Master’s thesis

Master’s Programme in Computer Science

Towards secure software development at
Neste - a case study

Anton Moroz

September 30, 2022

FACULTY OF SCIENCE

UNIVERSITY OF HELSINKI

Contact information

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki,Finland

Email address: info@ecs.helsinki.fi
URL: http://www.cs.helsinki.fi/

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Faculty of Science Master’s Programme in Computer Science

Tekija — Foérfattare — Author

Anton Moroz

Tyo6n nimi — Arbetets titel — Title

Towards secure software development at Neste - a case study

Ohjaajat — Handledare — Supervisors

Dr. Antti-Pekka Tuovinen, Prof. Tomi Mannisto

Tyo6n laji Arbetets art Level Aika Datum Month and year Sivumaara Sidoantal Number of pages
Master’s thesis September 30, 2022 47 pages
Tiivistelméa Referat Abstract

Software development industry has been revolutionized through adoption of software develop-
ment methods such as DevOps. While adopting DevOps can speed up development through
collaborative culture between development and operations teams, speed-driven adoption can
have an adverse impact on security aspects. DevSecOps is a concept that focuses on embed-
ding security culture and activities into DevOps. Another contributing factor to the more agile
development landscape is the widespread adoption of open source components. However, the
risk of putting too much trust into the open source ecosystem has resulted in a whole new set
of security issues that have not yet been adequately addressed by the industry.

This thesis is commissioned by Neste Corporation. The company has set an initiative to in-
corporate methods that enable better transparency, agility, and security into their software
development projects. This thesis collects research data on secure software development prac-
tices by combining findings of a literature review with a case study. The qualitative case study
is done by interviewing eight stakeholders from four different software development teams.

The literature review shows that securing software is very much an ongoing effort, especially in
the open source ecosystem. Therefore, it might be not surprising that the results from the case
study revealed multiple shortcomings on the subject matter despite obvious efforts from the
participating teams. As a result, this thesis presents potential ideas for the case company to
consider integrating into their software development projects in order to kickstart their secure
software development journey.

ACM Computing Classification System (CCS)
Security and privacy — Software and application security

Avainsanat — Nyckelord — Keywords

DevOps, DevSecOps, Software supply chain

Sailytyspaikka — Forvaringsstille — Where deposited

Helsinki University Library

Muita tietoja — Ovriga uppgifter — Additional information

Software study track

Contents

1 Introduction

2 Research setting
2.1 Background

2.2 Research questions
2.3 Research methods
2.3.1 Literature review

2.3.2 Cases

tudy

3 Modern software development

3.1 DevOps . .
3.2 DevSecOps

4 Open source software and software supply chains

4.1 Software supply chains

4.2 Securing software supply chains Lo

5 Case study
5.1 Participants

5.2 Results
5.2.1 Overviewo
5.2.2 Main findings

6 Discussion

6.1 Answers to re

search questions L.

6.2 Related studies L

6.3 Limitations

7 Conclusions

S ot Ot Ot W W

(04]

13

20
20
23

28
28
30
30
31

35
35
40
41

42

Bibliography

43

1 Introduction

DevOps, an acronym combining Development and Operations, is a set of principles and
practices that emerged to break down silos between software development and I'T oper-
ations teams by focusing on collaboration and shared responsibilities (Senapathi et al.,
2018). The goal of DevOps is to support an agile software development life cycle through
continuous software development practices (Senapathi et al., 2018). This means that one
of the expected benefits, or drivers for teams adopting DevOps is achieving a competi-
tive advantage by having the ability to respond quicker to customer needs through more

frequent deployment of new features (Senapathi et al., 2018).

In the recent years, exploits by malicious actors of existing security vulnerabilities in
software have highlighted the importance of integrating security activities in DevOps (Ra-
japakse et al., 2022). DevSecOps is a paradigm in which security efforts are integrated
in DevOps by focusing on communication, collaboration, and integration between the

development, operations, and security teams (Rajapakse et al., 2022).

A software supply chain can be defined as anything that is needed to deliver software,
such as code, binaries, or a code repository (Kaczorowski, 2020). As the modern software
development process relies heavily on potentially vulnerable open source software supply
chains (SonaType, 2021), the growing interest for mitigating cybersecurity risks originating
from software vulnerabilities is understandable. So much so that in May 2021, the US
president signed an executive order in part to improve the US Nation’s software supply
chain security (Executive Office of the President, 2021).

This thesis is commissioned by Neste Corporation. The company has recently launched
an initiative to better utilize existing cloud resources and incorporate better transparency,
agility, and security into existing software development projects. The company relies al-
most exclusively on outsourcing in software development. Research done in this thesis
focuses mainly on the security requirements for developers in the software supply chain.
Therefore, the focal point of this thesis is to first document a select set of existing activities
to practice secure modern day software development in the industry, then conduct a qual-
itative case study with a variety of members of Neste’s outsourced software development
teams, and finally create an actionable plan based on earlier observations which would act

as the starting point in the journey to meet Neste’s goals of the initiative.

2 CHAPTER 1. INTRODUCTION

The structure of this thesis is as follows. Section 2 introduces the research setting. Sec-
tions 3 and 4 motivate the case study by introducing continuous software development
practices and industry recommendations for integrating security. Section 5 introduces the
qualitative case study accompanied by interview results. The results to the research ques-

tions are presented and compared with existing literature in section 6. Section 7 concludes

this thesis.

2 Research setting

This thesis is commissioned by Neste Corporation and this chapter introduces the reasons
that motivate this study. Additionally, the research questions and methods are introduced

to explain the structure of the following chapters of this thesis.

2.1 Background

Neste is mostly relying on outsourcing in custom software development, which supplements
main business processes implemented in Enterprise Resource Planning (ERP) systems
and other Commercial-off-the-shelf (COTS) systems. Unfortunately, operating with a
relatively lean internal I'T department has resulted in fragmented standards and practices
between projects over time. This, in turn has introduced various impediments to reliable
software delivery in Neste’s projects. The company has recently launched an initiative to

improve the situation, which can be illustrated as a roadmap, as shown in figure 2.1.

The roadmap is motivated by four key goals. The first goal is to ensure business conti-
nuity by taking control over the building blocks of code. This includes enforcing vendors
to work under specific repository configurations, follow specific development guidelines
and providing support on selected technologies. Additionally, use of Neste owned code
repositories also helps to protect Neste’s Intellectual property rights (IPR), which is the

second key goal of the roadmap.

The third goal is to set a certain quality of deliverables by having vendors work under
specific standards on topics mentioned in the roadmap, such as following security practices,
and documenting the product from various viewpoints. This, in part, helps Neste improve

the speed and agility of deliverables, which is the fourth goal of the roadmap.

The roadmap is divided into five phases that are built incrementally on top of one another:
Foundation, normalization, standardization, automation & expansion, which eventually
leads to automation-based self-service. The base provided by the foundation phase is
done by other vendors included in this project, and therefore outside the scope of this
thesis. Since the initiative is in its early stages, and the contents of the latter steps of the

roadmap are still subject to change, the priority in this thesis is to discuss aspects of the

4 CHAPTER 2. RESEARCH SETTING

Automation & expansion

Standardization
Normalization

Foundation

Figure 2.1: Neste’s incremental roadmap for software development.

normalization and standardization phases of the roadmap.

The normalization phase is composed of activities that can be thought of as a set of building
blocks to enable continuous and collaborative software development (e.g., version control,
code reviews, project documentation). Team compositions change frequently in software
consulting world compared to in-house development teams, which is why Neste would
like to create new, and enhance existing processes and documents in order to onboard
developers under the Neste way of developing software, as defined by the company. To
properly implement these procedures, Neste would like to know more about vendors’
currently implemented ways of working related to software development practices such
as repository configurations, code review procedures, project architecture documentation,

among others.

The standardization phase consists of software development technologies of which Neste
would like have a better picture of in general. This includes things such as projects’ current
state of software testing, the CI/CD pipeline, and the technology stack. By understanding
the current landscape of technologies used in existing projects, combined with learning
more about the modern software development tools and practices, Neste would be able to
invest resources appropriately and focus on the most relevant areas to provide technical

guidance to help with both new, and previously existing software development endeavours.

2.2. RESEARCH QUESTIONS >

2.2 Research questions

This thesis takes the dual approach of finding answers to research questions by utilizing
both existing literature, and conducting qualitative research by interviewing various stake-
holders involved in Neste’s software development projects. With the previously presented

background, it results in the following research questions:

RQ1: What are the commonly adopted practices for secure software development? In the
recent years, there has been continuously increasing interest towards secure software.
Finding an answer to this question consists of researching literature from topics such

as DevOps, DevSecOps, application security, and software supply chains.

RQ2: How do Neste’s software development teams currently address the state of code secu-
rity in their projects? Answering this research question will be conducted through a
qualitative case study which consists of developers, data engineers, product owners,

and other stakeholders currently involved in developing software for Neste.

RQ3: Which code security measures should be integrated into existing Neste’s software
development projects? Security in the context of software development is a broad
topic, therefore the focus will be on finding solutions to the most pressing security
threats by combining the findings from researched literature with the results from

the case study.

2.3 Research methods

2.3.1 Literature review

Security is a constantly evolving topic in the field of software engineering. The dynamic
threat landscape results in continuously evolving ways to protect software. Therefore, to
understand the current software security landscape, information in this thesis was collected
from both academic literature and various types of grey literature. The primary academic
literature included in this thesis was searched from Google Scholar, ACM Digital Library
and [EEE Xplore digital library. The retrieved results were then selected based on search

terms presented in table 2.1.

The structure for the literature review is divided into three parts: DevOps, DevSecOps,

and Software supply chains. The primary peer-reviewed articles selected for each of these

6 CHAPTER 2. RESEARCH SETTING

Search string Range Library
DevOps challenges 2015-2022 ACM DL
DevSecOps challenges 2015-2022 Google Scholar
Software supply chain 2020-2022 Google Scholar

Table 2.1: Search keywords used to retrieve the main peer-reviewed articles.

topics is presented in table 2.2, in respective order. Insights within those academic articles
are accompanied by other peer-reviewed and grey literature, where relevant. The search
process for grey literature presented in this thesis was relatively unstructured. It includes
a set of industry reports, insights from ongoing software development projects, and blogs

of the current security landscape in software development.

Title Origin
DevOps Capabilities, Practices, and Challenges: Insights from | Senapathi et al., 2018
a Case Study

Challenges and solutions when adopting DevSecOps: A sys- | Rajapakse et al., 2022

tematic review

Top Five Challenges in Software Supply Chain Security: Ob- | Enck and Williams,

servations From 30 Industry and Government Organizations | 2022

Table 2.2: Key articles retrieved from academic literature.

2.3.2 Case study

To investigate current events in their natural context, case study research is an appropriate
research method (Runeson and Host, 2009). The primary objective of the qualitative case
study performed in this thesis was to understand the current state of software development
practices and processes used by vendors developing software for Neste. From this thesis’

perspective, some of the findings would be used to answer RQ2.

