
Master’s thesis
Master’s Programme in Data Science

Tool for grouping test log failures using
string similarity algorithms

Vladimir Topias Kramar

September 25, 2022

Supervisor(s): Professor Jukka K. Nurminen

Examiner(s): Dr. Antti-Pekka Tuovinen

test logs, log parsing, string similarity algorithms

University of Helsinki
Faculty of Science

P. O. Box 68 (Pietari Kalmin katu 5)

ii

00014 University of Helsinki

Faculty of Science Master’s Programme in Data Science

Vladimir Topias Kramar

Tool for grouping test log failures using string similarity algorithms

Master’s thesis September 25, 2022 63

This work presents a novel concept of categorising failures within test logs using string similarity
algorithms. The concept was implemented in the form of a tool that went through three major
iterations to its final version. These iterations are the following: 1) utilising two state-of-the-art
log parsing algorithms, 2) manual log parsing of the Pytest testing framework, and 3) parsing of
.xml files produced by the Pytest testing framework. The unstructured test logs were automati-
cally converted into a structured format using the three approaches. Then, structured data was
compared using five different string similarity algorithms, Sequence Matcher, Jaccard index, Jaro-
Winkler distance, cosine similarity and Levenshtein ratio, to form the clusters. The results from
each approach were implemented and validated across three different data sets. The concept was
validated by implementing an open-sourced Test Failure Analysis (TFA) tool. The validation phase
revealed the best implementation approach (approach 3) and the best string similarity algorithm
for this task (cosine similarity). Lastly, the tool was deployed into an open-source project’s CI
pipeline. Results of this integration, application and usage are reported. The achieved tool signifi-
cantly reduces software engineers’ manual work and error-prone work by utilising cosine similarity
as a similarity score to form clusters of failures.

ACM Computing Classification System (CCS):
Software verification and validation → Software creation and management → Software verification
and validation → Software defect analysis → Software testing and debugging

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Degree programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

1. Terms and terminology

• AWS - Amazon Web Services

• CAGR - Compound Annual Growth Rate, a formula that calculates the rate of
return needed for an investment to grow from its beginning balance to its ending
balance [7].

• CI - Continuous Integration is a software development practice that involves
regular commits and automated tests like regression testing to ensure the stability
of the software after each commit [8].

• CSV - Comma Separated Values.

• DSR - Design Science Research, a set of principles that guide research conduct
[47].

• HDFS - Hadoop Distributed File System.

• IVVES - A EU-backed project that focuses on applying AI to evolving systems
like software [14].

• IRP - Intellectual Property Rights

• Log parsing algorithms - Algorithms that parse software logs or test logs using
different approaches, including traditional regular expression extraction and more
contemporary like deep learning [36, 45].

• LCS - Longest Common Sub-sequence.

• OSS - Open Source Software, software released open-sourced license, usually
available and freely editable by anyone.

• Software log - Software log is an artefact produced by software during it is run
time. Software logs contain various information regarding the software execution
and can be utilised for different tasks, such as fault detection and debugging [75].

v

vi

• String Similarity Algorithms - Algorithms that compare two strings using
different methods. Often string similarity algorithms return a score between 0
and 1, denoting how similar the strings are [57, 51, 58].

• SLCT - Simple Logfile Clustering Tool.

• TAP - Test Automation Platform.

• Test log - Much like software, test logs are often an artefact of a testing frame-
work. Test logs contain information on the execution of the tests. Additionally,
some frameworks log a stack trace of a failure in case of failure in a test [25].

• Test suite - The test suite contains multiple tests within. Tests can be grouped
in test suites, for example, by a common theme [53].

• Test - In the context of this master’s thesis, a test is referenced to a singular
automated unit test written using testing automation frameworks. These tests
ensure that a smaller part of a software, for example, a function works according
to the design [4].

• Testing Framework / Test Automation Framework - A framework used to
write and execute tests within, for example, a Continuous Integration pipeline.
Frameworks like Pytest or XUnit support the export of test logs in various formats
[24].

• TFA - Test Failure Analysis, the main artefact produced by this master’s thesis.

• WithSecure - A cyber security company based in Finland that was a key partner
in solving the problems tackled in this master’s thesis work [15].

Contents

1 Terms and terminology v

2 Introduction 1

3 Methodology 5

4 Related work 9

5 Concept 11
5.0.1 Data set description . 12
5.0.2 Type of failures . 14
5.0.3 Data transformation . 15
5.0.4 Type of clusters . 15
5.0.5 String similarity algorithms . 17
5.0.6 Summary . 19

6 Implementation 21
6.0.1 Approach 1: Log parsing algorithms on Pytest frameworks test

logs . 21
6.0.2 Approach 2: Manual log parsing of Pytest frameworks test logs 23
6.0.3 Approach 3: The utilisation of XMLs files from the Pytest frame-

work . 25
6.0.4 Outcome . 27

7 Quantified results of three approaches 29
7.1 Approach 1: Log parsing algorithm approach 30
7.2 Approach 2: Manual parsing algorithm approach 31

7.2.1 Data set 1 results . 32
7.2.2 Data set 2 results . 33
7.2.3 Data set 3 results . 34

7.3 Approach 3: XML logs from Pytest framework approach 35

vii

viii

7.3.1 Data set 1 results . 35
7.3.2 Data set 2 results . 36
7.3.3 Data set 3 results . 37

8 Results from applying the TFA to an open-source project 45

9 Discussion 47
9.0.1 Answer to RQ1 - To what extent is the concept, in the form of the

software tool, applicable to address the log analysing challenges? 52
9.0.2 Answer to RQ2 - How does the concept, in the form of the soft-

ware tool, improve the performance of log analyses? 52

10 Conclusions 53

Bibliography 55

2. Introduction

The software development market is valued at $474.61 billion and is projected to grow
to $1,153.7 billion by 2030 [6]. The global big data and business analytics market
size was valued at $198.08 billion in 2020 and is projected to reach $684.12 billion by
2030, growing at a CAGR of 13.5% from 2021 to 2030 [5]. One of the ways to improve
business efficiency, software application and infrastructure performance, and up-time
is log analysis [29]. O’Reilly’s "Understanding Log Analytics at Scale" report covers
the common best practices and considerations that can guide architects during the
planning process [27]. This master’s thesis was done as part of the IVVES project [14]
and in collaboration with WithSecure cyber security software company [15]. IVVES
aims to find ways of applying AI and machine learning to evolving systems, like soft-
ware. WithSecure is a respected software company headquartered in Helsinki, Finland
that focuses on delivering cyber security solutions to individuals and big corporations.
WithSecure has over a thousand employees across the globe and quarterly revenue of
hundreds of millions of dollars, making this company a respectable and experienced
partner for the work done in the IVVES project and this master’s thesis [30].

Because of the goal of the IVVES project, the work in this master’s thesis started
from a question: "How can modern data science applications help software engineers
save time?". To answer that question, this work introduced a novel concept of compar-
ing failures found within test logs using string similarity algorithms to achieve clusters
of failures that indicate similar failures. To analyse the concept, a tool named "Test
Failure Analysis" (TFA), published as a Pip package and as open-source software (OSS)
on GitHub, was developed [11, 10]. Validation proceeded using three distinct data sets
across three implementation approaches using five different string similarity algorithms.
Later, TFA was deployed into a Continuous Integration (CI) pipeline of an open-source
project [19]. These approaches and algorithms are introduced later in the work.

Logging is an essential and highly valued practice in software development [41].
Software engineers can deem some information vital during software development and
log it for various reasons [61]. For example, logs can depict a problem in the software
run time, record states of the software or assist in debugging procedures [64].

In software development, using software logs to improve the software or software

1

2 Chapter 2. Introduction

development process is an old concept and has been researched extensively. Utilising
information concealed inside the software logs can be useful and sometimes impor-
tant for many various tasks. Among the typical usage of logs are anomaly detection,
performance issues, debugging, and fault detection [32, 39, 48, 59, 71, 78, 54].

Continuous integration (CI) is a modern software development practice used by
many companies, e.g. Google [8, 68]. Tests play an essential role in the CI pipeline [38,
76]. Essential to CI are automated tests that ensure system stability [28]. Automated
tests are often executed by testing frameworks such as Pytest or RobotFramework
[20, 22]. Good frameworks produce detailed logs of test execution. Automated tests
can often fail with high counts and for various reasons [55]. Software engineers face
analysing hundreds and thousands of failed tests daily as a real-world challenge. The
overwhelming number of logs due to the executed tests and the laborious and error-
prone task can prove hard to tackle for an engineer [84]. Rerunning a test after every
fix is not always an option as it can be a costly endeavour [63].

During discussions with the software engineers from WithSecure, these problems
became apparent. It is up to software engineers to identify the failures causing the test
to fail and fix them. Before a fix can be done, a software engineer interprets which
failures are the same so that the fix has the most impact. The mentioned undertaking
is cumbersome, time-consuming, error-prone, and is rarely done so that every log file
is analysed as the sheer amount of logs can be overwhelming for a human and take up
days worth of work.

The TFA tool developed in this work aimed to automate the work of manual
investigation work by comparing test logs with each other and finding and presenting
clusters of similarly failed tests. These clusters guide software engineers in selecting
failures for fixing. Using clusters to identify failures within the test logs leads to more
impactful fixes of an underlying issue, leading to a more reliable CI pipeline and,
eventually, a more reliable software. Therefore the first research question is:

• Research Question 1 (RQ1) - To what extent is the concept, in the form of
the software tool, applicable to address the log analysing challenges?

The efficiency of software development has always been important. Particularly
a CI needs to match a flexibility level and a high demand for fast cycles. Therefore the
second research question is:

• Research Question 2 (RQ2) - How does the concept, in the form of the
software tool, improve the performance of log analyses?

The work has been conducted through a series of phases which may be described
as follows:

3

• Development of the concept that utilises string similarity algorithms to cluster
failures within test logs.

• Validation of the tool by exposing the tool to three different data sets with unique
characteristics and scoring the data sets with five string similarity algorithms
across three alternative approaches.

• Implementation and analysis of the concept as an open-sourced software project
and a pip package called "Test Failure Analysis".

• Deployment of the tool into an open-source projects CI pipeline and results from
that experiment. Results show that applying the developed in this work TFA
tool increases the performance of the log analyses by 99.5%

Part of this work is to be published and presented in a peer-reviewed publication
in Springer Book Series: Advances in Intelligent Systems and Computing [56]. That
publication focuses on one of the approaches described in this work. The TFA has
been received within WithSecure and is planned to be implemented in various in-house
projects.

The rest of the thesis is structured as follows. The methodology chapter presents
principles according to which the research of this work has been done. The related
work chapter gives an overview of studies relevant to the work and opens more deeply
to illustrate the scope of the problem. The Concept introduces the concept in more
detail and ways to solve the problem. The implementation chapter dives deeper into
the implementation of the concept in the form of the TFA tool. That chapter presents
the implementation of all three approaches. The "Quantified results of the three ap-
proaches" chapter presents quantitative results from applying five different string sim-
ilarity algorithms on three different data sets between the three approaches. Results
from applying the TFA to an open-source project" chapter provides results of the tool’s
integration into an open-sourced project’s CI pipeline. The "Discussion" chapter brings
an overview of the issues associated with every approach, strengths and shortcomings
and explains why specific approaches are picked over others. In that chapter, the dis-
cussion about the experiment with the open-sourced project continues. By the end of
the chapter, answers to both research questions are given. The concluding remarks are
given in the Conclusion chapter.

