 1 128.3 −138.3 −370.1 0.45

C6Cl6
2+ 3 5.3

C6Br6
2+ 1 20.4 −18.6 −38.1 0.68

C6Br6
2+ 3 5.6

C6I6
2+ 1 27.4 −16.4 −46.9 −0.30

C6I6
+ 2 18.2

C6At6
2+ 1 30.0 −19.2 −49.3 −0.45

4.2.2.3 Group 15/16 substituted benzenes

Next, we studied benzenes with group 15 and 16 substituents (G15/16). From the
molecules studied by [254], we focused on a subset of compounds, C6X6 with X= SeH,
SeMe, TeH, TeMe and SbH2, which we studied in their neutral and dicationic states.

The average torsional angles are shown in Table 4.5. The neutral molecules have
small out-of-plane in the carbon ring and larger ones in the perimeter rings. Upon
oxidation, the molecules became nearly planar.

Table 4.5: Average torsion angles for the carbon ring C6 and Se, Te, and Sb atoms in
the substituent ring, X6.

Molecule Neutral, C6 Neutral, X6 Dication, C6 Dication, X6

C6(SeH)6 3.6 9.2 1.2 0.4

C6(SeMe)6 4.5 22.3 2.2 3.4

C6(TeH)6 4.9 33.3 0.9 6.4

C6(TeMe)6 4.8 30.9 1.2 4.4

C6 (SbH2)6 2.4 28.7 1.5 2.8

The net currents strengths and NICS values of the neutral and dicationic G15/16
substituted benzenes are shown in Table 4.6. The results are similar to the findings
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for the halogen series and those made earlier by Hatanaka: neutral compounds have
weakened aromaticity compared to that of benzene, and the dicationic compounds
exhibit aromaticity on the substituent ring.

Table 4.6: RCS J (in nA/T), and isotropic NICS(0) and NICS(1)zz values (in ppm)
for neutral G15/16 substituted benzenes.

Molecule J NICS (0) NICS (1)zz

C6(SeH)6 8.5 −6.2 −17.4

C6(SeH)6
2+ 16.6 −9.3 −26.8

C6(SeMe)6 10.4 −7.8 −21.4

C6(SeMe)6
2+ 24.5 −16.1 −44.5

C6(TeH)6 10.6 −7.3 −23.2

C6(TeH)6
2+ 33.2 −21.0 −56.9

C6 (TeMe6)6 11.2 −7.9 −22.0

C6(TeMe)6
2+ 32.0 −20.6 −55.2

C6 (SbH2)6 9.9 −5.5 −20.4

C6 (SbH2)6
2+ 29.4 −18.7 −49.1

Of the doubly aromatic compounds in this series, C6(SeH)6
2+ showed a weaker net

RCS. The modulus plot of its current density is shown in Figure 4.6, showing how
the conformation of the substituents leads to a bottleneck in the conduction pathways.
This is an interesting example of conformation-dependent aromaticity switching, and
the GIMIC calculations show the picture of what was previously deduced from NICS
values.

4.2.3 Conclusions

With our ring current calculations, we were able to quantify the ring current strengths
of these doubly aromatic substituted benzenes. Owing to the delocalization at the
substituent ring, the total ring current strengths of these molecules were 1.5-2.5 times
larger than benzenes.

These molecules also acted as test-set for doing ring current calculations with ECPs.
The error from approximating core electrons with ECPs was found to be negligible, al-
lowing the reduction of computational cost and studying molecules with heavier atoms.
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Figure 4.6: Current density C6(SeH)6
2+

The effect of relativity on ring currents, as captured by ECPs, was found to be small
as well.

One of the most interesting results was the double aromaticity of C6Br 2+
6 in its

singlet state. While the ground state of the dication is a triplet, in which the molecule
has diminished aromaticity compared to benzene, the opening of the conjugation path-
way at the singlet state is perhaps indicative of bromine being at the limit of becoming
double aromatic.