Data collection consisted mostly of conducting interviews directly with both technical (e.g.,
software developers), and non-technical (e.g., project managers) stakeholders involved in
Neste’s software development efforts. Teams with ongoing software development projects,
which also had currently available stakeholders to interview were chosen to be included
in this thesis. However, Robot process automation (RPA) and Integration development

teams were excluded from this study. To achieve a more holistic picture, the goal was

2.3. RESEARCH METHODS 7

to interview at least two members from each team, but this was not done in every case.
The time budget for each interview was 60 minutes. The interviews were recorded, and a
written summary was saved and reviewed by the relevant interviewee to confirm findings
and to correct possible misunderstandings. The interviews were semi-structured, and thus
the answers varied between different interviews. As a result, we maintained contact with
the interviewed teams to discuss some topics from new viewpoints as the result themes

began to emerge.

3 Modern software development

To understand and address the currently existing security concerns in the software de-
velopment landscape, first we need to understand the modern development workflow.
This chapter introduces continuous software development practices by incrementally in-
troducing terms such as DevOps, DevSecOps, and other ways to practice secure software

development as recognized in the industry.

3.1 DevOps

The concept of DevOps has been previously challenging to define. However, it can be
generally described as a set of various practices and principles that focus on bridging the
gap between the software development and IT operations teams through collaborative
means (Senapathi et al., 2018). The main purpose of DevOps is to support the agile
software development lifecycle by employing continuous software development processes

such as continuous delivery and microservices (Senapathi et al., 2018).

Adopting DevOps can be expensive and time-consuming. However, since the expected
benefits, or drivers for implementing DevOps are greater than the costs of the implemen-
tation journey, many organisations justify the investment (Senapathi et al., 2018). To
understand the realized benefits and challenges in DevOps, Senapathi et. al., conducted
a qualitative case study. The case organization is a software company in the Finance/In-
surance sector that was around one year into the DevOps adoption process at the time
of the data collection. The data collection set consisted of in-depth interviews with key
stakeholders that were responsible for DevOps implementation such as developers, testers,

and relevant management stakeholders.

The identified drivers were grouped into three categories: Strategic, tactical, and opera-
tional, as displayed in Figure 3.1. The main strategic driver for adopting DevOps identified
in the interviews was to achieve continuous deployment (CD) (Senapathi et al., 2018).
CD is one of the continuous software development processes to accelerate the delivery
of software without quality compromises (Shahin et al., 2017). CD also relates to other
drivers directly such as being able to rapidly deploy bug fixes, or indirectly by being able

to respond to customer needs quicker, as shown in Figure 3.1. One of the identified key

3.1. DEVOPS 9

Competitive
advantage
A

[Higher tfagm More automation
productivity L
A A
Improved user
[experience]
1\ [Avoid infrastructure delays] (More team control |
and late problems over deployment

A
customer needs

-+
Operational

[Agility in productand] [Rapid deployment of] [Eliminate dev team and]

[More responsive to]

services fixes ops team work silos

NI

Frequent or continuous Tactical
deployment of new features

-+
Strategic

Figure 3.1: Figure of drivers for implementing DevOps. Adapted from (Senapathi et al., 2018).

tactical drivers was in productivity improvements through closer collaboration between
the development and operations teams as the case organization had bottlenecks in get-
ting features into production because of the existing silos between the teams (Senapathi
et al., 2018). Finally, from the development team’s point of view, a key operational driver
was the ownership of the infrastructure instead of reliance on other teams to handle it
(Senapathi et al., 2018). Together, these interconnected drivers would in theory, provide

a competitive advantage, as shown in Figure 3.1.

Enablers can be defined as associated factors that support the DevOps way of working ef-
fectively (Senapathi et al., 2018). Enablers of DevOps can be divided into three categories:
Capability enablers, technological enablers, and cultural enablers (Senapathi et al., 2018;
Smeds et al., 2015). The capability enablers can be seen as the main DevOps enablers
that can only work efficiently when supported by the technological and cultural enablers

(Smeds et al., 2015). The individual enablers of each category are shown in Table 3.1.

Capability enablers include carrying out the activities of software development such as
planning, development, testing, and deployment, in small increments and no delay, based
on the feedback from the other activities (Senapathi et al., 2018; Smeds et al., 2015).

10 CHAPTER 3. MODERN SOFTWARE DEVELOPMENT

Collaborative and continuous development

Continuous integration and testing

Continuous release and deployment

Capability enablers | Continuous infrastructure monitoring and optimization
Continuous user behaviour monitoring and feedback
Service failure recovery without delay

Continuous measurement

Build automation

Test automation
Deployment automation
, Monitoring automation
Technological enablers]
Recovery automation

Infrastructure automation

Configuration management for code and infrastructure

Metrics automation

Shared goals, definition of success, and incentives
Shared ways of working, responsibility, and collective ownership
Cultural enablers Shared values, respect and trust

Constant and effortless communication

Continuous experimentation and learning

Table 3.1: Combined enablers of DevOps. Adapted from (Senapathi et al., 2018; Smeds et al., 2015)

Technological enablers support the capability enablers through task automation (Senap-
athi et al., 2018). Automation supports individual enablers such as continuous delivery
by providing a single path to production for all changes to a system (Senapathi et al.,
2018) and allowing employees to shift focus from the error-prone manual tasks to innova-
tive and productive tasks (Smeds et al., 2015). Implementing technological enablers in an

organization depends on tool choice, configuration, and design (Smeds et al., 2015).

Adoption of cultural enablers contributes to the capability enablers in a positive way as
they emphasize collaboration, blameless work environment, awareness of common goals,
and a climate for continuous experimentation and learning (Smeds et al., 2015; Senapathi
et al., 2018). Unlike with technological enablers, adopting cultural enablers is not such a
straightforward process, as time, effort, and resources are required for people to adjust to

changes, and other improvement work (Smeds et al., 2015).

3.1. DEVOPS 11

To achieve expected benefits of DevOps, implementing an automation pipeline to inte-
grate new features is one of critical technological enablers (Senapathi et al., 2018). An
automation pipeline, also known as CI/CD pipeline (RedHat, 2022), typically consists of
two parts: Continuous integration combined with either continuous delivery or continuous

deployment.

Continuous integration (CI) is a software development practice, where development team
members integrate new development work frequently (Shahin et al., 2017; Fowler, 2006).
CI enables software developers to achieve shorter and more frequent release cycles, produce
higher quality software, and increase the productivity of the development teams (Shahin
et al., 2017). More specifically, CI can be defined as a process in which an automatic
trigger launches a series of interconnected steps such as compiling code, running tests,
code coverage and coding standards validation, and building deployment packages to be
handled in the following phases of the pipeline (Fitzgerald and Stol, 2014). An example
representation of CI is shown in Figure 3.2, in which an event in form of a code update
in source control management system, such as GitHub, automatically triggers a set of
interconnected processes to prepare for the following phase in the CI/CD pipeline. In case
the CI process fails, a number of protocols may take place to help solve the situation as

quickly as possible (Fitzgerald and Stol, 2014).

Continuous Integration

[Code pushed to
source control Create a build]—»[Verify standards]—>[Run tests

Figure 3.2: Continuous integration example.

CI by itself is not enough to move the changes to production, which is why it is followed
by either continuous deployment (CD), or continuous delivery (CDE) (Fitzgerald and
Stol, 2014). CDE performs additional tests (Shahin et al., 2018), and utilizes deployment
automation to deliver software in a production-like staging environment. Its benefits
include cost reductions, faster user feedback, and reduced deployment risk (Shahin et al.,
2017). CD builds on top of CDE by automatically delivering software to production and
customer environments (Shahin et al., 2017; Fitzgerald and Stol, 2014). The CDE practice
can be applied to all types of systems, whereas CD may not be suitable for all cases (Shahin
et al., 2017). For example, there might be regulatory requirements or business cases where
a manual approval process is required before something can be released into production
(Caum, 2013; Bird, 2015). An example representation of CDE/CD is shown in Figure 3.3.

12 CHAPTER 3. MODERN SOFTWARE DEVELOPMENT

[Done by person responsible for approving deployment to production] [Approval process]

Continuous deployment !
Continuous delivery ,
cl Production environment
Deploy _to updated
Acceptance tests Deploy to produgction
staging

Figure 3.3: Example of continuous delivery with continuous deployment.

For the case organisation in the case study of Senapathi et. al., the main goal in imple-
menting DevOps was to achieve continuous delivery in which the implementation of the

CI/CD pipeline was a central aspect (Senapathi et al., 2018).

The set of actually realized benefits in DevOps can be similar to the expected ones.
In the case organization, teams were happier and more engaged, and they were able
achieve more frequent releases (Senapathi et al., 2018). However, adopting DevOps is not
straightforward as previous literature has documented a variety of impediments that hinder
adoption of DevOps such as challenges in organizational structure, buzzword tiredness,
added amount of responsibilities, and knowledge requirements for both developer and
operation stakeholders (Smeds et al., 2015). In the case study, some challenges were related
to shortage of knowledgeable staff and resistance to change in the DevOps realm, while
others were more closely related to cultural aspects (Senapathi et al., 2018). Organizations
vary very much from one another from the perspective of the capability, technological, and
cultural enablers. Therefore, it could be reasoned that the realized benefits and challenges

from adopting DevOps could also be organization-specific.

3.2. DEVSECOPS 13

3.2 DevSecOps

The benefit of being able to release software more frequently has been one of main factors
for the wide adoption of DevOps in the software development industry (Rajapakse et al.,
2022). As a result, one of the new challenges that has emerged is maintaining the agility
benefits of DevOps while also considering the security aspects of the software. (Rajapakse
et al., 2022). Previously, security activities have been handled at the later stages of the
software development life cycle (SDLC). These activities, such as security code review
or Dynamic Application Security Testing (DAST), are resource-intensive, which means
that introducing these security activities in DevOps would come at the cost of speed when

deploying software (Rajapakse et al., 2022).

DevSecOps can be defined as a principle that prioritizes security in the DevOps cycle (Ra-
japakse et al., 2022). Security measures are integrated by increasing collaboration between
the development, security, and operations teams (Myrbakken and Colomo-Palacios, 2017;
Rajapakse et al., 2022). Figure 3.4 illustrates the overview of the holistic integration of
security in each phase of the DevOps cycle.

Sec

Figure 3.4: Tllustration of DevSecOps. Adapted from (Plutora, 2019).

14 CHAPTER 3. MODERN SOFTWARE DEVELOPMENT

To better understand the challenges and solutions in DevSecOps, Rajapakse et. al., con-
ducted a systematic literature review, in which the results were categorized into four in-

terconnected themes: People, practices, tools, and infrastructure (Rajapakse et al., 2022).