3. Methodology

This work has been implemented according to the Design Science Research principles.
Design science research (DSR) is a research paradigm in which a designer develops
novel products to address issues about human problems and adds new information to
the body of scientific data; the developed artefacts are essential to comprehending that
issue as well as being helpful [46]. A design challenge and its solution are learned and
understood through the creation and use of an artefact, according to the fundamental
principle of DSR.

To acknowledge and understand the design problem, weekly peer communication
with software engineers from WithSecure has been conducted from the beginning of the
work. The software engineers involved in the communication were of different levels
of seniority, from developers up to a team lead. All the engineers mentioned above
are involved in the software development processes, which is the primary business of
WithSecure company. All software engineers have more than ten years of experience
in software development. As has been stated in Chapter2, analysis of software logs
is essential to developing quality software and therefore appeared to be the primary
challenge of this work.

During the early stages of communications, it has been discovered that the prob-
lem of log analysis cannot be solved by business organisation changes, strategies or
processes; instead, a software tool is required to address this problem. The perfor-
mance of the software is the primary consideration of the tool. The primary measure
for the version of the software is time used to analyse and identify clusters of failures
under the acceptable level of errors. All these requirements were wrapped up the prob-
lem relevance and therefore were reflected in the Research Questions of this master’s
thesis:

• RQ1: To what extent is the concept, in the form of the software tool, applicable
to address the log analysing challenges?

• RQ2: How does the concept, in the form of the software tool, improve the
performance of log analyses?

The ultimate objective of this work is the software artefact that implements the

5

6 Chapter 3. Methodology

concept of answering both of the research questions, satisfying the requirements of the
WithSecure company while also being generic enough to be applicable in the broad
range of use cases where similar problems are encountered.

The new knowledge has been generated based on the experience of the software
engineers and information obtained from the literature review processes. Literature
review processes have not been limited to scientific literature only but professional and
specialised software development forums, blogs and other sources of information typical
used by software engineers. Peer communication sessions and the literature review
results were documented as research notes and discussed with the project supervisor
in the following peer communication sessions.

Design evaluation methods were not known before the start of the work. None of
the information sources brought any appropriate methodology for evaluation. There-
fore the evaluation method had to be designed as part of the work, and the efficiency
of the design had to be confirmed with WithSecure. One requirement is to achieve
the artefact’s ability to form cluster failures even if they are not in the desired order.
The other requirement is to measure the artefact’s performance by processing the set
of logs compared to the time needed to process the same set of logs by a human. The
artefact performance was measured automatically by measuring the time difference
between two timestamps, one at the beginning and the other at the end of the exe-
cution process. The human performance numbers were derived from statistical data
collected by WithSecure over the past years from exactly the software development
process intended to be improved.

The dissemination of work has been planned through scientific publication and
publishing the source code of the artefact on Github. Dissemination activities were
intended to make the research artefact available to scientific and practitioner commu-
nities.

Table 3.1 shows seven guidelines for the DSR and the reflection of methodological
particularities of this work.

The entire process of the work has been rather pragmatic with a strong emphasis
on practicality and utility [72]. That is, both the concept and the implementation have
been designed to fulfil the requirements and achieve a high level of utilisation.

7

Table 3.1: Reflection on the DSR guidelines

Number Guideline Reflection
1 Design as an Artifact The artefact is the TFA which is a software tool

implementing the concept of log clustering using
the string similarity algorithms.

2 Problem Relevance The artefact is built based on direct requirements
set up by software development processes and
problems encountered.

3 Design Evaluation The evaluation is performed based on the re-
quirements obtained through the design process.

4 Research Contribu-
tions

The clear and verifiable contributions are en-
sured by peer-review processes of the scientific
publication and the availability of the code as
OSS available for verification.

5 Research Rigor Research Rigor has been reached by the variety
of tests presented in this thesis and confirmed by
the peer-review processes of the scientific publi-
cation.

6 Design as a Search
Process

The available information sources, including peer
communication and extensive literature review,
have been utilised.

7 Communication of Re-
search

The research process and results have been com-
municated not only to the development-oriented
audience of software engineers but also to team
leads and scientific communities.

4. Related work

Due to the massive increase in the number of logs, manual analysis of logs has become
almost impossible [83]. A wide variety of automatic analysis methods have been re-
searched. Available studies present different approaches applied to the logs to achieve
clusters. One study proposes a data clustering algorithm for mining patterns from
event logs [82]. The other study paper presents a tool called Simple Logfile Cluster-
ing Tool (SLCT) that uses a novel algorithm that uses a threshold value to display a
summary of frequently used words in the logs to form clusters [23]. One more study
proposes a clustering of logs using iterative partitioning [62]. In another study, the
clustering is achieved using a novel algorithm called Iterative Partitioning Log Min-
ing (IPLoM) to achieve clusters of event logs. Another work relied on SLCT to take
further its achievements [73]. That approach also uses frequently used words in the
logs but uses that part to learn failure symptoms by building a decision tree. Another
algorithm, LogCluster, expands on the algorithm used by SLCT [84]. SLCT algorithm
relies on finding patterns that occur at least n times before displaying them. This is
done by considering the frequency of each word but disregarding the order they are in.
After selecting the frequent words above the n threshold, LogCluster creates a cluster
candidate list by iterating over the frequent words once more and increasing the count
of event templates if the frequent words are common enough. The candidate list is
then enhanced with heuristic models to solve a common problem of SLCT of overfit-
ting. Clustering logs by transforming log lines into event templates or features is done
by many papers that offer solutions that try to tackle clustering problems [77, 61, 69].

Test Failure Analysis tool differs from these approaches in many ways. First, TFA
does not try to solve the general problem of analysing all types of logs but focuses on
the specific problem of failure analysis within test logs provided by testing frameworks.
Second, TFA does not extract event templates from the log line but instead treats the
strings as such and compares them instead. Thirdly, TFA does not try to detect failures
or anomalies in the logs but assists developers by pointing out similar failures. Fourth,
log parsing presented in the above research papers relies on patterns, whereas failures
can have very complex stack traces and appear only once. It is worth mentioning that
SLCT and IPLoM were part of a survey study where popular algorithms that parse

9

10 Chapter 4. Related work

logs into event templates were evaluated [88]. Two best-performing algorithms (Drain
and Spell) were picked as an approach to trial in TFA.

It is seen from the above-presented review of the studies topics such as log analysis
and data transformation of unstructured log files into structured data are inseparable.
Therefore, it is worth looking into other log analysis applications and data transforma-
tion methods than clustering software logs.

Anomaly detection during software run-time using extraction of numerical data
like counts of different states that the software visits during the run-time and pattern
recognition of these system states. Changes in the patterns software states and counts
would indicate a possible anomaly [40]. Another approach is training Generative Ad-
versarial Networks to fabricate logs with anomalous data using log keys, after which
neural networks can differentiate between fabricated and real anomalous logs in soft-
ware logs. However, another approach is a DeepLog - an approach that utilises Long
Short-Term Memory [37]. Log clustering can also be achieved via unsupervised learn-
ing methods [87]. Many studies that propose log parsing algorithms or approaches
to anomaly detection talk about online anomaly detection [45], [61], [44], [52], [85],
[36], [86]. Such online anomaly detection algorithms can parse logs into events and
highlight an anomaly during the software’s run time. As an alternative to log parsing
algorithms, existing algorithms have been enhanced to parse log data. For example,
an improved string edit distance-based algorithm and utilisation of support vector ma-
chines for training [50], [33]. In addition to anomaly detection, log analysis can also
be applied to topics such as health monitoring of data storage systems [81] or iden-
tification of previously unseen performance issues [60] [71]. Even in techniques such
as these, data transformation is a crucial step. Log parsing has also been bolstered
with, for example, statistical analysis tools like Conformal Prediction [74]. That study
proposes conformal prediction with log parsing algorithms to make event template ex-
traction more reliable. In addition to software logs, test logs analysis has been utilised
to some extent. For example, a study suggests improving regression testing by slicing
big test suites into more minor test cases using test logs [66], predicting future bugs
and failures by mining historical test logs [31] [80]. A whole testing framework revolved
around log-based testing [49]. However, another study suggests a way to improve code
coverage so that testing suites can be improved [34].

All the works presented in this chapter share a common challenge: "How to
analyse huge amounts of data reliably and with added value?". That is precisely the
same challenge that was also a problem that the TFA set out to solve.

5. Concept

Figure 5.1 is from Amazon’s AWS website explaining the continuous integration devel-
opment cycle [28]. There are variations to the cycle, but the main idea applies across.
Software is developed, and code is written and merged into a central repository from
which automated tests like regression tests are run [8]. As shown in Figure 5.1, tests
play a significant role in two parts of the cycle: build and staging. In the build stage,
tests related to new features are run in addition to unit tests. In the staging phase,
load tests and tests related to integration are conducted. Both stages may utilise a
testing framework to plan, run and execute their tests. These tests are run as part of
software developed by a continuous integration practice. The tests executed in both
of these stages produce test logs. Depending on the testing framework, the logs may
differ.

Figure 5.1: Amazon AWS example of continuous integration development cycle

Projects with CI pipelines that run many tests can produce vast amounts of
log data. For example, an Aliyun Mail (Alibabas’s production e-mail system that
provides free e-mail service to the public) generates thirty to fifty gigabytes of logs
per hour (120-200 million lines) [2, 1, 67]. The overwhelming number of logs and the
laborious and error-prone task can prove hard to tackle for an engineer. A regular
expression can alleviate this problem by filtering out some information but require
prior domain knowledge by a developer of the system [45]. For example, sophisticated
tools used in-house at WithSecure can aggregate the failing tests by the count and
visualise information conveniently for the software engineers. Unfortunately, even a
single change of character in the failure can throw off these tools as these morphed
failures are considered unique by these tools. For example, this sort of tool would

11

12 Chapter 5. Concept

mark a failure with the following text "Process ID: 123" different from a failure with
"Process ID: 124". These two log lines are different, but in the context of the failure,
they maybe are an output of the same underlying issue. While a software engineer
can fix the failing test with the most failures, it would leave other tests caused by
the same failure potentially undetected and left there to be discovered after the tests
are rerun. Reruns can cost money and time for companies. For example, Google has
developed their Test Automation Platform (TAP) [26]. The goal of TAP is to run
automated tests smartly. Tests are run after every commit, and commits at Google
are frequent (almost one commit every second) [63]. As it stands right now, TAP runs
automated tests every 45 minutes. These 45-minute cycles mean the engineer must
wait 45 minutes to see their commit pass or fail the tests in the best-case scenario.

In order to avoid unnecessary reruns, a software engineer is left with analysing
and grouping the failures manually. As explained by software engineers at Withsecure,
grouping is a task in which a software engineer tries to identify tests that fail similarly
from hundreds of test logs. This task takes time and is easily error-prone, especially
since the software logs and test logs come in all shapes and forms, require domain
knowledge and can be daunting due to the enormous amounts of logs.

At its core, the concept proposed by this work is the following: failures that fail
similarly have a higher similarity score than those that fail differently. Using these
scores, clusters of failures start to appear. These clusters guide software engineers in
the correct direction to choose to fix failures that have the most impact.

TFA works by applying a string similarity algorithm on two strings. In this
context, these two strings are failures. String similarity algorithms output a similarity
score between zero and one, where zero denotes a nonexistent similarity between strings
and one, meaning that the strings are identical. Pairs of failures with high similarity
scores mean that the failures are similar. This, in return, means that they most likely
share a common underlying issue and can be resolved with one fix.

To validate the concept, three distinct data sets were artificially created from a
tool currently running in the production environment at WithSecure. The following
subsection describes the data sets in question.