As already done by Fowler et al. [256] with C8I8, the chemical space of double
aromatic molecules can be expanded. The limit highlighted by C6Br 2+

6 can help to
guide the discovery of such molecules, a task for which the solutions arise from a delicate
balance of electronic structure, geometry, and electron counts. Combining this with the
shown ability to switch conjugation channels on and off by conformational change, which
can be induced by an external stimulus, could make these compounds useful for some
interesting applications.

4.3 Article III: [Cu6(dmPz)6(OH)6]

4.3.1 Setting

In Article III, we studied the current pathways of [Cu6(dmPz)6(OH)6], further denoted
as Cu6. Cu6 is a polynuclear coordination compound, with a cyclic structure consisting
of six Cu(II) atoms coordinated by 3,5-dimethylpyrazoles and hydroxyl groups in trans-
arrangement, as shown in Figure 4.7 [259]. This class of compounds has structural
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richness, variations existing with a different number of repeating units, and types and
cis/trans arrangements of the ligands [260, 261], and the modifiability allows their
tailoring to different purposes.

(a) (b)

Figure 4.7: (a) Molecular structure of Cu6 and (b) the pattern of its repeating unit

Our collaborators in Chile, led by Dr. Muñoz-Castro, were interested to understand
better the magnetic properties Cu6. While the Cu(II) atoms are formally paramagnetic,
the Cu6 molecule is diamagnetic with a singlet ground state. As the Cu(II) atoms are
far away (3.2Å), they are coupled with superexchange interactions, i.e., the ligands
mediate their interaction.

Our collaborators did extensive computational studies of the metal-ligand interac-
tions of Cu6. The copper 3d orbitals were shown to be delocalized along both pyrazole
and hydroxide ligands. Their NICS calculations showed that the inner part of Cu6 is
shielded, indicating that it sustains a diatropic ring current. However, as NICS calcula-
tions can lead to unreliable results for molecules with transition metal atoms, and they
were unable to deduce the finer details of aromaticity with it, questions remained: is
Cu6 truly aromatic, and what delocalization pathways play a role in it?

4.3.2 Results

To answer these questions, we did ring current calculations with GIMIC. The results
for the current pathways and strengths are shown in Figure 4.8a, and the modulus of
the current density on a plane bisecting two Cu atoms is shown in Figure 4.8b.

The ring current calculations supported the NICS calculations: Cu6 is aromatic
according to the magnetic criteria. The molecule sustains a diatropic ring current of
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(a) (b)

Figure 4.8: (a) The current pathways and strengths of Cu6 and the (b) modulus of
the current density on a plane bisecting two Cu atoms.

9.9 nA/T, similar to that of benzene. The hydroxyl ligand joining two copper atoms is
the predominant conduction pathway, with 80% (7.8 nA/T) of the total current flowing
through it. The rest of the current (2.1 nA/T) goes through the pyrazole. Interestingly,
instead of taking the geometrically shortest pathway through the −N−N− moiety, the
current flows through the outer perimeter of the pyrazole. Pyrazole sustains a weak
local circulation of 0.7 nA/T. No current passes directly between the copper atoms, as
shown in Figure 4.8b.

4.3.3 Conclusions

The results answer the original research questions and give rise to many new ones. Can
Cu6’s aromaticity or its pathways be switched with redox reactions? These compounds
are known to bind anions - how is the binding related to, and how does it affect the
electronic structure of Cu6? How about different ring sizes - what iss the largest ring
one can build from the repeating unit, how does the aromaticity behave asymptotically
when nearing the meso-scale limit? The modularity of the structures opens a door to
enumerative studies: what properties exist in the chemical space that can be obtained by
varying the ligands and the metal centers? Computational modeling and ring current
calculations could answer these relatively easily, and the findings could open some
interesting new possibilities.
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4.4 Article IV: Naphtalene-fused heteroporphyrinoids

4.4.1 Setting

As discussed earlier in Section 3.5.3, porphyrinoids are an important family of macro-
cycles, existing naturally in many forms and with many functions. In this work, we
studied porphyrinoids synthesized and studied by Hong et al. [262], shown in Figure
4.9. The molecules 1 and 2 were synthesized by Hong et al. The Molecule 1 is a por-
phyrin derivative with one pyrrole replaced with thiophene, and one with a naphtalene
moiety connected to the mesa carbon. The Molecule 2 is its Pd-coordination complex.
The Molecule 3 has a quinoline instead of naphtalene - the inner CH group is replaced
by nitrogen. This was not included in the original study, but I thought that it would
be interesting to see how the global and local currents are affected by the annealation
of two related polycycles.