Most challenges identified were tools-specific, and they can be divided into three different
groups. First, the lack of standards in security tool selection, insufficient documentation of
the already complex tools, and the configuration difficulty makes it challenging for devel-
opers to select or use the security tools in the first place (Rajapakse et al., 2022). Second,
even though the established set of security tools bring certain benefits, developers prefer
not to utilize them due their limitations and incompatibilities with the rapid deployment
cycle of DevOps. The article mentions two types of tools related to this challenge group:
Static Application Security Testing (SAST), and DAST tools. The code-based SAST
tools detect software vulnerabilities by inspecting the source, or binary code without ac-
tually running the software (Rajapakse et al., 2022; Black et al., 2021). On the other
hand, DAST tools are execution-based and require software to run in order to perform
dynamic analysis (Rajapakse et al., 2022; Black et al., 2021). Furthermore, application
security goes beyond only securing the source code. For example, the reliance on open
source software in DevOps means that it is important to ensure that imported libraries
are also secure. It is done through Software Composition Analysis (SCA) tools, that scan
for vulnerabilities of third-party components (Rajapakse et al., 2021). One problem with
SAST tools is the burdensome manual effort required to manage false positives. Another
problem is the time it takes to scan code, along with high resource consumption, which is
difficult to combine with the DevSecOps paradigm of incrementally adding small amounts
of work (Rajapakse et al., 2022). DAST tools share rather similar difficulties with their
counterparts in the sense that it takes time for the dynamic security tests to be completed,
on top of also requiring a fair amount of manual effort to setup and run the tools in the
first place (Rajapakse et al., 2022).

The third group of tools-specific challenges revolves around vulnerabilities arising from
improper tooling configurations and usage in the DevSecOps pipeline. For example, while
container technologies are popular in DevOps, the lack of security considerations, such as
developers not paying attention to vulnerabilities in container images, or using insecure
configurations and access control settings, have introduced security challenges (Rajapakse
et al., 2022). In another example, the CD Pipeline itself is typically not designed with
security requirements in mind, which makes the pipeline more vulnerable to attackers
(Rajapakse et al., 2022).

3.2. DEVSECOPS 15

A key recommendation to combat tools-specific challenges presented in the article is to
utilize tooling specifically catered to DevSecOps, preferably with a cloud-based solution
(Rajapakse et al., 2022). Selecting the appropriate tools is an ongoing challenge in the
industry as a global research survey conducted by Enterprise Strategy Group (ESG) indi-
cates that instead of dealing with the shortcomings of traditional security tools and tool
sprawl, organizations are interested in consolidated solutions for web application and API
security, that also integrate with the DevOps tools and processes, while also managing to
be up-to date of the dynamic threat landscape (Grady and DeMattia, 2021).

Rajapakse et. al., identified numerous practices-specific challenges, which could be further
divided into two groups. First, the difficulty to automate traditionally manual security
practices, such as compliance testing, into the automation-oriented DevSecOps workflow
is one of the critical challenges identified in the paper (Rajapakse et al., 2022). Second,
developers have to balance the trade-offs between speed and security in DevOps. For
example, the lack of appropriate tools and methods, combined with the fast delivery
cycle in continuous deployment makes it difficult to rigorously verify security requirements
(Rajapakse et al., 2022). Additionally, continuous security assessment was identified as
one of the key practices for DevSecOps. However, processes associated with the practice
have not been widely adopted in the industry. This is partly due to lack of instructions and
lack of consensus on how security measures should be included in the pipeline (Rajapakse
et al., 2022). These types of challenges, combined with the increased development speed,
partly due to increased use of open-source components, cause security assurance to be
more difficult. This in turn, results in some organizations perceiving DevOps and security
aspects incompatible with each other, which then adds to their reluctance to adopt DevOps

processes altogether (Rajapakse et al., 2022).

One of the ways to tackle practice-related challenges is to include security from the be-
ginning of the development process. This concept is known as shifting security left, which
is also one of the key recommendations in DevSecOps (Rajapakse et al., 2022). From the
development standpoint, one of the ways it to integrate security scanning into the CI/CD
pipeline to enable development teams to find and remediate possible vulnerabilities in the
earlier stages of the SDLC (Wegner, 2020). An example is shown in figure 3.5. To succeed
in shifting security to the left, developers and security teams must co-ordinate in all stages
of the SDLC, as just adding new tools to the pipeline adds to the list of responsibilities to
the already resource-constrained development teams that deal with their own challenges,

which then leads to unused tooling instead of empowering development teams (Bell, 2022).

16

CHAPTER 3. MODERN SOFTWARE DEVELOPMENT

Cl/CD Pipeline

Updated
[Cl]—>[CD] application

7

(o] (=]

‘ DAST \

Figure 3.5: An example of possible tools used to shift security left in the CI/CD pipeline, which

eventually triggers an event that updates an application.

To secure source code, shifting security to the left is more than just scanning code against

vulnerabilities. A whitepaper by Google Cloud suggests a set of activities to apply for se-

curing source code in the SDLC, and thus shift security to the left from another perspective

(Ensor and Stevens, 2021). These activities are summarized in Table 3.2 below.

Automated testing

Automated tests lower security risks indirectly by providing a
way to respond quicker to threats, discovered vulnerabilities,

and regression defects.

Memory-safe languages

A majority of vulnerabilities patched by a security update are
associated with memory safety issues. Therefore, teams should
prefer memory-safe languages to reduce risk of memory-based
vulnerabilities. If conditions do not permit using a memory-safe
language, fuzz testing is recommended to identify vulnerabili-

ties.

Flawless change manage-

ment

A best practice is to perform code reviews that integrate the
work of short-lived feature branches to the protected primary
branch. To identify the appropriate set of code reviewers, some
source code management (SCM) systems provide a CODE-
OWNERS file to identify parties responsible for different sec-

tions of the codebase.

3.2. DEVSECOPS

17

Commit authenticity

Verify code contributors’ authenticity by enforcing contributors

to digitally sign their commits.

Identifying malicious code

Use static code analysis, or linting to identify and remediate
vulnerabilities originating from common syntax mistakes, such
as unused variables, array index overruns, and improper ob-
ject references. To look for code functionality and logic errors,
use automated testing tools that provide feedback through the
CI/CD pipeline.

Avoid exposing sensitive

information

Use pre-commit hooks to identify the potential exposure of sen-

sitive information, such as passwords and API keys.

Logging and build output

To mitigate risks of leaking sensitive logging output in the
CI/CD pipeline, hide embedded secrets through built-in tooling
of CI, or by building scripts independently from CI.

License management

Use license scanning tools to prevent financial and legal rami-

fications due to license restrictions of open source software de-

pendencies.

Table 3.2: Summary of securing source code (Ensor and Stevens, 2021).

As previously mentioned, one of the other key recommendations for DevSecOps is to
implement continuous security assessment (Rajapakse et al., 2022). Similar to shifting se-
curity left, it involves continuous co-ordination between development and security teams,
but also extends to activities after deploying the software. One such practice is con-
tinuous monitoring (CM) (Rajapakse et al., 2022). Continuous monitoring is especially
useful in highly regulated environments, where tracing multiple types of input is impor-
tant (Rajapakse et al., 2022). CM can be implemented by utilizing Runtime application
self-protection (RASP), and Web application firewalls (WAF') (Rajapakse et al., 2021).
RASP tools can detect attacks in real-time by continuously monitoring the run-time en-
vironment, while a WAF is deployed in production to monitor and take action against
external attacks (Rajapakse et al., 2021). These techniques are complementary to each

other. For example, WAFs can mitigate a Distributed denial-of-service (DDoS) attack by

18 CHAPTER 3. MODERN SOFTWARE DEVELOPMENT

inspecting incoming web traffic, while RASPs have visibility into the application layer,

and thus can provide protection within the application (Pasha, 2021).

Finally, the situation of developers dealing with the potentially vast amount of alerts from
the decoupled security tools in the CI/CD pipeline can result in alert fatigue (Rajapakse
et al., 2021). Therefore, it is recommended to use a Security information and event
information (SIEM) platform to deliver a holistic picture of all security events in the
CI/CD pipeline that would provide the developers sufficient information to remediate

prevalent issues (Rajapakse et al., 2021).

Next, the amount of identified infrastructure-related challenges in the article by Rajapakse
et. al., were smaller in numbers than each of the previously mentioned themes of tools
and practices, but were still important. Adopting DevSecOps in a highly regulated (e.g.,
air-gapped), resource-constrained (e.g., IoT, embedded systems), or otherwise complex
infrastructural setting is challenging due to various restrictions that conflict with the De-
vSecOps way of working (Rajapakse et al., 2022). Due to the nature of software products
that Neste delivers to the oil refineries, insights to manage infrastructural challenges in
highly regulated environments are very relevant from the development perspective. Ra-
japakse et. al., propose a few solutions to address this need. First, teams should consider
adopting strict access management policies to allow each of the development, operations,
and security team members only the most necessary access to sensitive environments (Ra-
japakse et al., 2022). Second, adopting Infrastructure as code (IaC) is also recommended,
as utilizing [aC brings certain benefits. For example, IaC allows for pre-configured settings
to be applied in systems in a centralized, and repeatable manner. Furthermore, it enables
infrastructure itself to be managed similarly to what is done in software development in
general (Rajapakse et al., 2022). Third, as software today is composed of a variety of com-
ponents, including open source software (OSS), component-specific vulnerabilities should

be systematically managed in a transparent process (Rajapakse et al., 2022).

The fourth and final theme of challenges identified by Rajapakse et. al., was centered
around people. One important challenge is that developers who act as the centerpiece of
handling software security, lack the necessary knowledge to do so (Rajapakse et al., 2022;
Rajapakse et al., 2021). One reason for this is the lack of sufficient security education and
training in software engineering (Rajapakse et al., 2022). The other challenge revolves
around the inability to adopt the cultural changes required for DevSecOps (Rajapakse et
al., 2022). For example, in some organizations, security is not necessarily seen as something

that brings value, which adds to the reluctance to prioritize security measures (Rajapakse

3.2. DEVSECOPS 19

et al., 2022). However, the most prominent issues were related to inter-team collabora-
tion, which exist due to frictions between the development and security teams, and the
developers’ siloed work culture preventing the collaborative way of working (Rajapakse
et al., 2022).

To combat challenges related to people in DevSecOps, organizations should focus on en-
abling collaboration and cross-functionality. One key proposal is to introduce security
champions (Rajapakse et al., 2022). Security champions should be dedicated and techni-
cally apt stakeholders, such as developers, that contribute to both software development
and security activities in the SDLC (Jaatun and Soares Cruzes, 2021). The importance of
selecting a competent member should not be neglected. For example, it is easier to train
a developer to address security issues instead of teaching software to a security expert
(Jaatun and Soares Cruzes, 2021). Other general suggestions related to people-centric
challenges include training developers, sharing security knowledge, and utilizing commu-
nication channels that enhance inter-team collaboration (Rajapakse et al., 2022). For
example, instead of relying on communication by individual emails, teams should lever-
age automation by having relevant stakeholders receive notifications automatically from

activities of various processes, such as successful installations (Rajapakse et al., 2022).