5.0.1 Data set description

Data sets used to validate the concept originate from another software that is being
used daily at WithSecure in the production environment. The validation phase of the
tool consisted of evaluating the TFA tool on the three data sets. Data sets in the
context of this master’s thesis are test logs. Such a test log can contain multiple test
runs, and within a test run can be many individual tests. Each test is placed in an

13

Table 5.1: Data set 1

Log name Failure in
pass_1 -
pass_2 -
pass_3 -
pass_4 -

fail_same_error_1 test_02
fail_same_error_2 test_02
fail_same_error_3 test_02
fail_same_error_4 test_02
fail_diff_test_1 test_03
fail_diff_test_2 test_03
fail_diff_test_3 test_03
fail_diff_test_4 test_03
fail_diff_error_1 test_02
fail_diff_error_2 test_02
fail_diff_error_3 test_02
fail_diff_error_4 test_02

individual log file, with this being said, tests and log files can be used interchangeably
in this context.

Each test contains only one failure. Cases where multiple failures are present
within one test are not impossible but rare enough that it was deemed unnecessary
to account for. Each data set consisted of 150 000 individual test log lines. In total,
resulting in about 450 000 log lines for concept validation.

Table 6.2 shows an example of what some of the lines from a random data set
may look like. Due to Intellectual Property Rights (IPRs)s, some of the content has
been redacted.

The first data set contained sixteen different tests or log files. Four of those test
files were the result of the passed tests. Twelve of those were the results of the failed
test runs. The second data set contained eleven different tests. Three of those log files
were the result of the passed tests. Eight of those were the results of the failed test
runs. The third data set contained twelve different tests. All of the files had results
of failed test runs. Tables 5.1, 5.2 and 5.3 show log names and the name of the failing
test.

14 Chapter 5. Concept

Table 5.2: Dataset 2

Log name Failure in
pass_1 -
pass_2 -
pass_3 -

fail_same_error_1 test_01
fail_same_error_2 test_01
fail_same_error_3 test_01
fail_diff_test_1 test_02
fail_diff_test_2 test_02
fail_diff_error_1 test_01
fail_diff_error_2 test_01
fail_diff_error_3 test_01

5.0.2 Type of failures

Every data set had a slightly different failure setup. The purpose is to mimic the
possible failure types in the production environment. The goal was to expose the tool
to various failures before proceeding further. Due to IRPs, failure stack traces cannot
be showcased as such, nor can they be shown as redacting the failure stack traces, as
they would lose much of their meaning.

First data set

The first data set ensures the tool can differentiate between two similar failures. Fail-
ures in all the categories are almost identical and have only minor differences. Ideally,
the TFA would notice the discrepancies and score them accordingly. The similarity
score is expected to be close between the failures.

Second data set

The second data has failures that are significantly different from each other. The tool
should have an easier time scoring these failures.

Third data set

The objective of the third data set is to expose the tool to possible complex failures that
might emerge during tests. These failures have lengthy stack traces and innumerable
amounts of special characters.

15

Table 5.3: Dataset 3

Log name Failure in
fail_same_error_1 test_01
fail_same_error_2 test_01
fail_same_error_2 test_01
fail_diff_test_1 test_02
fail_diff_test_2 test_02
fail_diff_test_3 test_02
fail_diff_error_1 test_01
fail_diff_error_2 test_01
fail_diff_error_3 test_01

5.0.3 Data transformation

The related work chapter showed the importance of the data transformation topic.
Three different approaches were trialled during the validation phase of TFA before
settling on the final one.

In the first approach (from now on, Approach 1), the tool utilised state-of-the-art
log parsing algorithms (Drain and Spell) on test logs produced by the Pytest testing
framework. This action is done to parse unstructured data into a structured format
such as pandas data frames for further action [36], [45]. The Pytest testing framework
was picked as the framework to use because of two reasons. First, the Pytest testing
framework is the main testing framework used by the WithSecure projects. Second,
Pytest is a popular testing framework. Pytest is at 10 million weekly downloads be-
tween June 2020 and April 2022 and has an average of 47 commits per week [21]. These
numbers make Pytest a worthwhile package to augment and develop further.

In the second approach (from now on, Approach 2), TFA uses manual parsing of
test logs produced by the Pytest testing framework to transform unstructured test logs
into a structured format such as pandas data frames. Manual parsing is an attempt to
utilise clear patterns in the Pytest testing framework and create a parse from scratch.

In the third approach (from now on, Approach 3), TFA uses .xml files produced
by the Pytest testing framework to achieve structured data frames. The tool ended up
using a third approach in the final version.

5.0.4 Type of clusters

Using the data sets and the approaches described above following categories were iden-
tified with the help of software engineers at WithSecure. These categories aim to serve

16 Chapter 5. Concept

as the benchmarks of string similarity algorithms during the validation phase of the
tool. In other words, after applying string similarity algorithms to the data sets be-
tween the three different approaches, the results similarity scores should fall in the
categories specified below and, by doing so, validate the concept’s validity and the
tool’s functionality.

For Approaches 1 and 2, similarity scores consist of two values. The first is an
overall similarity score between the two tests, corresponding to the category numbers.
The second is the failure similarity if the failure exists in the test run where two failures
are scored against each other. For Approaches 1 and 2, the categories are the following:

Category 1 - C1

Category 1 (C1) - Same failure, same test: Similarity score is high between a failing
test in a test run and the same failing test in a different test run if the failure is similar.

Category 2 - C2

Category 2 (C2) - Same failure, different test: Similarity score is high between two
tests in different test runs that fail similarly. Additionally, it is lower than Category 1.

Category 3 - C3

Category 3 (C3) - Different failure, same test: Similarity score is low between two tests
in different test runs if the failure is different. Additionally, it is lower than in Category
2 and Category 3

For Approach 3, the similarity score consists of only one value; failure similarity.
In Approach 3, the only calculable score is the similarity between two failures if they
are present. For Approach 3, the subcategories are the following:

Category 1.1 - C1.1

Category 1.1 (C1.1) - Same failure: Similarity score is high between the same failures
in different test runs.

Category 2.1 - C2.1

Category 2.1 (C2.1) - Same failure: Similarity score is high between the same failures
in different test runs.

17

Category 3.1 - C3.1

Category 3.1 (C3.1) - Different failure: Similarity score is low between two failures if
the failure is different within the same test in different test runs.

Relationship between categories

Let us denote Categories 1,2, and 3 as C1, C2 and C3 and subcategories 1.1, 2.1, and
3.1 as C1.1, C2.1 and C3.1. The relationship between the similarity scores of those
categories can be summarised in equation 5.1 as such:

(C1 > C2 > C3) ∧ (C1.1 > C2.1 > C3.1) (5.1)

The relationship between subcategories for Approach 3 can be summarised in
equation 5.2 as such:

C1.1 > C2.2 > C3.1 (5.2)

5.0.5 String similarity algorithms

Table 5.4: Algorithms

Name Type
Sequence Matcher Sequence-based algorithm

Jaro-Winkler distance Edit distance-based algorithm
Levenshtein Ratio Edit distance-based algorithm
Jaccard Index Token-based algorithm

Cosine Similarity Fuzzy matching algorithm

Algorithms that are used and analysed in the validation phase are Sequence
Matcher from Pythons diff library [9]. Jaro-Winkler distance [35], Jaccard score [51],
cosine similarity [43] and Levenshtein ratio [58].

String similarity algorithms accept two strings and return a similarity score value.
A similarity score is a number between zero and one on how similar these two strings
are. Zero means that strings are not similar, and one means that strings are identical.

Table 5.4 describes the algorithms and their type. The algorithms were chosen
based on the type they belong to, their ease of access and the frequency they appeared
in popular research papers and popular professional forums. Extensive comparison,
shortcomings and strengths of each algorithm fall outside the scope of this work. Nev-
ertheless, a small experiment on the algorithms was conducted as part of this work.

18 Chapter 5. Concept

The experiment compares four different strings using these five similarity algorithms.
Results from the experiment are visible in Table 5.5.

Sequence Matcher uses the longest common subsequence (LCS) algorithm as its
base. This means that if the failure is present in two logs and they are similar, they
share a long common sequence of characters, meaning the Sequence Matcher will score
two failures highly. For example, an S1 and S2 from 5.5 have an LCS of 55. Jaro-
Winkler and Levenshtein are edit distance-based algorithms, meaning they calculate
how many edits from S1 need to be made to achieve S2. In this example, six edits are
needed to achieve S2 from S1. Jaccard Index works by splitting a string into tokens
and calculating how many similar tokens are between two strings. If the test logs have
similar failures, the tokes will also be similar, meaning the score will also be high.
Lastly, cosine similarity first turns strings into vectors and then calculating a cosine
angle between vectors outputs a score of how similar the two strings are. The advantage
is that while the strings can be very far apart on euclidean distance, they might be
very close in cosine similarity.

Table 5.5 shows scores of five different algorithms when applied to the combina-
tions of these four strings extracted as an example from HADOOP log [3]s.

• String 1 (S1) - "Recalculating schedule, headroom=<memory:10240, vCores:-
17>"

• String 2 (S2) - "Recalculating schedule, headroom=<memory:8192, vCores:-19>"

• String 3 (S3) - "Assigned container container_1445144423722_0020_01_000006
to attempt_1445144423722_0020_m_000004_0"

• String 4 (S4) - "Auth successful for job_1445144423722_0020 (auth:SIMPLE)"

Table 5.5: Results from applying string similarity algorithms applied on example strings

SM ratio Cosine Jaccard Jaro-Winkler Levenshtein
S1 & S2 0.940 0.714 0.848 0.960 0.940
S1 & S3 0.165 0.00 0.486 0.463 0.242
S1 & S4 0.208 0.00 0.369 0.490 0.295
S2 & S3 0.128 0.00 0.384 0.432 0.205
S2 & S4 0.122 0.00 0.291 0.436 0.263
S3 & S4 0.376 0.00 0.435 0.536 0.389

In Table 5.5, strings one and two are the most similar, and the algorithms show
that with high similarity scores. Results are in line with what can be observed.

19

Interestingly, cosine similarity reports a 0.00 similarity score across every string
apart from the first and second. At the same time, the other string similarity scores,
like Jaro-Winkler, show a 0.536 similarity score between strings three and four. What
the cosine similarity algorithm is showing is in line with what can be observed. No other
string apart from the strings one and two are the same. Another two well-performing
algorithms seem to be pythons diff library and, more precisely, the similarity ratio of
a sequence matcher and Levenshtein ratio. They seem to report low enough scores for
every other string except strings one and two.

5.0.6 Summary

The benefits of the presented concept are the following:

• This concept removes the problem of having many unique errors with only one
character difference as the similarity will be represented on a continuous scale
using numbers between zero and one.

• This concept iterates over all the logs and failures, thus always covering all the
files and removing the need to rely on software engineers to pick correct log files.

• This concept does not require a software engineer’s prior domain knowledge of the
whole system; instead, even junior software engineers can focus on small groups
of failures that can be addressed.

• The focus of the concept is only limited to a small subset of log types instead of
trying to parse and analyse all sorts of logs.

• Even if the categories are not in the specified order, clusters still provide value
to software engineers.

6. Implementation

This chapter contains the implementation details of the three approaches described in
the chapter 5 - Concept. Each approach described below aims to turn the unstructured
log files into a structured format. The desired format for TFA is the Pandas data frame.