(a) 1 (b) 2 (c) 3

Figure 4.9: Molecular structures of 1− 3.

In the original study, the experimental NMR spectra showed that the molecules
were aromatic. The authors deduced that there are two 22 π electron pathways, shown
in Figure 4.10a. The pathways differ on the naphtalene-moiety, with the dominant
one taking the inner path at the central ring. In other parts, current takes the outer
pathway at thiophene and protonated pyrrole, and the inner path at the unprotonated
pyrrole. The conclusion is supported by NICS, HOSE, and ACID calculations, with
ACID results for 1 is shown in Figure 4.10b

While this conclusion is supported by the methods used by the authors, they are
not in line with the current understanding given by the ring current calculations for
porphyrins [263]. At pyrrole rings, the global current is typically split, and more com-
plicated cases typically exhibit an intricate balance of local and global circulations.
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(a) (b)

Figure 4.10: (a) Predicted current pathways in the original work, and (b) ACID plot
of the 1. Reprinted with permission from Reference [262]. Copyright 2022 American
Chemical Society.

4.4.2 Results

Once again, to understand the aromaticity of this molecule, we did ring current calcu-
lations with the GIMIC program. The current pathways and strengths (in nA/T) are
shown in Figure 4.11. The branch points of the current are highlighted with diamonds
in Figure 4.11a.

(a) 1 (b) 2 (c) 3

Figure 4.11: Current pathways and strengths of 1− 3

The molecules are all aromatic, with a global diatropic current strength of the order
of 20 nA/T. Starting from the annealed quinone and continuing clockwise, the global
current takes the outer pathway of the meso-annealed benzene ring, which sustains a
weak local circulation of 1-2 nA/T. The current then branches, over half taking the



CHAPTER 4. RESULTS 71

outer pathway. At the protonated pyrrole ring of 1 and 2, roughly 75% of the current
takes the outer pathway. In 2 the split is more equal, and it additionally has a small
local circulation in the 6-element cycle consisting of Pd, pyrrole, and the naphtalene
ring. At the next pyrrole ring, the current branches equally, and at the thiophene ring,
practically all current takes the outer pathway.

4.4.3 Conclusions

The calculation of the current pathways highlights the importance of choosing a proper
method in assessing the aromaticity of complex compounds. It also shows a beauti-
ful example of emergent phenomena in more complicated aromatic compounds. While
thiophene and naphtalene are both aromatic compounds, they lose their original aro-
maticity when embedded in a macrocyclic framework.

The complexities in the aromaticity that the results show motivate a wider study of
porphyrinoids. Porphyrinoids are important compounds with a wide set of applications,
and new designs are constantly being reported in the literature. Aromaticity is an
important determinant of the molecular properties of porphyrinoids, but its intricacies
and emergence can be hard to understand. Computational exploration of their chemical
space can accelerate the discovery process of new porphyrinoids, and as the aromaticity
of these is a weird and intricate emergent phenomenon, the quantitative results that
ring current calculations give could play an important role in this process.



Chapter 5

Conclusions and future directions of

research

The results of Articles I-IV showcase the use of ring current calculations in the study
of aromaticity. With these calculations, we were able to understand the intricacies of
the current pathways for a diverse set of aromatic molecules. The results highlight the
utility of studying the current density directly, instead of relying on its manifestation
as magnetic shielding with NICS, for understanding the aromaticity of a molecule.
This is especially important for more complex molecules, such as those with nonplanar
geometries, transition metal atoms, and polycyclic compounds.