Finally, it should be re-emphasized, that the previously mentioned four themes of DevSec-
Ops challenges and solutions are interconnected. Adopting DevSecOps is not straightfor-
ward, and requires a significant culture change within an organization in order for practices
and tools to be effective. Developers should be provided necessary guidance and developer-
first tools to start shifting security to the left, and enable continuous security assessment,

which are the two key recommendations in DevSecOps (Rajapakse et al., 2022).

4 Open source software and software

supply chains

Open source software has revolutionized the way software is developed today. However,
it’s popularity introduces additional considerations, which requires us to pay attention to
security beyond the CI/CD pipeline. This chapter focuses on the risks of careless use of
open source software through the introduction of software supply chains and why securing

them has become such an important topic in the industry today.

4.1 Software supply chains

A software supply chain consists of anything that goes into, or affects software, such
as code, repositories, or package managers (Kaczorowski, 2020). The current way of
developing software is heavily reliant on the open source community, and thus dependent

on software supply chains managed by third parties (Kaczorowski, 2020).

According to a recent industry report by Synopsys, 97% of commercial codebases contain
open source code (Synopsys, 2022). Moreover, the surveyed codebases themselves were
largely comprised of open source (Synopsys, 2022). High dependency of application func-
tionalities being provided by third parties results in increased security risks and exposure
to vulnerabilities (Kaczorowski, 2020). To understand and manage the security risks of
a software supply chain, first we need to understand the anatomy of one in more detail.
It can be represented as a chain of interconnected steps that transform the developers’

original artifact into one to be used by the consumers, as shown in figure 4.1.

A software supply chain consists of artifacts and processes that run on platforms. An arti-
fact is a blob of immutable data, such as a git commit or a container image (SLSA, 2022b).
A source refers to an artifact (e.g., a git commit) that was authored, or reviewed without
further modifications, which is hosted on a platform (e.g., GitHub, Azure DevOps). It is
the starting point of a software supply chain (SLSA, 2022b). The first step is followed
by a set of input artifacts going through the build phase of the CI/CD pipeline, which
results in a set of output artifacts (SLSA, 2022b). The input artifacts may originate from

4.1. SOFTWARE SUPPLY CHAINS 21

0) ' SCM ; { cuco G ! Distribution

Develope i | Source | : | | Package |

Artifact T

[—

=

Figure 4.1: A visual representation of a software supply chain. Adapted from (SLSA, 2022b).

the source or dependencies. Finally, a package refers to an output artifact of the build
process (e.g., Docker image), which is distributed for consumer use through a platform
(e.g., DockerHub, Google container registry) (SLSA, 2022b).

A software supply chain can be attacked from any point, as shown in figure 4.2. For
example, a developer can intentionally submit bad code. In one instance of this, as a
part of their research, a group of researchers from the University of Minnesota submitted
bad code into the Linux kernel by stealthily introducing vulnerabilities disguised as minor
code patches, also known as hypocrite commits (Holz and Oprea, 2021; Lewandowski and
Lodato, 2021; Cook, 2021). This experiment gathered negative attention and eventually
resulted in the university itself getting banned from contributing to the Linux kernel
altogether (Cook, 2021).

Software supply chain attacks can also happen without a directly malicious intent. In
one case, a bad version of another package was integrated into the dependencies of the
event-stream package in the Javascript ecosystem by a malicious actor, who was supposed
to be the new person to handle the maintenance of event-stream. This situation resulted
in new installations of event-stream to be infected (Kaczorowski, 2020; Grander and Tal,
2018). In this case, the infected dependency used by the event-stream package would
steal Bitcoin and Bitcoin cash cryptocurrencies from users under a set of very specific

circumstances (Arvanitis et al., 2022).

The impacts of the previously mentioned software supply chain attacks were relatively

limited. However, some attacks can have massive consequences. In the case of the So-

22 CHAPTER 4. OPEN SOURCE SOFTWARE AND SOFTWARE SUPPLY CHAINS

SOURCE THREATS
e

BUILD THREATS
ye

r RS M
Compromise Compromise Compromise
SCM Alter build platform package manager
Submit build Bypass Use bad
bad code pipeline ClicD | package
[som ‘ i cweo ! Distribution | ‘
e P — P —> § —>
i Source : : : : Package :
\ —_— . S —— S——
1
Use bad T 1
dependency :
1
1

Figure 4.2: Software supply chain, including threats. Adapted from (SLSA, 2022c).

larWinds attack, the compromisation of SolarWinds’ build platform resulted in malware
being enabled to spy on over 100 companies and multiple U.S government agencies (Enck
and Williams, 2022). Another software supply chain attack that has recently had an
industry-wide effect was the log4j attack, in which the compromised logging library in the

Java ecosystem allowed for remote code execution (Enck and Williams, 2022).

4.2. SECURING SOFTWARE SUPPLY CHAINS 23

4.2 Securing software supply chains

The increased amount and severity of software supply chain attacks has prompted the U.S
Government to issue an executive order to improve the nation’s cybersecurity (Executive
Office of the President, 2021; Enck and Williams, 2022). To understand the most pressing
issues in the software supply chain security, Enck and Williams held three summits to
collect practitioners’ experiences and insights regarding the topic (Enck and Williams,

2022). As a result, they present a list of five top challenges.

The first challenge is updating vulnerable dependencies (Enck and Williams, 2022). There
is debate between developers and security experts on whether to use fixed dependencies or
not. The argument from developers’ side is that with fixed dependencies, project-breaking
changes are prevented (Enck and Williams, 2022). However, security experts push for
automatic dependency updates as they enable being up-to date with possible security
fixes (Enck and Williams, 2022). This is supported by the estimation that more than 85%
of disclosed open source vulnerabilities have an already available solution (Kaczorowski,
2020; WhiteSource, 2020). However, the SolarWinds attack showed that dependency
updates can also be malicious. In an ideal situation, updating dependencies would happen
after it is confirmed that the update is safe, but also not too late, as the update might
also remediate vulnerabilities (Enck and Williams, 2022). Another suggestion is to take
a proactive approach by focusing on isolation techniques that limit the impact when a
vulnerable dependency is exploited (Enck and Williams, 2022). One example of this is the
RLBox framework (Enck and Williams, 2022), which mitigates the impact of compromised
browser dependencies by sandboxing third-party libraries in the browser renderer (Narayan
et al., 2020).

The second challenge is leveraging the software bill of materials for security. Similar to a
list of food ingredients, software bill of materials (SBOM) is a formal record that contains
details and supply chain relationships of components that were used to build software
(Executive Office of the President, 2021). In theory, SBOMs can provide a variety of
benefits by providing transparency to different stakeholders (Enck and Williams, 2022).
For example, a company using an open source component in their application with an
especially restrictive license can potentially result in the company being legally forced to
make their application code public (Synopsys editorial team, 2016). SBOMs can help with
preventing this issue by providing license information of a software component for it to

evaluated before use. An example SBOM excerpt is shown in Listing 1.

24 CHAPTER 4. OPEN SOURCE SOFTWARE AND SOFTWARE SUPPLY CHAINS

v o

2 "bomFormat": "CycloneDX",

3 "specVersion": "1.4",

4 "serialNumber": "urn:uuid:<EXAMPLE-UUID>",
5 "version": 1,

6 "components": [

7 {

8 "type": "library",

9 "group": '"com.example",

10 "name": "test-utils",

11 "version": "1.2.3",

12 "licenses": [

13 {

14 "license": {

15 "id": "Apache-2.0",

16 "text": {

17 "contentType": "text/plain",
18 "encoding": "base64",

19 "content": "<EXAMPLE-CONTENT>"
20 s

21 "url": "https://www.apache.org/licenses/LICENSE-2.0.txt"
2 +

2 }

24]

25 }

26]

27 }

Listing 1: SBOM metadata example using the CycloneDX standard.

4.2. SECURING SOFTWARE SUPPLY CHAINS 25

As a whole, from the builders’ (e.g. software developers) perspective, an SBOM can
help ensure that third-party components are up-to date, or improve responsiveness to
new vulnerabilities (Executive Office of the President, 2021). Additionally, builders can
reduce attack surface of the application by removing redundant components (Carmody
et al., 2021). Second, software buyers can utilize SBOMs to evaluate the risk of builders’
product, for example through a vulnerability analysis (Executive Office of the President,
2021; Carmody et al., 2021), and thus help making a better decision to select the best
option for themselves. Third, SBOMs can enable people who operate and maintain the
software, to proactively address newly discovered vulnerabilities, and determine whether
their product or organization is at risk (Executive Office of the President, 2021; Carmody
et al., 2021).

In reality, the current state of SBOMs is that their potential is largely unrealized. Practi-
tioners view SBOMs as a list of ingredients and a compliance exercise (Enck and Williams,
2022). However, there are ongoing efforts, such as the CycloneDX project by the Open
Web Application Security Project (OWASP) community, to enhance viability of SBOMs
in the industry (OWASP CycloneDX, 2022). Either way, providing an SBOM is a compli-
ance requirement for vendors wanting to sell software to the U.S government (Enck and
Williams, 2022).

The third challenge is choosing trusted supply chain dependencies. The software supply
chain is an exercise in trusting people who built the external dependencies (Enck and
Williams, 2022). Currently there is a list of issues that need to be addressed for estab-
lishing trust with developers building the dependencies (Enck and Williams, 2022). These
concerns are related to topics, such as trusting the dependency maintainers over a longer
time period, or trusting them not hand the dependency itself over to a malicious actor
(Enck and Williams, 2022).

These, and other similar concerns have resulted in relevant industry stakeholders such as
package managers, researchers, and projects such as the Open Source Security Foundation
(OpenSSF) working on mechanisms and products, which focus on separating the wheat
from the chaff (Enck and Williams, 2022). For example, some tools aim to identify ty-
posquatting (Enck and Williams, 2022), a technique where a malicious package is presented
as the original. One instance of this is attackers releasing the malicious package under the

same name as the target package in an alternative package repository (Ohm et al., 2020).

The fourth identified challenge is securing the build process. CI/CD tools, such as Jenk-

ins and Github Actions, have become popular tools to run the build process (Enck and

26 CHAPTER 4. OPEN SOURCE SOFTWARE AND SOFTWARE SUPPLY CHAINS

Williams, 2022). However, security aspects related to these tools have been largely over-
looked (Enck and Williams, 2022). For example, the CI/CD tasks provided by the open
source community are not always designed with security in mind. This increases the attack
surface by potentially allowing malicious code to be injected in the build process (Enck
and Williams, 2022).