6.0.1 Approach 1: Log parsing algorithms on Pytest frame-
works test logs

A thorough study of the most popular log parsing algorithms has been conducted, in
which thirteen different log parsing algorithms were evaluated and ranked [88]. An
outcome of the study is an open-source tool that gives access to the implementation
of the open-source algorithms for researchers and developers [18]. Log parsing algo-
rithms were trialled on the test logs in this work to transform unstructured data into
a structured format.

The following Table 6.1 is adapted and redacted from [88]. The table describes
which algorithms were part of the survey study and how they turned unstructured log
data into a structured format by extracting event templates.

According to the study mentioned above, the best performing algorithms were
Drain, and Spell [88]. Based on this, an attempt was made to utilise both of these
algorithms on the test logs. These two algorithms turn unstructured data into struc-
tured one by first parsing raw log messages using regular expression and then applying
data mining models to extract variables from the log message and turn the log message
into log event templates. Variables in the log messages are values that change based
on the software execution, for example, a date and a timestamp, job ids or printable
variables in the code. The event template part is considered a "hard-coded" part. The
hard-coded part is observable in the logs due to software executing a line of code similar
to "System.debug" or "print". For example. Figure 6.1 shows a line from the HDFS
Hadoop system log and how a log parsing algorithm could extract an event template.
The hard-coded part, or in other words, an event template part, is left unchanged. The
variables part is replaced with "<*>".

According to the study, Drain & Spell can reach a very high parsing accuracy

21

22 Chapter 6. Implementation

Table 6.1: Popular log parsing algorithms in [88]

Algorithm Technique Reference
SLCT Frequent pattern mining [82]
AEL Heuristics [87]
IPLom Iterative partitioning [62]
LKE Clustering [40]
LFA Frequent pattern mining [70]

LogSig Clustering [79]
SHISO Clustering [69]

LogCluster Frequent pattern mining [84]
LenMa Clustering [77]
LogMine Clustering [42]
Spell Longest common sub-sequence [36]
Drain Parsing Tree [45]
MoLFI Evolutionary algorithms [65]

rating in log parsing on a certain type of log lines [88]. Parsing accuracy is defined as
the "parsing accuracy (PA) metric as the ratio of correctly parsed log messages over
the total number of log messages". [88]. After parsing, each log message has an event
template corresponding to a group of messages of the same template. A log message is
considered correctly parsed if and only if its event to the same group of log messages
as the ground truth does" [88]. Due to simple template formats, the 100% log parsing
accuracy can be reached on Apache and HDFS data sets. Unfortunately, the study
also mentions that log parsing algorithms, including Drain & Spell, fall short on more
complex data sets and would require improvements.

Both algorithms produce a .csv file containing columns extracted by the regular
expression parsing and applying the algorithm. The columns in the output CSV file are
as follows: date, time, debugging level, component, unparsed log message, the unique
id of an event template, event template and extracted variables from the log message.
The CSV can then be directly injected into the desired structure, the pandas data
frame. From there, items from the log message column could be used as input to string
similarity algorithms. Due to the poor performance of the log parsing algorithms, it
was decided to focus on another approach instead of continuing with Approach 1. The
next chapter describes the detailed results of applying the log parsing algorithms Drain
and Spell on the test logs from the Pytest testing framework.

The goal of Approach 1 was to reduce individual log lines within the test logs
to event templates by using patterns found. After that has been done, group them

23

Figure 6.1: Log parsing algorithms functionality simplified

together and compare the only similarity of event templates against each other.

6.0.2 Approach 2: Manual log parsing of Pytest frameworks
test logs

Alternative to the log parsing algorithm is the manual log parsing of Pytest framework
test logs. Manual log parsing refers to an action where an attempt to implement a
parser was trialled instead of using predefined methods of transforming the unstruc-
tured logs into a structured format. Table 6.2 depicts an example of logs found within
a test log from the Pytest testing framework. Each line within the log file follows a
pattern. The pattern consists of a timestamp in a year-month-day hour-minute-second,
millisecond format. After that, a level of debugging. This part can take values such
as" [INFO]"," [DEBUG]", or in a case of a failure present within a test -" [CRITICAL]".
Lastly, the actual log message can contain keywords like" setup" and" teardown". Table
6.2 shows examples from multiple test logs used in this work. These logs are not in
order and are there to illustrate better the point above. Due to the sensitive nature of
text and privacy concerns, some parts of the log message have been transformed into
log messages.

Given the reasons above, one can transform each line in the unstructured log files
into a structured format such as a pandas data frame for deeper analysis. Line by line,
the tool parses loglines using a built-in function of python ".split()" utilising "["and"]"
characters into the structured data frame consisting of three columns. Those columns
are the date and a timestamp, the logging level, and the message itself.

The second step in Approach 2 is to break test logs into individual, more granular
test cases. Test log files can contain multiple tests, and the goal of TFA is to compare

24 Chapter 6. Implementation

Table 6.2: Example of Pytest logs from one of the data sets

testlog
2022-01-27 11:31:38,285 [DEBUG] log message

2022-01-27 11:31:38,285 [DEBUG] setup: log message::test_01
2022-01-27 11:31:38,300 [DEBUG] call: log message::test_01

2022-02-11 15:45:01,618 [CRITICAL] failure stack trace
2022-01-27 11:31:41,941 [DEBUG] teardown: log message::test_01

two individual tests against each other. The majority of the individual tests start with
the" setup" keyword present in the log message, and the majority of the test ends with
a" teardown" keyword present in the log message. TFA splits test logs into individual
test cases by selecting all rows between log lines containing the abovementioned key-
words and extracting the test name from the line with" setup" keywords. Additionally,
TFA extracts the failure message. Failure is present if the logging level contains the
"CRITICAL" keyword. All the lines are extracted from that row if such a keyword is
present. As the TFA splits big test logs into an individual test case, it places them into
a separate array; it also records from which logfile the test originated. The described
actions lead to an array of data frames (Arr.1). The items in the Arr.1 are considered
to be individual tests from a bigger test log.

The next step in Approach 2 is the manual labelling of the log files. This step
is done so that the output of TFA can be validated. Descriptive log names assist in
manual labelling – Tables 5.1, 5.2, and 5.3 show this naming convention.

Before labelling can commence, Arr.1 is permutated so that TFA can compare
two individual tests. An "iter.tools" library achieves the permutation [16]. This step
results in an array of tuples (Arr.2). Each item of the tuple is an individual test from
a bigger test run log represented by a data frame. Using Arr.2 manual labelling of the
tests can be done.

Manual labelling goes as follows; Arr.2 is iterated, and each item in the tuple
has information from which log file it originated. If the log file name in both items in
the tuple contains "same_error", assign a "category1" label. If the log file name of one
item in the tuple is "same_error" and another item has "diff_test", set the "category2"
label. Lastly, if the log file name of one item in the tuple is "same_error" and another
item has "diff_error", assign the "category3" label.

Table 6.3 shows an example of one of the items from a random tuple. Column
"log name" tells to which test log a test belongs. Column "timestamp" is the extracted
timestamp. Column "level" describes the level of debugging. Column "log message"
contains the log message. Column "test name," tells the name of the extracted test.

25

Lastly, column "category" includes the category to which the test log and test names
belong.

To summarise, the Approach 2 works as follows:

• Step 1: Approach 2 takes N amount of log files in as an input.

• Step 2: Using clear pattern in the logs, for each log file: transform logs into
structured format like pandas data frame using .split() function

• Step 3: Break down the newly made data frame into smaller data frames that
represent individual tests within it using keywords like "setup" and "breakdown".

• Step 4: Newly created data frames are added to the array "Arr.1".

• Step 5: "Arr.2" is created. "Arr.2" contains permutations of two of "Arr.1" items.
This array allows easy comparison and labelling. "Arr.2" is an array of tuples,
each item in the tuple is a data frame.

• Step 6: Only in the validation phase: Label each item in the tuple based on the
log name.

• Step 7: Score each tuple using the string similarity algorithm.

The goal of Approach 2 is to transform unstructured test log files into a structured
format using patterns that are inherent to the way testing frameworks log information
into test logs. From there, split the test logs that are in a structured format into
individual tests, extract the failure from within the test logs if present, and lastly,
compare these values against other test logs and tests within a test suite using string
similarity algorithms.

6.0.3 Approach 3: The utilisation of XMLs files from the
Pytest framework

A third approach was slightly different compared to the other ones. Instead of tra-
ditional test logs, TFA used XML files originating from the Pytest framework. The
upside of these XML files is that they are already structured and thus do not need to
require solving the problem of turning them into a structured format.

The test log files used in Approach 1 and 2 contained every logline that the
software logs, whereas the XML captures only the log lines of a failure. XML files
have the following structure. The root called "testsuites" contains many nodes called
"testsuite". These individual test suite nodes contain "testcase" nodes that denote
individual test cases which are run within a more extensive test suite. The test case

26 Chapter 6. Implementation

node can have a failure node in case of a failure. The failure stack trace is located within
the failure node or inside the attribute called "message". The location of the failure
depends on the testing framework. For example, the robot framework logs the failure
message between nodes’ start tag and end tag as a text message. On the other hand,
Pytest logs the failure message within the attribute called "message". TFA supports
both ways of logging the failure.

Both the root and subsequent nodes contain an attribute called "failures". This
attribute possesses an integer value. If the value is zero, the tool can safely ignore the
file as it does not contain any failures and is considered a pass. If the value is anything
other than zero, then the path in the tree will eventually lead to a failure node.

Using the information described above and knowing the name of the critical nodes
in the tree, TFA can parse an XML tree into a data frame which contains only relevant
information for the tool. Information relevant to the TFA is the failure message, the
test’s name, and the log file’s name. The procedure is repeated for each file, and each
file that contains a failure is transformed into a data frame that is then placed into
Arr.1.

From there, TFA can permutate the Arr.1, and the tool can achieve an outcome
of an array of tuples like Arr.2.

To summarise, the Approach 3 works as follows:

• Step 1: Approach 3 takes N amount of .xml files as input.

• Step 2: For each of the file: if the file has failures in the root node "testsuites",
continue. Otherwise, skip to the next file

• Step 3: From the leaf node that contains the failure, fetch the failure message,
the test’s name and the file’s name. Put them into a data frame and stash that
data frame into Arr.1

• Step 4: Create Arr.2. Populate Arr.2 with permutations of two, of items from
Arr.1.

• Step 5: Score each tuple in Arr.2 using string similarity algorithms

The goal of Approach 3 is to utilise test logs in an XML format that some testing
frameworks are capable of outputting. With the use of XML files, the data comes in an
already structured format and allows easier access to the failure within the test logs.
Once accessed, the failures can be compared in a similar manner to Approach 2 using
string similarity algorithms.

27

Table 6.3: Example data frame after log prepossessing using approach 2 or 3

log_name time_stamp level log_message test_name category
pass_1 timestamp debug log message test_01 -

fail_same_error_1 timestamp critical log message test_01 C1
fail_diff_error_3 timestamp info log message test_99 C3
fail_diff_test_1 timestamp info log message test_02 C2

Next steps

Each tuple in the Arr.2 consists of two data frames which correspond to individual
tests. For Approaches 1 and 2, the tool will compare and return a similarity score for
1) an overall similarity between logs of two tests and 2) similarity between the two
failures if present within these two tests.

For Approach 3, the tool calculates only the failure similarity because the frame-
work does not log the test logs entirely.

As an example, with the third approach, the tool iterates over each tuple, picks
up the log message from the "log_message" column and passes it to the string similarity
algorithms for scoring. The string similarity algorithm function then returns a value
between 0 and 1 and assigns it to that particular tuple for further analysis or usage
within the tool.