In Chapter 4, I discussed some future research directions for each of the articles
presented. The articles studied the emergent phenomena of aromaticity - how the right
building blocks of the circuit make the magic happen. The design of such molecules
requires thinking at the systems level. Each of the studied systems is the result of
human imagination, creativity, and hard work - beautiful arrangements of nuclei and
electrons, some of which have been made in the laboratory, others waiting for a curious
chemist to stir them up to existence. Theory and computation, described in Chapter
2, allow us to calculate the properties of molecules relatively accurately and efficiently.
These methods were used in this work to study individual molecules, and the years
spent with excessive browsing of Google Scholar allowed pattern-matching facilities to
synthesize the results to come up with some new molecules that could be interesting.

In addition to using the computer as a calculator - "Hey Linux machine, what is
the ring current of this molecule" - one can use it to aid in solving the inverse problem.

72
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In chemistry, the inverse problem is most typically equal to the very fundamental task
of molecular design. Quantum chemical methods give us "good enough" properties,
and the fields of chemoinformatics and deep learning have developed a wide variety
of ways to represent molecules. Combining these two and formulating the task of
molecular design as an optimization problem makes it amenable to a wide variety of
computational tools [264–268].

The computational molecular design has a long history in drug discovery [269–272].
This thesis was written during the era of rapid advances in deep learning, catalyzed by
the progress in machine vision with convolutional neural networks around the time I
started doing research. This has brought huge interest in applying these to all areas of
chemistry and materials science [273–276]. Aromatic chemistry is one of the remaining
fields practically untouched in this gold rush. I hypothesize that this is due to two
reasons: its emergent nature and ambiguities in its determination.

Whether the task is to find a futuristic molecular transistor for a nanocircuit [277],
a ligand for an organometallic catalyst that withstands harsh oxidative conditions and
stabilizes the metal center in various oxidation states [278], or an organic anode for next-
generation batteries [279], the aromaticity fundamental to these processes is hard to
obtain and easy to break. This makes the task of finding these needles in the haystack of
practically infinite chemical space much harder. However, we are quite good at finding
them [280], and the methods for this task develop rapidly.

The other hindrance of ambiguity reflects the fuzziness of aromaticity. To the extent
that magnetic criteria are meaningful, the ring current calculations could be used to
answer this problem. The central object we used to answer the problems in Articles I-IV
was the bond current strength IAB between selected atoms A and B, and this process
can be automated. As the two indices in the subscript indicate, one can collect these
to represent the aromaticity of the molecule of n atoms as a bond current matrix In×n,
and further present it as a directed graph. Both are data structures readily crunched
by algorithms.

A problem arises from the orientation dependence of magnetic response: to some
extent, this can be overcome by collating the results with the used magnetic field orien-
tation, and an orientation defined e.g. as the principal axis of rotation. The automation
of bond current calculations and collecting the results as bond current matrix could fa-
cilitate the automated exploration of the aromatic chemical space, perhaps by applying
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combining them with the tools of computational circuit design [281–283].
Such a method would be very useful for the humane chemistry as well. In computa-

tional biology, the tools are often delivered in the form of a web server [284, 285]. The
current paradigm of computational quantum chemistry still relies on use of complex
HPC environments and a myriad of different software with their own input and output
formats, stitched together with scripts. An ideal tool would take in a molecule via a web
interface and spit out the ring current strengths and visualizations. Such a tool would
facilitate the evaluation of aromaticity by ring currents, instead of its easier-to-calculate
proxy measure of NICS.

While it is still a bit too early to treat quantum chemical methods as an answer-
delivering black box, the results obtained with the current black box of B3LYP/def2-
SVP are often good enough. The choice of the method also can also be supported by e.g.
recommendation engines [286], and the results could be coupled with an uncertainty
metric of some sort [287].

I hope that this thesis highlights the power of quantum chemical methods in under-
standing chemistry and the complexities of both the debated topic of aromaticity and
the aromatic chemical space. Many future possibilities can be imagined, and it is an
interesting time to be a computational chemist.

Humanity needs better molecules, and aromatic molecules are often that.
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