Supply chain Levels for Software Artifacts (SLSA) is a framework to ensure the integrity
of the software supply chain (Enck and Williams, 2022; SLSA, 2022a). As of July 2022,
SLSA is in the alpha stage, and thus under active development. The framework consists
of security guidelines to offer protection against common software supply chain attacks
(Lewandowski and Lodato, 2021). These guidelines focus primarily on two categories:
source, and build integrity, as visualized in figure 4.2. One example related to improving
build integrity is having stronger security controls for the build platform, which would
have helped mitigate risks present in the SolarWinds attack (Lewandowski and Lodato,
2021). Another guideline related to the source integrity recommends implementing a
thorough code review process. This, in turn, would have helped mitigate risks with the
hypocrite commits presented earlier in this chapter (Lewandowski and Lodato, 2021). As
a whole, SLSA is divided into four incrementally evolving levels. Achieving higher levels
increases confidence that the software artifact has not been tampered with (Lewandowski

and Lodato, 2021). A short summary of these levels is provided in table 4.1.

Level | Description Example
1 Documentation of the build process. Unsigned provenance.
2 Tamper resistance of the build service. Hosted source/build.

Signed provenance.

3 Extra resistance to specific threats. Security controls on host.

Non-falsifiable provenance.

4 Highest levels of confidence and trust. Two-party review.

Hermetic builds.

Table 4.1: Summary of SLSA levels (SLSA, 2022d).

By reaching the requirements of the first SLSA level through an automated and provenance

generating build process, software consumers can begin making risk-based security deci-

4.2. SECURING SOFTWARE SUPPLY CHAINS 27

sions (Lewandowski and Lodato, 2021). Provenance in SLSA refers to metadata containing
the origins of consumed software (Palafox, 2022), and it should be published alongside the
software artifact it relates to (Blit, 2022).

The fifth, and final identified challenge is getting industry-wide participation. Large tech
organizations are well-aware of the risks in the software supply chain. Some short-term
risk management solutions exist, such as providing developers with repositories with pre-
approved dependencies to choose from (Enck and Williams, 2022). However, short-term
solutions are not viable in the long run. Therefore, industry stakeholders such as the
Linux Foundation, are currently involved with projects such as the Open Source Security
Foundation (OpenSSF) to enhance the security of the software supply chain (Enck and
Williams, 2022). However, merely creating these tools and methods is not enough as they
need to be adopted by the broader software industry, which is an ongoing challenge (Enck
and Williams, 2022).

5 Case study

This chapter introduces the qualitative case study by presenting background of each par-
ticipant and giving a summary of the interview results. The results are then categorized

to fit the structure of a software supply chain.

5.1 Participants

TeamOne

TeamOne is in charge of a client-server project that contains stakeholders from different
vendors (e.g., a software developer from one and a project manager from another). The
project itself has existed for multiple years, but the team composition has changed rel-
atively recently, as the previous development team has been succeeded by a completely
new team. The current team consists of two client-side developers and five server-side
developers. Developers are accompanied by a dedicated tester, and two UI/UX designers.
The team is split into two responsibility groups; new features and maintenance. However,

these two groups are cross-functional, and thus not strictly siloed.

TeamTwo

TeamTwo is part of Neste’s subsidiary company that is responsible for ongoing develop-
ment connected to Neste’s production facilities. The software development team has
a Research and development (R&D) programme, which enables the team to develop
customer-specific projects. The product portfolio includes products and projects, such as
client-server applications and operator training simulators. Due to security and real-time
requirements, their software runs mostly in environments without internet connectivity,
and on-premises in general. This means that most of their client-server applications are
different compared to web and mobile applications today, in addition to little utilization

of commercial cloud offering as a whole.

5.2. RESULTS 29

TeamThree

TeamThree is a small team consisting of two members. They are primarily responsible
for the maintenance of a set of Neste’s data analytics services that run on a public cloud
platform. Additionally, a few web applications have also been merged into their scope of

responsibilities.

TeamFour

TeamFour is responsible for development of Neste’s common data platform. Their overall
lineup consists of data engineers and a team providing the data required for data engineers
to parse through. These two groups meet together in daily standups. Additionally, the

team collaborates with many other stakeholders when needed, such as external api data

providers.
Id Team Role Format
T1-SW-1 TeamOne Software development A
T1-PM-1 TeamOne Project management A
T2-SW-1 TeamTwo Software development B
T2-AD-1 TeamTwo System administration B
T3-DE-1 TeamThree Data engineering A
T4-DE-1 TeamFour Data engineering A
T4-DE-2 TeamFour Data engineering A
T4-DE-3 TeamFour Data engineering A

Table 5.1: Participating individuals in this case study.

30 CHAPTER 5. CASE STUDY

5.2 Results

5.2.1 Overview

At first glance, the interviewed set of teams follow a number of software development
practices that are commonly associated with modern software development. For example,
version control is used where possible, code review procedures exist, and teams are mostly
using CI/CD pipelines to push code to production. However, the interview data revealed
that there was quite a bit of variance between answers in regards to the extent these
practices were used. This is understandable due to the differences between teams and

their developers’ backgrounds.

The interview formats resulted in more data being retrieved from the interviews than
what is presented within this chapter. There are a few reasons behind excluding some
information. One is that the conducted interviews needed to serve two purposes. First,
they needed to provide Neste with information on development teams’ workflows and
technology stacks in general, while also providing enough data to meet the requirements
on answering the research question RQ2. Additionally, the interviews began before the
final direction of this thesis was possible to be selected. A different interview format was
chosen for the interviewees working for Neste’s subsidiary company because the subsidiary

has a different role with Neste compared to outsourced vendors.

The result categories used to provide an answer for RQ2 were Code reviews, Code security
in the C1/CD pipeline, and Open source code dependency management. These choices were
motivated by the structure of a software supply chain, as presented in figure 4.1, combined

with the presence of the CI/CD pipeline throughout the literature study of this thesis.

5.2. RESULTS 31

5.2.2 Main findings

Code reviews

Code reviews were a widely used practice according to the answers received from the in-
terviewed participants. They were typically used as a code quality gate before pushing
new work to production. A common scenario to trigger a new code review was by creating
a pull request. As a whole, the typical code review was a manual process among the
interviewed teams, and there was no unified standard on how to conduct one. Branch-
ing strategies between different projects were generally set up in a way that discouraged
pushing new work directly to production, or otherwise skip code reviews. However, not
every teams’ code repositories had been explicitly configured to enforce a specific way of

working.

It is important to note that the meaning of code varied between projects. Software devel-
opment projects consisted of custom code through the usage of established programming
languages (e.g., Java, Javascript, Python), whereas data engineering projects were also
making significant use of proprietary tools and technologies. This meant that the code
artifacts in the data engineering projects had differences when compared with the more
traditional software development projects. As a result, software developers could be paying
attention to different things compared to data engineers when conducting a code review.
For example, one software developer gave the following answer when asked on what they

were generally looking for when assigned to do a code review:
“...I try to focus on whether there are any obvious mistakes...”

On the other hand, validating that the new changes were working as intended in a data
engineering project was not necessarily possible by just looking at the code artifact in
all situations. Participants from two separate data engineering teams reported that they
were conducting code reviews by manually testing parts of their work in a pre-production
environment instead of analyzing code. This could be explained by the lack of suitable

code analysis tools for code artifacts linked to proprietary technologies.

One interviewee expressed concerns regarding the challenge of project information being
hidden from relevant stakeholders within their team. This is due to the team’s multi-
vendor team structure, where managers and developers work for Neste from different
companies. One apparent problem was management’s lack of visibility in developers’ code

reviews and similar. The team’s project manager wished for better integration between

32 CHAPTER 5. CASE STUDY

their general communication channel with the used code repository, and commented the

situation as follows:

“..feels kind of weird that there are systems to which Neste has no access, and where

things related to their projects are being managed...”

In summary, while the code review processes lacked common structure, it was evident
that the development teams generally strived towards shared responsibility and collective
ownership of their code, which are some of the enablers in DevOps, as mentioned earlier

in this thesis.

Code security in the CI/CD pipeline

Usage of application security tools in the CI/CD pipeline was in complete contrast com-
pared to using code reviews to aid in achieving a certain level of code quality. None of
the interviewed participants reported to use tooling meant to specifically scan for vulner-
abilities. There were multiple reasons behind this. One reason is that the scanning tools
do not always fit the technology stack. An example of this is a data engineering project,
where the source code consisted mostly of code artifacts related to databases (e.g., SQL
files ending with .db), and proprietary technologies (e.g., files ending with .json). One

interviewee commented on this scenario as follows:

“..I'm not sure if they (application security tools) are viable for the <anonymized data
engineering product> setup itself, maybe they are viable for SQL artifacts, the R artifacts,
the Python artifacts...”

Additionally, one data engineer remarked that the differences between the backgrounds of

data engineers and software developers could also play a role with development capabilities:

“...The security side is less at the forefront. The focus is on the data side. Quite a few of

our developers are data scientists, so their background is completely different...”

On the other hand, software development projects faced their own set of impediments in
adopting application security tools. One team had experimented with SonarQube, a code
quality and analysis tool. However, the lack of processes and resources has prevented
further adoption so far. Additionally, the same team had considered introducing a vul-
nerability scanning tool, such as Snyk, into their CI/CD pipelines. The situation with

SonarQube was reflected on in one interview as follows:

“.Introducing it (SonarQube) should not be a massive task, but if it finds something,

5.2. RESULTS 33

there should be a workflow...”

Test automation is one way to address code security risks indirectly, as mentioned in table
3.2. The amount of software testing varied between projects. While the interview sessions
did not allow for in-depth discussion on the subject matter, the information retrieved from
the interviews indicate for improvements to be made in that area. The combination of the
lack of formal processes and available resources can be attributed to the current state of

software testing. One data engineer described their situation as follows:

“..It would be nice to do them (tests). Just need to find a light framework that could be

used to simulate the <anonymized data engineering product> environment...”

Additionally, one software engineering project had to find creative ways to test some of
their functionalities, as creating mock APIs to simulate physical environments was not

enough to assure that code changes worked as intended.

Another way to mitigate code security risks is by avoiding the exposure of credentials,
as mentioned in table 3.2. While none of the interviewed teams were using pre-commit
hooks to scan for leaking sensitive information, more than one team used key vault services,

which provide a secure way to access secrets from within the application.

In summary, managing the CI/CD pipeline is much more complex compared to conducting
code reviews. The current state of securing the source code suggests that Neste needs to
take a step back and introduce formal processes and guidelines for teams to apply for a
more standardized release cycle, before proceeding with introducing expensive application

security tools in the workflows, which might not even fit in a large number of projects.

Open source code dependency management

Software supply chain attacks have highlighted the need for stricter controls regarding
dependency management in software projects. However, the general answer in the inter-
views on this topic was, that it was up-to developers’ own discretion to utilize third party
libraries within their projects. However, one team revealed that they follow a change man-
agement process in form of a checklist for introducing new dependencies. The checklist
involves a review from Neste’s security team. Once the new solution has been reviewed
and considered safe, it can be used in the project. The process was not seen as perfect

and one interviewee commented on it as follows:

“...This handover checklist is not quite a rigid process, and I would feel better if it would

be more strictly defined. And then also, more strictly defined on who are actually the

34 CHAPTER 5. CASE STUDY

people authorized to provide this security approval...”