6.0.4 Outcome

The product of this work is an artefact called Test Failure Analysis tool built with
Python. The final version of the tool is available as a pip package and can be con-
tributed to at Github project as it is an open-sourced project [11, 10].

The tool can be invoked from the command line by calling the main script "fail-
ure_analysis.py". Alternatively, TFA can be integrated into a CI pipeline using tools
like Jenkins or Github Actions [17, 13].

TFA accepts only one parameter in order for it to run; a path to the log files. The
tool preprocesses and scores the logs using Approach 3 in the manner described in the
previous chapters. Finally, the tool formats and presents an output. Figure 6.2 depicts
an example output of the TSA tool. The tool outputs results directly into the terminal
or command line. This manner of output guarantees eased access for developers and
was requested by the software developers at WithSecure.

28 Chapter 6. Implementation

Figure 6.2: An example of the tools output

7. Quantified results of three
approaches

This chapter provides numerical contexts for the research questions identified in the
Introduction chapter for all three approaches. The main research questions will be
answered in the Discussion chapter utilising results presented in this and the following
chapters.

This work aimed to answer the following research questions:

• Research Question 1 (RQ1) - To what extent is the concept, in the form of the
software tool, applicable to address the log analysing challenges?

• Research Question 2 (RQ2) - How does the concept, in the form of the software
tool, improve the performance of log analyses?

Quantifiable results are an outcome of applying the five-string similarity algo-
rithms in each approach to three different data sets introduced in the chapter 5 -
"Concept". For Approach 2, results are analysed by plotting the score similarities
calculated by similarity algorithms on an x and y-axis. An overall test similarity is
plotted on an x-axis, and failure similarity is plotted on a y-axis. Plotting these values
would form three distinct groups where each group represents categories described in
the Concept section.

The best performing algorithm in Approach 2 is chosen by answering the following
questions:

• Question 1 (Q1) - Are the three categories identifiable?

• Question 2 (Q2) - Does the equation 5.1 hold, e.g., are the categories in the
correct order?

• Question 3 (Q3) - What is the mean distance between the centre of each category?

For Q1, if the categories are easily identifiable and can be grouped without any
doubt, it is considered positive. For Q2, if the algorithm scored the groups in an order

29

30 Chapter 7. Quantified results of three approaches

specified in equation 5.2, it is considered positive. For question 3, the higher the mean
distance between clusters, the better it is. Higher distance means that the clusters are
further apart in a significant matter.

For Approach 3, results are analysed by plotting the score similarities calculated
by similarity algorithms on an x and y-axis. It is established that each .xml file contains
only one failure in one of the test cases. It has also been established that Arr.2 has
permutations of two individual tests. With these assumptions, the plot will show scores
for each of the logs with each other. The ball’s size denotes the failure similarity’s high,
and the ball’s colour denotes the category.

The best performing algorithm in Approach 3 is chosen by answering the following
questions:

• Question 1 (Q1) - Does the equation 5.2 hold, e.g., are the categories in the
correct order?

• Question 2 (Q2) - What is the mean range between categories 1 and 3?

For Q1, if the algorithm scored the groups in an order specified equation 5.2, it
is considered positive in this work for an algorithm in question. For Q2, the bigger
the range is between categories one and three, the further apart the categories are,
meaning fewer mistakes to confuse the categories.

Unfortunately, Approach 1 did not reach the same stage of the validation phase
of applying the string similarity algorithms as did Approach 2 and 3. The reason for
this will become apparent in the following sub-section.

7.1 Approach 1: Log parsing algorithm approach

Results presented in the survey research paper required manual labelling of the data in
the event templates to measure the parsing accuracy of Drain and Spell. Labelling was
achieved with the help of people with domain knowledge of the systems that produced
the logs. Unfortunately, it was impossible with the data sets described as the sheer
volume of the test logs and the diversity between individual lines was great. With this
in mind, an alternative way to evaluate parsing accuracy was devised for the data sets
in question.

Manual analysis is done before applying Drain and Spell to the data sets men-
tioned earlier. The manual analysis aimed to provide insight into the logs to understand
better what kind of event templates are expected. Manual analysis was achieved by
sifting through the logs by hand. Manual analysis revealed that most of the lines in
the test logs have variables, meaning that each parsed string using test log parsing

7.2. Approach 2: Manual parsing algorithm approach 31

algorithms should contain extracted variables. Due to IPRs, this thesis cannot show
exact log line message lines.

With that in mind, the two following metrics evaluated the results of log parsing
algorithms. In the first metric, % of log lines without any extracted variables, a higher
percentage means a poor performance of the log parsing algorithm on the data set.
Second, the number of event templates higher count of event templates indicates a
worse performance of the log parsing algorithm on the data set.

Table 7.1 shows these results for both Drain and Spell algorithms on the data
set.

Table 7.1: Drain and Spell log parsing results

Algorithm % of templates without variables Event template count
Drain 36% 1525
Spell 26% 290

Spell produced significantly fewer event templates than the Drain. It still left
a lot to be desired in terms of log parsing. While both Drain and Spell correctly
extracted other features from the log lines, such as a date timestamp and debugging
level, both algorithms struggled with complex log messages. Complex messages were
long, contained various special characters like ":", "&", "-", "_" and sometimes utilised
the camel-case way of writing the name of the function. These types of messages proved
challenging to parse for both Drain and Spell. The results observed are in line with
results presented in the survey [88]. Additionally, both Drain and Spell algorithms
extracted test names that were not the names of the tests but rather something else.
Most of the test names that these log parsing algorithms parsed were valid; nonetheless,
10% of all the tests were something other than the test name on one of the test logs. The
amount of uncertainty was not acceptable for a TFA. Because of the results presented
here, it was decided to drop experimentation on Approach 1 and focus instead on other
approaches.

7.2 Approach 2: Manual parsing algorithm ap-
proach

In this section, the results of Approach 2 are presented.

32 Chapter 7. Quantified results of three approaches

7.2.1 Data set 1 results

Results of applying string similarity algorithms on data set 1 with Approach 2 are
depicted in Figure 7.1.

Sequence Matcher algorithm

• Q1 - No. While Category 1 is separate from Category 2 and Category 3, Category
2 and Category 3 present instances that can be mistaken for another category.

• Q2 - No. Category 2 is below category 3 in scores, meaning equation 5.1 does
not hold.

• Q3 - Mean distance between categories is at 0.5272.

Cosine Similarity algorithm

• Q1 - Yes. Three distinct categories are observed.

• Q2 - No. Category 2 is below category 3 in scores, meaning equation 5.1 does
not hold.

• Q3 - Mean distance between categories is at 0.5260.

Jaccard Index algorithm

• Q1 - No. Categories 1 and 2 are mixed up.

• Q2 - No. Category 3 overlaps with categories one and two and is scored at the
same level as category one and two instances. Equation 5.1 does not hold.

• Q3 - Mean distance between categories is 0.0807

Jaro-Winkler distance algorithm

• Q1 - Yes. Three distinct categories are easily observed, with one instance of
category 3 getting very close to the category 1 cluster.

• Q2 - No. Category 3 instances score above category two, meaning that the
equation 5.1 does not hold.

• Q3 - Mean distance between categories is at 0.1433.

7.2. Approach 2: Manual parsing algorithm approach 33

Levenshtein distance algorithm

• Q1 - Yes. Three distinct categories can be observed

• Q2 - No. Category 2 is below category 3 in scores, meaning that equation 5.1
does not hold.

• Q3 - Mean distance between categories is at 0.3606.

7.2.2 Data set 2 results

Results of applying string similarity algorithms on data set 2 with Approach 2 are
depicted in Figure 7.2.

Sequence Matcher algorithm

• Q1 - Yes. Three distinct categories can be observed.

• Q2 - Yes. While there is no overlap between categories, the instance is quite
spread out, which might lead to difficulty in identifying groups without labels.
Equation 5.1 holds.

• Q3 - Mean distance between categories is at 0.3761.

Cosine Similarity algorithm

• Q1 - Yes. Three distinct categories are observed.

• Q2 - Yes. Categories are in the correct order, and equation 5.1 holds.

• Q3 - Mean distance between categories is at 0.1135.

Jaccard Index algorithm

• Q1 - No. Some instances of category three overlap with category one, making
category three very difficult to group.

• Q2 - No. Category 3 overlaps with category 2.

• Q3 - Mean distance between categories is at 0.0833.

34 Chapter 7. Quantified results of three approaches

Jaro-Winkler distance algorithm

• Q1 - No. Three distinct categories are easily observed.

• Q2 - No. Categories are in the wrong order, and equation 5.1 does not hold.
Category 1 overlaps with category two, and category 2 overlaps with category
three on the x-axis.

• Q3 - Mean distance between categories is at 0.1051.

Levenshtein algorithm

• Q1 - Yes. Three distinct categories can be observed

• Q2 - Yes. Categories are in the correct order, and equation 5.1 holds. Some
instances of category one overlap with category two on the x-axis

• Q3 - Mean distance between categories is at 0.2014.

7.2.3 Data set 3 results

Results of applying string similarity algorithms on the data set 3 with Approach 2 are
depicted in the Figure 7.3.

Sequence Matcher algorithm

• Q1 - No, it is challenging to differentiate categories 1 and 2.

• Q2 - Yes, categories do not overlap and are incorrect order. Equation 5.1 holds.

• Q3 - Mean distance between categories is at 0.8271

Cosine Similarity algorithm

• Q1 - Yes, while categories one and two are close, they form clear enough clusters.

• Q2 - Yes, categories do not overlap and are incorrect order. Equation 5.1 holds.

• Q3 - Mean distance between categories is at 0.4057.

Jaccard Index algorithm

• Q1 - Yes. The categories are identifiable.

• Q2 - Yes, categories do not overlap with each other and are incorrect order.
Equation 5.1 holds.

7.3. Approach 3: XML logs from Pytest framework approach 35

• Q3 - Mean distance between categories is at 0.0658.

Jaro-Winkler distance algorithm

• Q1 - Yes. The categories are identifiable.

• Q2 - Yes, categories do not overlap and are incorrect order. Equation 5.1 holds.

• Q3 - Mean distance between categories is at 0.1991.

Levenshtein algorithm

• Q1 - Yes. The categories are identifiable.

• Q2 - Yes, categories do not overlap and are incorrect order. Equation 5.1 holds.

• Q3 - Mean distance between categories is at 0.5563.

7.3 Approach 3: XML logs from Pytest framework
approach

In this section, the results of Approach 3 are presented.

7.3.1 Data set 1 results

Results of applying string similarity algorithms on the data set 1 with Approach 3 are
depicted in the Figure 7.4.

Sequence Matcher algorithm

• Q1 - No. Some instances of category 3 comparison (between
fail_diff_error_1.xml" and fail_same_error.XML files) have a higher sim-
ilarity score than category 2 scores. Equation 5.2 does not hold.

• Q2 - Mean range between categories one and three is 0.51.

Cosine Similarity algorithm

• Q1 - Yes. All groups are in the correct order. Equation 5.2 holds.

• Q2 - Mean range between categories one and three is 0.24.

36 Chapter 7. Quantified results of three approaches

Jaccard Index algorithm

• Q1 - No, category 3 overtakes category 2 in all cases. Equation 5.2 does not hold.

• Q2 - Mean range between categories one and three is 0.133.

Jaro-Winkler distance algorithm

• Q1 - No. Some instances of category 3 have a higher similarity score than category
two instances. Equation 5.2 does not hold.

• Q2 - Mean range between categories one and three is 0.13.

Levenshtein algorithm

• Q1 - No. Category three instances have a higher similarity score than category
two instances. Equation 5.2 does not hold.