Additionally, answer from another interview indicates that there is some awareness re-

garding the legal risks arising from introducing dependencies with possible license issues:

“..0f course, you have to take a look at the license, because you can not import just

anything into commercial environments...”

6 Discussion

This chapter gives answers to the research questions defined earlier in this thesis. Addi-
tionally, the results are compared to related studies, which are followed up by discussion

on possible limitations related to the study.

6.1 Answers to research questions

RQ1: What are the commonly adopted practices for secure software development today?

To answer this research question, a literature review was conducted. Modern software
development revolves around the DevOps paradigm, which focuses on eliminating fric-
tion between development and operations teams through a culture of collaboration and
automation-focused software development practices. One of the key benefits of adopting
DevOps is achieving faster development cycles. While adopting DevOps increases agility,

it also creates additional needs to ensure the security aspects of the software.

DevSecOps is a principle that builds on top of DevOps, while prioritizing security. Shift-
ing security to the left is one of the key concepts in DevSecOps. It involves integrating
security measures from the beginning of the software development process. A typical ex-
ample involves scanning for potential vulnerabilities within the source code artifacts in the
CI/CD pipeline. Similar to DevOps, DevSecOps is far more than just introducing tools
in the development workflows. Successfully adopting DevSecOps requires significant or-
ganizational efforts to create a culture of inter-team collaboration and cross-functionality
between the development, security, and operations teams, in order for tools and practices

to be effective.

At the same time, the evolution of how modern software is based on bits and pieces of third
party code today has developed a whole new set of challenges that threaten the integrity
of software supply chains. With more and more software supply chain attacks occurring
today, teams must pay attention on introducing processes that focus on mitigating risks
originating from putting too much trust in their development activities, such as code
reviews and management of open source components found within their software. Creating

appropriate solutions to solve these issues is an ongoing industry effort, but teams being

36 CHAPTER 6. DISCUSSION

aware of ways to manage their code dependencies, and concepts such as software bill of
materials, can work as the starting point in the journey of improving security of their
software beyond the CI/CD pipeline.

RQ2: How do Neste’s software development teams currently address the state of code

security in their projects?

To answer this research question, a qualitative case study was conducted. The answers
were split into three categories: Code reviews, Code security in the CI/CD pipeline, and
Open source code dependency management. With limited technical guidance from Neste, it
is difficult to measure the maturity level of these practices within the interviewed teams.
For example, while teams are using code reviews to assess code quality, a typical code
review is a manual effort and there is no unified standard on what to review. However,
due to the presence of code reviews across the interviewed teams’ workflows, Neste could

introduce guidelines and processes for teams to follow in a relatively near future.

The same can not necessarily be said for introducing application security tools in the
CI/CD pipeline. One reason is that the tools do not necessarily support every type
of code artifact. This is more evident with data engineering projects, where the code
artifacts are connected to proprietary technologies. On the other hand, lack of knowledge,
resources, and formal processes also prevent teams from adopting these tools. Moreover,
the current state of software testing, combined with other ways to indirectly address code
security (e.g., management of sensitive information), indicate that standardizing these
steps should take priority before introducing expensive code scanning tools, which might

bring teams’ workflows to a halt instead.

The risks existing in software supply chains today, combined with the answers retrieved
from the interviews suggest that Neste should take actions to ensure the open source
software used within their projects is technically and legally sound. Answers from one
interview indicate that Neste has a formal process to review open source components, but

is not in broad use and the responsibility is mostly left in developers’ hands.

6.1. ANSWERS TO RESEARCH QUESTIONS 37

RQ3: Which code security measures should be integrated into existing Neste’s software

development projects?

Based on the findings from the previous two research questions, it is possible to introduce
tools and processes to help developers build more secure software, albeit in limited ca-
pacity. In short term, to ensure business continuity in regards to legal risks arising from
possible license conflicts with open source software, there should be a company-wide policy
on what licenses are, and are not allowed to be used within custom software. Additionally,
teams should consider adopting products such as Open source vulnerabilities (OSV), pic-
tured in figure 6.1, to check for vulnerabilities within dependencies, while also respecting
the intellectual property rights by not submitting the source code to third parties. An
example vulnerability triage workflow consists of three steps (Chang et al., 2021). First,
the open source user sends a query to the OSV API, containing basic information of the
target dependency or a relevant git commit hash. Then, the API responds by aggregating
vulnerability data from vulnerability databases using the osv schema. Finally, the user

can then analyze the response to perform potential security fixes.

0SS-Fuzz

Aggregate vulnerability data
Go from sources using
https://ossf.github.io/osv-schema

Query for known

vulnerabilities Open
PyPI OSV.dev ~——— source
by version
number/commit user
hash
1. Optional bisect
RUS‘ 2. Compute precise affected

commit ranges, versions
affected

...and Upstream repo /
many package
others repository

Figure 6.1: Workflow diagram for Open source vulnerabilities project (OSV Team, 2022).

https://osv.dev/

38 CHAPTER 6. DISCUSSION

Services such as OSV could be directly integrated into development projects’ CI/CD
pipeline, which could trigger alerts to Neste’s cybersecurity team based on the sever-
ity of the issue. As mentioned in chapter 4, development teams can stay secure by simply
patching the vulnerable code dependency in majority of disclosed OSS vulnerabilities.
Therefore, the security incident management process should be relatively straightforward
in most situation. However, this approach requires some changes to which stakeholders

are directly involved with software development projects from Neste’s side.

Code reviews are another topic to which Neste can have an effect on in a relatively near
future due to their presence in the workflows of the interviewed teams. In theory, one of the
easier solutions would be to choose a suitable software development project and create a
workflow for code reviews with the help of a commercial vendor’s consulting team providing
necessary technical assistance. The problem with this approach is that the workflows and
standards might be difficult to generalize across various types of software development.
Therefore, the initial focus could be pointed towards creating formal processes for manual
testing of changes in standardized pre-production environments. The requirements for

this workflow are roughly as follows:

» Code deployment environments (e.g., development/staging/production) should be
provisioned and configured with Infrastructure-as-code. This approach would allow

to test changes in a more reliable manner within pre-production environments.

o Pull requests should automatically push changes to the next appropriate environment
according to the selected branching strategy. For example, approving changes in Dev
branch would push changes to Staging environment. In light of code reviews being
a possible entry point for a software supply chain attack, two separate individuals
should review and approve the changes. If possible to implement, a CODEOWNERS

file should help to automatically assign most suitable code reviewers.

e The manual testing process should include a checklist. The research done in this
survey is insufficient to explain what the contents of one should include. Therefore,
Neste could take a quantitative research approach and create a survey to collect data

on conducting code reviews from individual developers.

On one hand, integrating commercial code vulnerability scanning tools into the CI/CD
pipeline is currently not a cost-efficient strategy according to answers to RQ2. On the other

hand, automated tests are an integral part of checking that software under development

6.1. ANSWERS TO RESEARCH QUESTIONS 39

stays working correctly (Vocke, 2018). They also address code security risks indirectly,
as mentioned in table 3.2. Therefore, a standardized approach to test automation is
something that should be considered. However, it is not feasible to introduce a complete

plan for software testing in this thesis.

Currently, some actions can be taken to consider the security of source code itself. Neste
has facilitated ongoing workshops to support this study. So far, one suggestion has been
to create a catalogue of template repositories for projects to start from. These repositories
could be pre-configured to automatically support previously mentioned two recommenda-
tions, but could also include at least the following suggestions from the viewpoint of code

security:
» Requirement for commits to be digitally signed to prove the origin of the individual
behind the code artifact change.

o Prevent sensitive information from being leaked by including a secrets management

solution by default within the template repository.

40 CHAPTER 6. DISCUSSION

6.2 Related studies

Neste’s reliance on almost completely outsourcing software development to third parties
has resulted in a rather novel research problem in the context of secure software develop-
ment. Other academic studies that also aimed to identify challenges related to DevSecOps,
were able to achieve more technical results. This could be explained by closer access to
technical stakeholders from a researcher’s standpoint. Nevertheless, these studies can
show what Neste could potentially expect when going forwards with more comprehensive

experiments in the future.

One example of a somewhat related study is a quantitative case study, which focused
on identifying and documenting experiences of various teams’ journey on implementing
DevSecOps (Colliander, 2022). The findings suggest that the focus should be on allocating
sufficient time for developers and security personnel to improve on their security skills,
instead of needlessly spending time on selecting the most fitting tools (Colliander, 2022).
The questionnaire used in the study is quite comprehensive and parts of it could be reused

in a future Neste software development survey.

Another study had integrated commercial DevSecOps tools into existing workflows of an
actual software development team (Riski, 2022). According to that study, a code scanning
tool is more likely to be adopted if it is able to present results to developers within the
existing context of the development process (Riski, 2022). Another observed obstacle was
the immaturity of Integrated Development Environment (IDE) integrations for some of
the code scanning tools used in the study (Riski, 2022). The research done in the study
by Riski could include potential future research topics at Neste, as it contains relevant

information to the research question RQ3.

6.3. LIMITATIONS 41

6.3 Limitations

There are some concerns regarding the validity of this thesis, for both literature review
and the case study. The research protocol for the literature review done in this thesis is
not as thorough as in studies utilizing systematic literature review as the primary research
method. Additionally, DevSecOps, and in particular software supply chains, are emerging
concepts in software development. This means that finding peer-reviewed literature is
difficult, and thus grey literature was used quite extensively to explain parts of these
topics. However, developer-first security is a constantly evolving field, which is why it
might not even be feasible to conduct systematic literature reviews to keep up with the

latest developments.

On the other hand, conducting the case study had its own challenges. Neste’s company
structure meant that finding technical guidance for this thesis was not straightforward
due to the general lack of software developers being directly employed by the company.
Moreover, the four teams participating in the interviews do not necessarily represent the
state of software development as a whole at Neste. Additionally, due to lack of time
and other resources, teams developing software through other means such as Integration
development and Robot process automation, were not included in this case study. In
hindsight, action research could have been a more appropriate research method for this
thesis, as interviewing stakeholders from multiple teams allowed for a broader view at the
software development practices, at the expense of immediately actionable results in this

situation.

Finally, contents of both interview formats were purposefully broad. This is due to to
initial interviews beginning before the final thesis direction was selected. It is also one
of the reasons for the usage of two different interview formats to collect data. However,
the interview formats A and B are similar enough for data categorization to be possible
without overwhelming obstacles. If there was a need to ask for additional clarifications,
we used emails and direct chats to fill in the missing information, and thus align insights
between the interview formats. Furthermore, the interview formats were imperfect, and
some topics such as monitoring need further investigation before making any company-

wide policies on that matter.

7 Conclusions

The modern way of rapidly developing software has introduced security gaps that can
be exploited by third parties. Vulnerability scanning tools are designed to detect issues
within custom code. However, the trust that software developers have put into third party
code, has been abused by malicious actors. The emerging attack vectors are able to bypass
some of the modern application security measures, which has already resulted in major
consequences in the software industry. This has resulted in industry effort to mitigate
the risks of careless utilization of open source components, on which the vast majority of

modern software is built upon.

This thesis was commissioned by Neste Corporation and focused on investigating the cur-
rent state of how their outsourced software development teams address code security. We
conducted a qualitative case study by interviewing a variety of stakeholders from four
different teams. In summary, code security is currently not at the forefront, but modern
software development tools and technologies are used for agile software development across
projects, which means that security improvements can be done. This thesis proposes a
small set of suggestions that address code security and encourage collaboration between
stakeholders. The primary suggestion is to ensure that open source components are re-
viewed for vulnerabilities and their licenses allow them to be used within closed source

projects.

In hindsight, more actionable results could have been achieved with a more involved re-
search method such as action research. Nevertheless, this thesis reveals some opportunities
for future research. From Neste’s point of view, the next steps should include active moni-
toring and formalization of the newly suggested open source security enhancement process,
preferably by leveraging automation instead of manually checking on individual projects’
statuses. However, a pre-requisite for this involves creating company-wide guidelines for
CI/CD pipeline configurations, at a reasonably abstract level. From a broader viewpoint,
one of the more interesting opportunities for future research could be conducting more
practical research by programmatically consuming contents of a software bill of materials

for a variety of use cases.

Bibliography

Arvanitis, 1., Ntousakis, G., loannidis, S., and Vasilakis, N. (2022). “A Systematic Anal-
ysis of the Event-Stream Incident”. In: Proceedings of the 15th European Workshop on
Systems Security. EuroSec 22. Rennes, France: Association for Computing Machin-
ery, pp. 22-28. 1SBN: 9781450392556. DOI: 10.1145/3517208 . 3523753, URL: https:
//doi.org/10.1145/3517208.3523753.

Bell, L. (2022). Why we need to stop shifting cyber security left. [Online; accessed June
2, 2022]. URL: https://blog.safestack.io/secure-development-stop-shifting-
cyber-security-left.

Bird, J. (2015). Continuous Delivery versus Continuous Deployment. [Online; accessed
June 5, 2022]. URL: http://radar.oreilly.com/2015/10/continuous-delivery-
versus-continuous-deployment.html.

Black, P., Okun, V., and Guttman, B. (Oct. 2021). Guidelines on Minimum Standards for
Developer Verification of Software. en. [Online; accessed June 16, 2022]. DOIL: https :
//doi.org/10.6028/NIST.IR.8397. URL: https://tsapps.nist.gov/publication/
get_pdf.cfm?pub_id=933350.

Blit, R. (2022). What Is SLSA? SLSA Explained In 5 Minutes. [Online; accessed July
14, 2022.] URL: https://www . legitsecurity.com/blog/what-is-slsa-slsa-
explained-in-5-minutes.

Carmody, S., Coravos, A., Fahs, G., Hatch, A., Medina, J., Woods, B., and Corman, J.
(Feb. 2021). “Building resilient medical technology supply chains with a software bill of
materials”. In: npj Digital Medicine 4, p. 34. DOI: 10.1038/s41746-021-00403~w.

Caum, C. (2013). Continuous Delivery Vs. Continuous Deployment: What’s the Diff? [On-
line; accessed June 5, 2022]. URL: https://puppet.com/blog/continuous-delivery-
vs—-continuous-deployment-what-s-diff/.

Chang, O., Lewandowski, K., and Google Security Team (2021). Launching OSV - Better
vulnerability triage for open source. [Online; accessed September 19, 2022.] URL: https:
//opensource.googleblog.com/2021/02/1launching-osv-better-vulnerability.
html.

Colliander, C. (2022). “Challenges of DevSecOps”. English. Master’s thesis. University of
Helsinki, Faculty of Science. URL: http://hdl.handle.net/10138/342887.

https://doi.org/10.1145/3517208.3523753
https://doi.org/10.1145/3517208.3523753
https://doi.org/10.1145/3517208.3523753
https://blog.safestack.io/secure-development-stop-shifting-cyber-security-left
https://blog.safestack.io/secure-development-stop-shifting-cyber-security-left
http://radar.oreilly.com/2015/10/continuous-delivery-versus-continuous-deployment.html
http://radar.oreilly.com/2015/10/continuous-delivery-versus-continuous-deployment.html
https://doi.org/https://doi.org/10.6028/NIST.IR.8397
https://doi.org/https://doi.org/10.6028/NIST.IR.8397
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933350
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933350
https://www.legitsecurity.com/blog/what-is-slsa-slsa-explained-in-5-minutes
https://www.legitsecurity.com/blog/what-is-slsa-slsa-explained-in-5-minutes
https://doi.org/10.1038/s41746-021-00403-w
https://puppet.com/blog/continuous-delivery-vs-continuous-deployment-what-s-diff/
https://puppet.com/blog/continuous-delivery-vs-continuous-deployment-what-s-diff/
https://opensource.googleblog.com/2021/02/launching-osv-better-vulnerability.html
https://opensource.googleblog.com/2021/02/launching-osv-better-vulnerability.html
https://opensource.googleblog.com/2021/02/launching-osv-better-vulnerability.html
http://hdl.handle.net/10138/342887

44 CHAPTER 7. CONCLUSIONS

Cook, K. (2021). An emergency re-review of kernel commits authored by members of the
University of Minnesota, due to the Hypocrite Commits research paper. [Online; accessed
June 13, 2022.] URL: https://lore.kernel .org/lkml /202105051005 . 49BFABCE®
keescook/.

Enck, W. and Williams, L. (Mar. 2022). “Top Five Challenges in Software Supply Chain
Security: Observations From 30 Industry and Government Organizations”. In: IEEFE
Security € Privacy 20.2, pp. 96-100. 1SSN: 1558-4046. DOI: 10 . 1109 /MSEC . 2022 .
3142338.

Ensor, M. and Stevens, D. (2021). Shifting left on security: Securing software supply chains.
[Online; accessed June 1, 2022]. URL: https://cloud.google.com/files/shifting-
left-on-security.pdf.

Executive Office of the President (May 2021). Executive Order 14028 on Improving the Na-
tion’s Cybersecurity. [Online; accessed June 5, 2022]. URL: https://www.federalregister.
gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity.

Fitzgerald, B. and Stol, K.-J. (2014). “Continuous Software Engineering and beyond:
Trends and Challenges”. In: Proceedings of the 1st International Workshop on Rapid
Continuous Software Engineering. RCoSE 2014. Hyderabad, India: Association for Com-
puting Machinery, pp. 1-9. ISBN: 9781450328562. DOI: 10.1145/2593812.2593813. URL:
https://doi.org/10.1145/2593812.2593813.

Fowler, M. (2006). Continuous Integration. [Online; accessed June 5, 2022]. URL: https:
//martinfowler.com/articles/continuousIntegration.html.

Grady, J. and DeMattia, A. (July 2021). Reaching the Tipping Point of Web Applica-
tion and API Security. en. [Online; accessed June 5, 2022|. URL: https://assets.
ctfassets.net/6pk8mg3yh2ee/2R0OnWrnlNeMekgOgvb4Im0/004ef415e2bbd4c1£56939¢cdd676518e7/
ESG-Research-Insights—-Paper-Fastly-Web-App-and-API-Protection-July-
2021 _English FINAL.pdf.

Grander, D. and Tal, L. (2018). A post-mortem of the malicious event-stream backdoor.
[Online; accessed June 13, 2022.] URL: https://snyk.io/blog/a-post-mortem-of -
the-malicious-event-stream-backdoor/.

Holz, T. and Oprea, A. (2021). IEEE S&P’21 Program Committee Statement Regarding
The “Hypocrite Commits” Paper. [Online; accessed July 18, 2022.] URL: https://www.
ieee-security.org/TC/SP2021/downloads/2021 PC_Statement.pdf.

Jaatun, M. G. and Soares Cruzes, D. (June 2021). “Care and Feeding of Your Security

Champion”. In: 2021 International Conference on Cyber Situational Awareness, Data

https://lore.kernel.org/lkml/202105051005.49BFABCE@keescook/
https://lore.kernel.org/lkml/202105051005.49BFABCE@keescook/
https://doi.org/10.1109/MSEC.2022.3142338
https://doi.org/10.1109/MSEC.2022.3142338
https://cloud.google.com/files/shifting-left-on-security.pdf
https://cloud.google.com/files/shifting-left-on-security.pdf
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://doi.org/10.1145/2593812.2593813
https://doi.org/10.1145/2593812.2593813
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://assets.ctfassets.net/6pk8mg3yh2ee/2ROnWrnlNeMekgOgvb4Jm0/004ef415e2bbd4c1f5939cdd676518e7/ESG-Research-Insights-Paper-Fastly-Web-App-and-API-Protection-July-2021_English_FINAL.pdf
https://assets.ctfassets.net/6pk8mg3yh2ee/2ROnWrnlNeMekgOgvb4Jm0/004ef415e2bbd4c1f5939cdd676518e7/ESG-Research-Insights-Paper-Fastly-Web-App-and-API-Protection-July-2021_English_FINAL.pdf
https://assets.ctfassets.net/6pk8mg3yh2ee/2ROnWrnlNeMekgOgvb4Jm0/004ef415e2bbd4c1f5939cdd676518e7/ESG-Research-Insights-Paper-Fastly-Web-App-and-API-Protection-July-2021_English_FINAL.pdf
https://assets.ctfassets.net/6pk8mg3yh2ee/2ROnWrnlNeMekgOgvb4Jm0/004ef415e2bbd4c1f5939cdd676518e7/ESG-Research-Insights-Paper-Fastly-Web-App-and-API-Protection-July-2021_English_FINAL.pdf
https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor/
https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor/
https://www.ieee-security.org/TC/SP2021/downloads/2021_PC_Statement.pdf
https://www.ieee-security.org/TC/SP2021/downloads/2021_PC_Statement.pdf

45

Analytics and Assessment (CyberSA), pp. 1-7. DOL: 10 .1109/CyberSA52016 . 2021 .
9478254.

Kaczorowski, M. (Sept. 2020). Secure at every step: What is software supply chain security
and why does it matter? [Online; accessed September 12, 2022]. URL: https://github.
blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-
supply-chain-threats-github-blog/

Lewandowski, K. and Lodato, M. (2021). “Introducing slsa, an end-to-end framework for
supply chain integrity”. In: Google Online Security Blog. [Online; accessed June 12,
2022.] URL: https://security.googleblog.com/2021/06/introducing-slsa-end-
to-end-framework.html.

Myrbakken, H. and Colomo-Palacios, R. (Sept. 2017). “DevSecOps: A Multivocal Liter-
ature Review”. In: pp. 17-29. 1SBN: 978-3-319-67382-0. pDOI: 10 . 1007 /978-3-319~
67383-7_2.