• Q2 - Mean range between categories one and three similarity

7.3.2 Data set 2 results

Results of applying string similarity algorithms on data set 1 with Approach 3 are
depicted in Figure 7.5.

Sequence Matcher algorithm

• Q1 - Yes, categories are in the correct and equation 5.2 holds.

• Q2 - Mean range between categories one and three is 0.48.

Cosine Similarity algorithm

• Q1 - Yes. Equation 5.2 holds.

• Q2 - Mean range between categories one and three is 0.31.

Jaccard Index algorithm

• Q1 - No. Some instances of category three have the same similarity score as
category two instances. Equation 5.2 does not hold.

• Q2 - Mean range between categories one and three is 0.12.

7.3. Approach 3: XML logs from Pytest framework approach 37

Jaro-Winkler distance algorithm

• Q1 - Yes. The categories’ similarity score is in order, and equation 5.2 holds.

• Q2 - Mean range between categories one and three is 0.145.

Levenshtein algorithm

• Q1 - Yes. Equation 5.2 holds.

• Q2 - Mean range between categories one and three is 0.295.

7.3.3 Data set 3 results

Results of applying string similarity algorithms on the data set 1 with Approach 3 are
depicted in the Figure 7.6.

Sequence Matcher algorithm

• Q1 - Yes. Equation 5.2 holds.

• Q2 - Mean range between categories one and three is 0.876.

Cosine Similarity algorithm

• Q1 - Yes. Equation 5.2 holds.

• Q2 - Mean range between categories one and three is 0.52.

Jaccard Index algorithm

• Q1 - Yes. Equation 5.2 holds.

• Q2 - Mean range between categories one and three is 0.145.

Jaro-Winkler distance algorithm

• Q1 - Yes. Equation 5.2 holds.

• Q2 - Mean range between categories one and three is 0.274.

Levenshtein algorithm

• Q1 - Yes. Equation 5.2 holds.

• Q2 - Mean range between categories one and three is 0.652.

38 Chapter 7. Quantified results of three approaches

Figure 7.1: Approach 2. Data set 1. Algorithms from top to bottom: Sequence Matcher, cosine
similarity, Jaccard Index, Jaro-Winkler distance, Levenshtein ratio.

7.3. Approach 3: XML logs from Pytest framework approach 39

Figure 7.2: Approach 2. Data set 2. Algorithms from top to bottom: Sequence Matcher, cosine
similarity, Jaccard Index, Jaro-Winkler distance, Levenshtein ratio

40 Chapter 7. Quantified results of three approaches

Figure 7.3: Approach 2. Data set 3. Algorithms from top to bottom: Sequence Matcher, cosine
similarity, Jaccard Index, Jaro-Winkler distance, Levenshtein ratio.

7.3. Approach 3: XML logs from Pytest framework approach 41

Figure 7.4: Approach 3. Data set 1. Algorithms from top to bottom: Sequence Matcher, cosine
similarity, Jaccard Index, Jaro-Winkler distance, Levenshtein ratio.

42 Chapter 7. Quantified results of three approaches

Figure 7.5: Approach 3. Data set 2. Algorithms from top to bottom: Sequence Matcher, cosine
similarity, Jaccard Index, Jaro-Winkler distance, Levenshtein ratio.

7.3. Approach 3: XML logs from Pytest framework approach 43

Figure 7.6: Approach 3. Data set 3. Algorithms from top to bottom: Sequence Matcher, cosine
similarity, Jaccard Index, Jaro-Winkler distance, Levenshtein ratio.

8. Results from applying the TFA
to an open-source project

This section contains the results of deploying the tool into an open-source project. The
validation phase relied heavily on manual labelling of the log files in order to measure
success with the three approaches. Unlike with the validation data sets, labelling is
impossible with the real log data seen in the open-source project. Because of the lack
of labels, results from the open-source projects are evaluated based on the estimated
time saved by the software engineers and their feedback provided during the process.

The open-source project in question is the Robot Framework Browser library
[19]. TFA was integrated into the Robot Frameworks Browser Libraries CI pipeline.
After each commit, automated tests are run, and after the tests, TFA is executed.
Browser library produces 200 to 300 log files per run. TFA analyses each failure in the
previous run tests and presents the results as depicted in Figure 6.2. The results from
an exemplary run can be found in the GitHub Action section of the project under the
"Failure Analysis" drop-down menu [12]. TFA does not redact any information, nor
does the output suffer in quality if compared to the information available if a software
engineer would analyse the logs by hand. TFA produces clusters of similarly found
failures. From here, a software engineer uses the information presented to evaluate
which failures fail because of the potentially same root cause. According to the software
engineers, these clusters have great value as they save much time in the daily tasks
for a software engineer. For example, a task of downloading, opening and finding a
failure in one of the logs takes 5 minutes for a software engineer. The software engineer
never evaluates 200 files from one run but randomly picks 10 log files. A software
engineer might evaluate all the then-selected files or select only a few depending on the
information.

Table 8.1 shows the results of the time needed to analyse the different amounts of
log files. Column "# of log files" denotes the number of files to analyse. The "By hand"
column tells the time needed for a software engineer to download, open and analyse the
failure by hand. The "TFA" column tells the time it takes for a TFA to analyse, score
and present the output to a software engineer. "% change" is the percentage change

45

46Chapter 8. Results from applying the TFA to an open-source project

Table 8.1: Results on how much time it takes to analyse the different amount of logs by hand versus
by TFA.

of log files By hand TFA % change
10 50 min <10 sec 99.5%
267 22.5 hours 45 sec 99.96%

between values in the "By hand" and "TFA" columns for the selected amount of log
files.

9. Discussion

This chapter discusses the approaches taken in this master’s thesis and presents
thoughts on them. Using the results from chapters "Quantified results of three ap-
proaches" and "Results from applying the TFA to an open-source project", this chapter
contains answers to the research questions presented in the "Introduction" chapter. In
addition, some findings and topics still left unmentioned in the previous chapter of "Re-
sults from applying the TFA to an open-source project" are highlighted here regarding
the topics of integration of TFA into the Browser library project.

Tables 9.1 and 9.2 summarise the results described in the previous section. Tables
can be read in the following manner:

• The X-axis denotes all five different algorithms.

• The left side denotes which questions the cell and row belong to.

• The right side denotes which data set the cell and row belong to

With the first approach, log parsing algorithms work great on simple data test
logs that tend to repeat similar types of patterns in themselves. With the increase
of complexity in the test logs, log parsing algorithms show their weakness. The log
parsing algorithms do not appropriately extract event templates that are clear for a
human. As much as 10% of the event templates contained wrong test names. Log event
template extraction gets even more challenging with introducing special characters.

Clear logging standards would improve the parsing accuracy of the log parsing
algorithms. Software companies can enforce strict logging practices, reducing the logs’
complexity. Unfortunately, enforcing logging practices is not common among software
companies.

Another shortcoming of the first approach is that validating the efficiency of the
log parsing algorithms on custom log data is difficult. Log parsing algorithms lack
built-in methods of validation. The lack of such methods leads to the implementa-
tion of custom validation metrics that usually require manual labelling of the test log
data. Labelling can be difficult or impossible in some cases. Labelling requires domain
knowledge, and taking a good sample of logs can be challenging. Labelling also falls

47

48 Chapter 9. Discussion

Table 9.1: Summary of results for Approach 2

SM ratio Cosine Jaccard Jaro-Winkler Levenshtein
Q1 No Yes No Yes Yes DS1
Q2 No No No No No DS1
Q3 0.5272 0.5260 0.0807 0.1433 0.3606 DS1
Q1 Yes Yes No No Yes DS2
Q2 Yes Yes No No Yes DS2
Q3 0.5772 0.5260 0.083 0.1051 0.2014 DS2
Q1 No Yes Yes Yes Yes DS3
Q2 Yes Yes Yes Yes Yes DS3
Q3 0.8271 0.4057 0.0658 0.1991 0.5563 DS3

Table 9.2: Summary of results for Approach 3

SM ratio Cosine Jaccard Jaro-Winkler Levenshtein
Q1 No No No No No DS1
Q2 0.51 0.24 0.133 0.13 0.2 DS1
Q1 Yes Yes No Yes Yes DS2
Q2 0.48 0.31 0.12 0.145 0.295 DS2
Q1 Yes Yes Yes Yes Yes DS3
Q2 0.87 0.52 0.14 0.27 0.65 DS3

49

short when the system in development gets new updates. New updates to the software
lead to system logs and test logs evolving, requiring a new round of log labelling.

Because of the reasons mentioned earlier, it was decided not to pursue Approach
1. Instead, the focus shifted toward Approach 2.

The second approach showed promise. Three out of five algorithms formed three
distinct groups in the first-tested data set that contained very similar failures, with the
equation 5.1 not holding for any of the algorithms. The best performing algorithms
were sequence matcher, cosine similarity and Levenshtein ratio. All three of them
had the most considerable mean distance between the groups. Unfortunately, only
Levenshtein and cosine answered yes to the first question.

The second data had failures that differed significantly from each other. With
clear enough failures in the second data set, categories align correctly, and thus equation
5.1 holds. Similarly to the first data set, the best performing algorithms were the cosine
similarity and the Levenshtein index, which displayed a significant average distance
between the groups.

The third data set had more complex failures between categories two and three.
The expectation is that the distance between categories one and two should be smaller
and that the distance between categories two and three should be considerable. As per
expectation, four out of the five algorithms showed precisely this. Categories one and
two are very close to each other, and category three was a substantial distance away
from both of them. As with the first and second data sets, Levenshtein and cosine
similarity algorithms were the best-performing ones. They had clear groups displayed
and showed an excellent mean distance between them. Additionally, all algorithms
answered "Yes" to the second question. The second approach proves that it can be
reliable to cluster complex failures instead of just simple ones in the second data set.

The best performing algorithm across all three data sets for Approach 2 was
cosine similarity. While the Levenshtein distance came very close to producing the
same results, it showed less distance between clusters in some cases.

During the review phase of Approach 2, it was noticed that not all the individual
test cases in the Pytest testing framework start with the "setup" keyword and end with
the "teardown". Software engineers can sometimes construct test suites to run multiple
test cases simultaneously. This can have an appearance of multiple consecutive "setup"
keywords appearing in the test logs without the "teardown" keyword in between. Test
suite construction is very dependent on the software engineer working on it and is very
contextual to the needs of the project or software under testing. The second approach
heavily relies on the "setup" and "teardown" keywords to form an accurate structure
of the tests and break down the test suites into individual test cases during the log
preprocessing step for comparison and scoring. The mix-up caused by consecutive

50 Chapter 9. Discussion

keywords in the test logs can lead to poor parsing, false test case extraction, and
inaccurate data.

Improving the preprocessing step by developing a better way to parse and extract
individual test cases from the test suites relies on patterns. Identifying patterns by
which the keywords appear seems impossible, and even if it can be done, it would only
apply to this test suite. Changing the test suite by adding a new test case or removing
such would require another look at the pattern and alterations to the parsing.

The reasons described above were the biggest shortcoming of the second approach.
While non-existent for the data sets presented in this work, these problems cannot be
ignored as they can lead to unreliable results. Because of this, Approach 2 was dropped
at this point, and the focus shifted to Approach 3.

The third approach relied on XML files, another form of test logs and is a prod-
uct of the Pytest testing framework. The approach aimed to reduce the need for an
additional layer of parsing that exposes the tool to complications similar to the ones
encountered in the second approach.