Narayan, S., Disselkoen, C., Garfinkel, T., Froyd, N., Rahm, E., Lerner, S., Shacham, H.,
and Stefan, D. (Aug. 2020). “Retrofitting Fine Grain Isolation in the Firefox Renderer”.
In: 29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
pp. 699-716. 1SBN: 978-1-939133-17-5. URL: https://www.usenix.org/conference/
usenixsecurity20/presentation/narayan.

Ohm, M., Plate, H., Sykosch, A., and Meier, M. (2020). “Backstabber’s Knife Collection: A
Review of Open Source Software Supply Chain Attacks”. In: Detection of Intrusions and
Malware, and Vulnerability Assessment. Ed. by C. Maurice, L. Bilge, G. Stringhini, and
N. Neves. Cham: Springer International Publishing, pp. 23-43. 1SBN: 978-3-030-52683-2.

OSV Team (2022). Open Source Vulnerabilities Github repository. [Online; accessed August
23, 2022.] URL: https://github.com/google/osv.dev.

OWASP CycloneDX (2022). CycloneDX informational website. [Online; accessed Septem-
ber 8, 2022]. URL: https://owasp.org/www-project-cyclonedx/.

Palafox, J. (2022). Achieving SLSA 38 Compliance with GitHub Actions and Sigstore for
Go modules. [Online; accessed July 14, 2022.] URL: https://github.blog/2022-04~
07-slsa-3-compliance-with-github-actions/.

Pasha, M. (2021). WAF vs. RASP: A Comparison and Guide to Leveraging Both. [Online;
accessed June 2, 2022. Publication date retrieved by inspecting html source code]. URL:
https://www.traceable.ai/blog-post/waf-vs-rasp-a-comparison-and-guide-

to-leveraging-both.

https://doi.org/10.1109/CyberSA52016.2021.9478254
https://doi.org/10.1109/CyberSA52016.2021.9478254
https://github.blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-supply-chain-threats-github-blog/
https://github.blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-supply-chain-threats-github-blog/
https://github.blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-supply-chain-threats-github-blog/
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://doi.org/10.1007/978-3-319-67383-7_2
https://doi.org/10.1007/978-3-319-67383-7_2
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://github.com/google/osv.dev
https://owasp.org/www-project-cyclonedx/
https://github.blog/2022-04-07-slsa-3-compliance-with-github-actions/
https://github.blog/2022-04-07-slsa-3-compliance-with-github-actions/
https://www.traceable.ai/blog-post/waf-vs-rasp-a-comparison-and-guide-to-leveraging-both
https://www.traceable.ai/blog-post/waf-vs-rasp-a-comparison-and-guide-to-leveraging-both

46 CHAPTER 7. CONCLUSIONS

Plutora (2019). DevSecOps diagram. [Online; accessed June 1, 2022]. URL: https: //
1ohvy81v7brOlwtgnj4bfOek - wpengine . netdna-ssl . com/wp- content /uploads/
2019/03/DevSecOps-Diagram.png.

Rajapakse, R. N., Zahedi, M., Babar, M. A., and Shen, H. (2022). “Challenges and solu-
tions when adopting DevSecOps: A systematic review”. In: Information and Software
Technology 141, p. 106700. 1SSN: 0950-5849. DOI: https://doi.org/10.1016/ 7.
infsof .2021.106700. URL: https://www.sciencedirect.com/science/article/
pii/S0950584921001543.

Rajapakse, R. N.; Zahedi, M., and Babar, M. A. (2021). “An Empirical Analysis of Prac-
titioners’ Perspectives on Security Tool Integration into DevOps”. In: Proceedings of the
15th ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). New York, NY, USA: Association for Computing Machinery.
ISBN: 9781450386654. URL: https://doi.org/10.1145/3475716.3475776.

RedHat (2022). What is a C1/CD pipeline? [Online; accessed June 5, 2022]. URL: https:
//www.redhat.com/en/topics/devops/what-cicd-pipeline.

Riski, T. (2022). “Challenges in Realizing DevSecOps: A Case Study”. English. Master’s
thesis. Aalto University. School of Science. URL: http://urn.fi/URN:NBN:fi:aalto-
202203272602.

Runeson, P. and Host, M. (2009). “Guidelines for conducting and reporting case study
research in software engineering”. In: Empirical software engineering 14.2, pp. 131-164.

Senapathi, M., Buchan, J., and Osman, H. (2018). “DevOps Capabilities, Practices, and
Challenges: Insights from a Case Study”. In: Proceedings of the 22nd International
Conference on Evaluation and Assessment in Software Engineering 2018. EASE’18.
Christchurch, New Zealand: Association for Computing Machinery, pp. 57-67. ISBN:
9781450364034. DOT: 10.1145/3210459.3210465. URL: https://doi.org/10.1145/
3210459.3210465.

Shahin, M., Ali Babar, M., and Zhu, L. (2017). “Continuous Integration, Delivery and
Deployment: A Systematic Review on Approaches, Tools, Challenges and Practices”.
In: IEEFE Access 5, pp. 3909-3943. DOI: 10.1109/ACCESS.2017.2685629.

Shahin, M., Zahedi, M., Babar, M. A., and Zhu, L. (Sept. 2018). “An empirical study
of architecting for continuous delivery and deployment”. In: Empirical Software En-
gineering 24.3, pp. 1061-1108. Do1: 10 . 1007 /s10664-018~-9651-4. URL: https :
//doi.org/10.1007/s10664-018-9651-4.

https://1ohvy81v7br01wtgnj4bf0ek-wpengine.netdna-ssl.com/wp-content/uploads/2019/03/DevSecOps-Diagram.png
https://1ohvy81v7br01wtgnj4bf0ek-wpengine.netdna-ssl.com/wp-content/uploads/2019/03/DevSecOps-Diagram.png
https://1ohvy81v7br01wtgnj4bf0ek-wpengine.netdna-ssl.com/wp-content/uploads/2019/03/DevSecOps-Diagram.png
https://doi.org/https://doi.org/10.1016/j.infsof.2021.106700
https://doi.org/https://doi.org/10.1016/j.infsof.2021.106700
https://www.sciencedirect.com/science/article/pii/S0950584921001543
https://www.sciencedirect.com/science/article/pii/S0950584921001543
https://doi.org/10.1145/3475716.3475776
https://www.redhat.com/en/topics/devops/what-cicd-pipeline
https://www.redhat.com/en/topics/devops/what-cicd-pipeline
http://urn.fi/URN:NBN:fi:aalto-202203272602
http://urn.fi/URN:NBN:fi:aalto-202203272602
https://doi.org/10.1145/3210459.3210465
https://doi.org/10.1145/3210459.3210465
https://doi.org/10.1145/3210459.3210465
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.1007/s10664-018-9651-4
https://doi.org/10.1007/s10664-018-9651-4
https://doi.org/10.1007/s10664-018-9651-4

47

SLSA (2022b). Software supply chain levels. [Online; accessed June 12, 2022. "Last updated’
year retrieved from the SLSA GitHub repository.] URL: https://slsa.dev/spec/v0.
1/terminology.

— (2022¢). Software supply chain levels. [Online; accessed July 15, 2022. 'Last updated’
year retrieved from the SLSA GitHub repository.] URL: https://slsa.dev/spec/v0.
1/#supply-chain-threats.

— (2022a). Software supply chain levels. [Online; accessed July 15, 2022. SLSA Version
0.1]. URL: https://slsa.dev/.

— (2022d). Software supply chain levels. [Online; accessed July 15, 2022. 'Last updated’
year retrieved from the SLSA GitHub repository.] URL: https://slsa.dev/spec/v0.
1/levels.

Smeds, J., Nybom, K., and Porres, 1. (2015). “DevOps: A Definition and Perceived Adop-
tion Impediments”. In: Agile Processes in Software Engineering and Fxtreme Program-
ming. Ed. by C. Lassenius, T. Dingsgyr, and M. Paasivaara. Cham: Springer Interna-
tional Publishing, pp. 166—-177. 1SBN: 978-3-319-18612-2.

SonaType (2021). The 2021 State of the Software Supply Chain Report. [Online; accessed
June 5, 2022]. URL: https://www.sonatype . com/resources/white-paper-2021-
state-of-the-software-supply-chain-report-2021.

Synopsys (2022). The 2022 Open Source Security and Risk Analysis report. [Online; ac-
cessed July 9, 2022.] URL: https://www.synopsys.com/content/dam/synopsys/sig-
assets/reports/rep-ossra-2022.pdf.

Synopsys editorial team (2016). Guide to open source licenses. [Online; accessed July 18,
2022.] URL: https://www.synopsys.com/blogs/software-security/open-source-
licenses/.

Vocke, H. (2018). The Practical Test Pyramid. [Online; accessed August 23, 2022]. URL:
https://martinfowler.com/articles/practical-test-pyramid.html.

Wegner, V. (2020). DevSecOps basics: 9 tips for shifting left. [Online; accessed June 2,
2022]. URL: https://about.gitlab.com/blog/2020/06/23/efficient-devsecops-
nine-tips-shift-left/.

WhiteSource (2020). The State of Open Source Security Vulnerabilities - WhiteSource
Annual Report 2020. [Online; accessed September 12, 2022. WhiteSource has been re-
branded as Mend in 2022.] URL: https://www.mend.io/wp-content/media/2020/03/
Annual Report 2020_12.03.20.pdf.

https://slsa.dev/spec/v0.1/terminology
https://slsa.dev/spec/v0.1/terminology
https://slsa.dev/spec/v0.1/#supply-chain-threats
https://slsa.dev/spec/v0.1/#supply-chain-threats
https://slsa.dev/
https://slsa.dev/spec/v0.1/levels
https://slsa.dev/spec/v0.1/levels
https://www.sonatype.com/resources/white-paper-2021-state-of-the-software-supply-chain-report-2021
https://www.sonatype.com/resources/white-paper-2021-state-of-the-software-supply-chain-report-2021
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2022.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2022.pdf
https://www.synopsys.com/blogs/software-security/open-source-licenses/
https://www.synopsys.com/blogs/software-security/open-source-licenses/
https://martinfowler.com/articles/practical-test-pyramid.html
https://about.gitlab.com/blog/2020/06/23/efficient-devsecops-nine-tips-shift-left/
https://about.gitlab.com/blog/2020/06/23/efficient-devsecops-nine-tips-shift-left/
https://www.mend.io/wp-content/media/2020/03/Annual_Report_2020_12.03.20.pdf
https://www.mend.io/wp-content/media/2020/03/Annual_Report_2020_12.03.20.pdf

	Introduction
	Research setting
	Background
	Research questions
	Research methods
	Literature review
	Case study

	Modern software development
	DevOps
	DevSecOps

	Open source software and software supply chains
	Software supply chains
	Securing software supply chains

	Case study
	Participants
	Results
	Overview
	Main findings

	Discussion
	Answers to research questions
	Related studies
	Limitations

	Conclusions
	Bibliography