The first data set behaved in the same manner as the second approach. Across all
the algorithms, categories two and three were in the wrong order. As with the second
approach, too similar of a failure can confuse the tool also with this approach. The
best performing algorithms were cosine similarity and Levenshtein.

With the second data set, only the Jaccard index did not place categories in
the correct order. This only happened because the similarity score of category three
test logs scored the same as in category two. The best performing algorithms were
sequence matcher ratio, cosine similarity and Levenshtein. All three categories had a
good range between categories, meaning that there is a reasonable distance between
failures, allowing some room for error between the failures.

The third data set had complex failures. All the algorithms scored the categories
in the correct order, meaning that Equation 5.2 holds for all the algorithms. Sequence
Matcher showed the biggest range among all the algorithms. Due to this, Sequence
Matcher performed the best.

While reviewing the results, no apparent shortcomings were observed with Ap-
proach 3 on the data sets available for validation; additionally, the results were satisfac-
tory. Both Levensthein ratio and cosine similarity performed well across the three data
sets. However, cosine similarity had a higher range between the similarity scores of
failure; cosine similarity was picked over as the best-performing algorithm for Approach
3.

Because of the significant shortcomings of Approach 1 and 2, it was decided to
implement Approach 3 into the open-sourced project with cosine similarity as the main
algorithm for scoring the failures.

51

Results of implementing TFA into a CI pipeline of an open-source project were
promising. During the evaluation phase of TFA, TFAs execution time has improved
drastically. Initially, TFA took up to 30 minutes to analyse 267 test logs. From there,
improvements have been made to the tool; these improvements included code optimi-
sation, removing unnecessary calculations, changing the approach from permutations
to combinations and introducing a threshold value. The threshold value filters out fail-
ures below a particular value, meaning the filtered-out failures were not similar. These
improvements reduced execution time from 30 minutes to one minute. Additionally,
support for another testing framework - Robot Framework, was added [22].

In the current state of implementation, the tool does much more than a software
engineer would do to analyse the failures. First, the tool evaluates all the files quickly
compared to the time it takes to do the same task manually. Secondly, it already
clusters the failures, which would require additional time for a software engineer.

The results described above are hard to compare with each other as a case where
a software engineer analyses all 267 log files would never happen. Instead, comparing
the amount of time it would take to analyse ten log files by hand versus TFA analysing
all the files available is more reasonable. Even with such a comparison, a change of
99.96% in time spent on analysing failures is significant. It is worth mentioning that
while TFAs run time is under a minute, a software engineer needs to analyse the output
produced by the TFA. While an experienced software engineer familiar with the project
can conclude the root cause in two to three minutes, someone with less experience with
the project might require more time. This time, of course, adds to the time needed to
conclude what to fix next.

Unfortunately, any additional metrics for evaluating TFA were not available.
Metrics like "how many failures got fixed after analysis of TFA" and "how many similar
failures get fixed as a byproduct of fixing the original failure" would have helped analyse
the tool.

Currently, there is an issue where some failures might be considered duplicates
even with a threshold value. Failures that the tool considers different but are the same
are caused by, for example, a timestamp or a transaction id. The problem can be
addressed using log parsing algorithms tried out in Approach 1 by extracting the pa-
rameters such as a date and time stamp before comparison. The approach of extracting
the parameters of the failure message before applying the string similarity algorithm
could be highly successful as the log messages are not complex.

Nonetheless, after consulting with the software engineers at WithSecure, TFA has
been deemed valuable and time-saving, and there are plans to implement it in in-house
projects of WithSecure.

52 Chapter 9. Discussion

9.0.1 Answer to RQ1 - To what extent is the concept, in the
form of the software tool, applicable to address the log
analysing challenges?

The concept implemented in the form of the software tool is applicable to address the
log analysing challenges to a great extent. The concept of utilising string similarity
algorithms on the failures found within the test logs to produce clusters of failures that
guide the engineers into selecting impactful failures for fixing - works.

Out of the three approaches, the best approach was Approach 3, even though
results from Approach 2 were promising. The results chapter showed that the validation
phase was most successful using the cosine similarity algorithm across all three data
sets. The tool can differentiate between regular failures in the logs and complex stack
traces. While the tool had trouble categorising the almost identical failures, it still
provided clear value by clustering them.

9.0.2 Answer to RQ2 - How does the concept, in the form
of the software tool, improve the performance of log
analyses?

The implemented concept in the form of the software tool improves the performance
of log analyses significantly. With the integration of TFA into the Robot Frameworks
Browser library CI pipeline and the results reported in the previous chapter, it is
clear that the concept saves time in a software engineer’s daily work. The current
implementation of the TFA can save up to 99.5% of time used for failure analysis and
possibly more if the amount of logs increases.

10. Conclusions

This work comes up with the concept of grouping failures within test logs using string
similarity algorithms. The developed concept tries to combat the problem of the grow-
ing amounts of test logs produced by CI pipelines that run automated tests. The
concept has been validated by implementing the Test Failure Analysis tool. A pip
package that is open-sourced and available for further improvement. The tool assists
software developers who currently have to analyse the failures manually. TFA provides
a fast and reliable way to find a similar group of failures with the test log produced
from the tests run in the CI pipeline. The groups aim to provide insight to software
engineers by highlighting failures which fail similarly by scoring the failure stack traces
with the cosine similarity algorithm. With this information, a software engineer can
prioritise fixing the failures that have more impact on software quality.

During the work, analyses have been performed on related work. Related work
topics include log clustering, log analysis, test log analysis and data transformation.
These topics are essential for this master’s thesis because they are closely tied together.
Almost all the log analysis approaches try to answer the question of data transforma-
tion. These approaches that turn unstructured log formats into structured data formats
vary. Some use mathematical models, machine learning, novel log parsing algorithms,
and an enhanced version of existing algorithms. It has been deemed that none of the
reviewed research papers tries to tackle test log analysis in the same way as the TFA.

TFA has the implementation of three different approaches. Each of the ap-
proaches tried to solve data transformation uniquely. Each approach was validated
on the three different data sets with unique traits. Results from each approach were
evaluated based on the three questions involving the categories into which the failures
should fall.

Results have shown that while novel log parsing algorithms such as Drain and
Spell are exciting and can have high parsing accuracy on simple log messages, they
struggle with complex log messages (Approach 1). Manual parsing of log files provided
by the Pytest framework proved challenging and required custom parsing for each test
suit setup and was abandoned because of that reason (Approach 2). The best approach
was to utilise .xml files provided by the Pytest framework (Approach 3).

53

54 Chapter 10. Conclusions

In addition, the results have shown that the best-performing algorithm was cosine
similarity. Cosine similarity has scored the failures within the validation data set
in the order specified while having the highest range between clusters and failures.
Unfortunately, like all other algorithms, cosine similarity has failed to differentiate
identical failures. Nonetheless, the clusters created out of scoring the failures were
helpful even with the wrong order of the categories.

Based on the results best algorithm and approach have been picked. With Ap-
proach 3 and cosine similarity, TFA was deployed to the Robot frameworks Browser
library projects CI pipeline. Results from this experiment have not reached the level
of quality as those from the validation phase. Nonetheless, the software engineers at
WithSecure have highly appreciated the tool. TFA has boosted performance by almost
99.5% of the time that went into analysing failures by hand. Further development of
the TFA is to introduce the log parsing algorithms trialled in Approach 1 (Drain and
Spell) to reduce the issues presented. WithSecure has reported plans to implement
TFA into in-house projects for further use. TFA has also been released as an open-
source project allowing researchers and developers to augment the tool to their needs
further.

Research questions are answered based on the results from the validation phase
and the deployment of the TFA into the open-source project. Based on the results, the
answer to both questions is positive and even very promising. Both the concept and
the tool implementing the concept are not only applicable to address the log analysing
challenges but significantly improve the performance of test log analyses. That is
expected to save time from the daily work of software engineers and therefore develop
more efficient software engineering processes to improve the data analytics performance
in general.

Bibliography

[1] Alibaba.com: Manufacturers, Suppliers, Exporters & Importers from the world’s
largest online B2B marketplace. https://www.alibaba.com/, Accessed on 12th
March 2022.

[2] AliMail Personal Edition. https://mail.aliyun.com/alimail/auth/login, Ac-
cessed on 12th March 2022.

[3] Apache Hadoop. https://hadoop.apache.org/, Accessed on 27th April 2022.

[4] Automated software testing for continuous delivery. https://www.atlassian.
com/continuous-delivery/software-testing/automated-testing, Accessed
on 14th September 2022.

[5] Big Data and Business Analytics Market Size, Share | 2030. https://www.
alliedmarketresearch.com/big-data-and-business-analytics-market#:
~:text=The%20global%20big%20data%20and,13.5%25%20from%202021%20to%
202030, Accessed on 19th June 2022.

[6] Business Software And Services Market Report, 2030.
https://www.grandviewresearch.com/industry-analysis/
business-software-services-market, Accessed on 19th June 2022.

[7] Compound Annual Growth Rate (CAGR) Formula and Calculation. https://
www.investopedia.com/terms/c/cagr.asp, Accessed on 25th September 2022.

[8] Continuous Integration. https://martinfowler.com/articles/
continuousIntegration.html, Accessed on 27th February 2022.

[9] difflib Helpers for computing deltas Python 3.10.4 documentation. https://
docs.python.org/3/library/difflib.html, Accessed on 14th May 2022.

[10] F-Secure/failures-analysis: Groupping automatically similar failures in the CI/CD
pipeline. https://github.com/F-Secure/failures-analysis, Accessed on 2nd
June 2022.

55

https://www.alibaba.com/
https://mail.aliyun.com/alimail/auth/login
https://hadoop.apache.org/
https://www.atlassian.com/continuous-delivery/software-testing/automated-testing
https://www.atlassian.com/continuous-delivery/software-testing/automated-testing
https://www.alliedmarketresearch.com/big-data-and-business-analytics-market#:~:text=The%20global%20big%20data%20and,13.5%25%20from%202021%20to%202030
https://www.alliedmarketresearch.com/big-data-and-business-analytics-market#:~:text=The%20global%20big%20data%20and,13.5%25%20from%202021%20to%202030
https://www.alliedmarketresearch.com/big-data-and-business-analytics-market#:~:text=The%20global%20big%20data%20and,13.5%25%20from%202021%20to%202030
https://www.alliedmarketresearch.com/big-data-and-business-analytics-market#:~:text=The%20global%20big%20data%20and,13.5%25%20from%202021%20to%202030
https://www.grandviewresearch.com/industry-analysis/business-software-services-market
https://www.grandviewresearch.com/industry-analysis/business-software-services-market
https://www.investopedia.com/terms/c/cagr.asp
https://www.investopedia.com/terms/c/cagr.asp
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://docs.python.org/3/library/difflib.html
https://docs.python.org/3/library/difflib.html
https://github.com/F-Secure/failures-analysis

56 Bibliography

[11] failures-analysis PyPI. https://pypi.org/project/failures-analysis/, Ac-
cessed on 2nd June 2022.

[12] Failures analysis · MarketSquare/robotframework-browser@60890f1.
https://github.com/MarketSquare/robotframework-browser/runs/
6932823910?check_suite_focus=true, Accessed on 17th June 2022.

[13] Features GitHub Actions. https://github.com/features/actions/, Accessed
on 5th September 2022.

[14] Home - Ivves. https://ivves.eu/, Accessed on 6th June 2022.

[15] Home | WithSecureâ¢. https://www.withsecure.com/en/home, Accessed on 9th
May 2022.

[16] itertools Functions creating iterators for efficient looping â Python 3.10.3 doc-
umentation. https://docs.python.org/3/library/itertools.html, Accessed
on 24th March 2022.

[17] Jenkins. https://www.jenkins.io/, Accessed on 5th September 2022.

[18] Logparserâs Documentation logparser 0.1 documentation. https://logparser.
readthedocs.io/en/latest/README.html, Accessed on 13th March 2022.

[19] Marketsquare/robotframeworkbrowser: Robot framework browser library powered
by playwright. https://github.com/MarketSquare/robotframework-browser,
Accessed on 6th June 2020.

[20] pytest: helps you write better programs pytest documentation. https://docs.
pytest.org/en/7.1.x/, Accessed on 12th May 2022.

[21] Python Package Health Analysis. https://snyk.io/advisor/python/pytest#
popularity, Accessed on 28th March 2022.

[22] Robot Framework. https://robotframework.org/, Accessed on 17th June 2022.

[23] SLCT logparser 0.1 documentation. https://logparser.readthedocs.io/en/
latest/tools/SLCT.html, Accessed on 14th June 2022.

[24] Test Automation Frameworks | SmartBear. https://smartbear.com/learn/
automated-testing/test-automation-frameworks/, Accessed on 14th Septem-
ber 2022.

https://pypi.org/project/failures-analysis/
https://github.com/MarketSquare/robotframework-browser/runs/6932823910?check_suite_focus=true
https://github.com/MarketSquare/robotframework-browser/runs/6932823910?check_suite_focus=true
https://github.com/features/actions/
https://ivves.eu/
https://www.withsecure.com/en/home
https://docs.python.org/3/library/itertools.html
https://www.jenkins.io/
https://logparser.readthedocs.io/en/latest/README.html
https://logparser.readthedocs.io/en/latest/README.html
https://github.com/MarketSquare/robotframework-browser
https://docs.pytest.org/en/7.1.x/
https://docs.pytest.org/en/7.1.x/
https://snyk.io/advisor/python/pytest#popularity
https://snyk.io/advisor/python/pytest#popularity
https://robotframework.org/
https://logparser.readthedocs.io/en/latest/tools/SLCT.html
https://logparser.readthedocs.io/en/latest/tools/SLCT.html
https://smartbear.com/learn/automated-testing/test-automation-frameworks/
https://smartbear.com/learn/automated-testing/test-automation-frameworks/

Bibliography 57

[25] Test log overview - IBM Documentation. https://www.ibm.com/docs/
en/rstfsq/10.0.0.0?topic=SSNKWF_10.0.0/com.ibm.rational.test.lt.
common.doc/topics/ttestlogoverview.html/, Accessed on 14th September
2022.

[26] Tools for Continuous Integration at Google Scale - YouTube. https://www.
youtube.com/watch?v=KH2_sB1A6lA, Accessed on 12th March 2022.

[27] Understanding Log Analytics at Scale. https://learning.oreilly.com/
library/view/understanding-log-analytics/9781492076254/, Accessed on
19th June 2022.

[28] What is Continuous Integration? Amazon Web Services. https://aws.amazon.
com/devops/continuous-integration/, Accessed on 14th May 2022.

[29] What is Log Analytics | Amazon Web Services. https://aws.amazon.com/
log-analytics/#:~:text=Log%20analytics%20involves%20searching%2C%
20analyzing,of%20rapidly%20proliferating%20machine%20data, Accessed
on 19th June 2022.

[30] F-Secure Q4 Financial Report 2020. 2020. https://www.f-secure.com/
content/dam/f-secure/en/investors/materials/interim-reports/2020/
f-secure-interim-report-q4-2020.pdf, Accessed on 25th September 2022.

[31] A. Amar and P. C. Rigby. Mining Historical Test Logs to Predict Bugs and
Localize Faults in the Test Logs. In Proceedings - International Conference on
Software Engineering, volume 2019-May, pages 140–151. IEEE Computer Society,
5 2019.

[32] W. Aoudi, M. Iturbe, and M. Almgren. Truth will out: Departure-based process-
level detection of stealthy attacks on control systems. In Proceedings of the ACM
Conference on Computer and Communications Security, pages 817–831. Associa-
tion for Computing Machinery, 10 2018.

[33] M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable string
similarity measures. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD ’03, page 39, New
York, New York, USA, 2003. ACM Press.

[34] B. Chen, J. Song, P. Xu, X. Hu, and Z. M. Jiang. An automated approach to
estimating code coverage measures via execution logs. In ASE 2018 - Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engi-
neering, pages 305–316. Association for Computing Machinery, Inc, 9 2018.

https://www.ibm.com/docs/en/rstfsq/10.0.0.0?topic=SSNKWF_10.0.0/com.ibm.rational.test.lt.common.doc/topics/ttestlogoverview.html/
https://www.ibm.com/docs/en/rstfsq/10.0.0.0?topic=SSNKWF_10.0.0/com.ibm.rational.test.lt.common.doc/topics/ttestlogoverview.html/
https://www.ibm.com/docs/en/rstfsq/10.0.0.0?topic=SSNKWF_10.0.0/com.ibm.rational.test.lt.common.doc/topics/ttestlogoverview.html/
https://www.youtube.com/watch?v=KH2_sB1A6lA
https://www.youtube.com/watch?v=KH2_sB1A6lA
https://learning.oreilly.com/library/view/understanding-log-analytics/9781492076254/
https://learning.oreilly.com/library/view/understanding-log-analytics/9781492076254/
https://aws.amazon.com/devops/continuous-integration/
https://aws.amazon.com/devops/continuous-integration/
https://aws.amazon.com/log-analytics/#:~:text=Log%20analytics%20involves%20searching%2C%20analyzing,of%20rapidly%20proliferating%20machine%20data
https://aws.amazon.com/log-analytics/#:~:text=Log%20analytics%20involves%20searching%2C%20analyzing,of%20rapidly%20proliferating%20machine%20data
https://aws.amazon.com/log-analytics/#:~:text=Log%20analytics%20involves%20searching%2C%20analyzing,of%20rapidly%20proliferating%20machine%20data
https://www.f-secure.com/content/dam/f-secure/en/investors/materials/interim-reports/2020/f-secure-interim-report-q4-2020.pdf
https://www.f-secure.com/content/dam/f-secure/en/investors/materials/interim-reports/2020/f-secure-interim-report-q4-2020.pdf
https://www.f-secure.com/content/dam/f-secure/en/investors/materials/interim-reports/2020/f-secure-interim-report-q4-2020.pdf

58 Bibliography

[35] W. W. Cohen, P. Ravikumar, and S. Fienberg. A Comparison of String Metrics
for Matching Names and Records. 2003.

[36] M. Du and F. Li. Spell: Online Streaming Parsing of Large Unstructured System
Logs. IEEE Transactions on Knowledge and Data Engineering, 31(11):2213–2227,
11 2019.

[37] M. Du, F. Li, G. Zheng, and V. Srikumar. DeepLog: Anomaly detection and diag-
nosis from system logs through deep learning. Proceedings of the ACM Conference
on Computer and Communications Security, pages 1285–1298, 2017.

[38] S. Elbaum, G. Rothermel, and J. Penix. Techniques for improving regression
testing in continuous integration development environments. In Proceedings of the
ACM SIGSOFT Symposium on the Foundations of Software Engineering, volume
16-21-November-2014, pages 235–245. Association for Computing Machinery, 11
2014.

[39] C. Feng, V. R. Palleti, A. Mathur, and D. Chana. A Systematic Framework to
Generate Invariants for Anomaly Detection in Industrial Control Systems. Internet
Society, 3 2019.

[40] Q. Fu, J.-G. Lou, Y. Wang, and J. Li. Execution Anomaly Detection in Distributed
Systems through Unstructured Log Analysis. In 2009 Ninth IEEE International
Conference on Data Mining, pages 149–158. IEEE, 12 2009.

[41] Q. Fu, J. Zhu, W. Hu, J. G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie. Where
do developers log? An empirical study on logging practices in industry. In 36th
International Conference on Software Engineering, ICSE Companion 2014 - Pro-
ceedings, pages 24–33. Association for Computing Machinery, 2014.

[42] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and A. Mueen. LogMine:
Fast pattern recognition for log analytics. International Conference on Informa-
tion and Knowledge Management, Proceedings, 24-28-Octo:1573–1582, 2016.

[43] J. Han, M. Kamber, and J. Pei. Getting to Know Your Data. In Data Mining,
pages 39–82. Elsevier, 2012.

[44] S. Han, Q. Wu, H. Zhang, B. Qin, J. Hu, X. Shi, L. Liu, and X. Yin. Log-Based
Anomaly Detection With Robust Feature Extraction and Online Learning. IEEE
Transactions on Information Forensics and Security, 16:2300–2311, 2021.

Bibliography 59

[45] P. He, J. Zhu, Z. Zheng, and M. R. Lyu. Drain: An Online Log Parsing Approach
with Fixed Depth Tree. In 2017 IEEE International Conference on Web Services
(ICWS), pages 33–40. IEEE, 6 2017.

[46] A. Hevner and S. Chatterjee. Design Research in Information Systems. 22, 2010.

[47] A. R. Hevner, S. T. March, J. Park, and S. Ram. DESIGN SCIENCE IN INFOR-
MATION SYSTEMS RESEARCH 1. Technical Report 1, 2004.

[48] IEEE Communications Society and Institute of Electrical and Electronics Engi-
neers. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.

[49] IEEE Computer Society. and IEEE Computer Society. Technical Council on Soft-
ware Engineering. Log-based testing. IEEE, 2012.

[50] A. Islam and D. Inkpen. Semantic Text Similarity Using Corpus-Based Word
Similarity and String Similarity. ACM Transactions on Knowledge Discovery from
Data, 2(2):1–25, 7 2008.

[51] P. Jaccard. THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE.1.
New Phytologist, 11(2):37–50, 2 1912.

[52] A. Juvonen, T. Sipola, and T. Hämäläinen. Online anomaly detection using di-
mensionality reduction techniques for HTTP log analysis. Computer Networks,
91:46–56, 11 2015.

[53] H. Kahlouche, C. Viho, and M. Zendri. An industrial experiment in automatic
generation of executable test suites for a cache coherency protocol. In Testing of
Communicating Systems, pages 211–226. Springer US, Boston, MA, 1998.

[54] S. Kobayashi, K. Otomo, K. Fukuda, and H. Esaki. Mining Causality of Network
Events in Log Data. IEEE Transactions on Network and Service Management,
15(1):53–67, 2018.

[55] E. Kowalczyk, K. Nair, Z. Gao, L. Silberstein, T. Long, and A. Memon. Model-
ing and ranking flaky tests at apple. Proceedings - International Conference on
Software Engineering, pages 110–119, 2020.

[56] V. T. Kramar, J. K. Nurminen, and T. Aalto. Grouping Pytest Logs with the Same
Root Cause Using String Similarity Algorithms for Easier Debugging. Technical
report, 2022.

60 Bibliography

[57] A. R. Lahitani, A. E. Permanasari, and N. A. Setiawan. Cosine similarity to deter-
mine similarity measure: Study case in online essay assessment. In Proceedings of
2016 4th International Conference on Cyber and IT Service Management, CITSM
2016. Institute of Electrical and Electronics Engineers Inc., 9 2016.

[58] V. I. Levenshtein and others. Binary codes capable of correcting deletions, inser-
tions, and reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

[59] T. Li, Y. Jiang, C. Zeng, B. Xia, Z. Liu, W. Zhou, X. Zhu, W. Wang, L. Zhang,
J. Wu, L. Xue, and D. Bao. FLAP: An end-to-end event log analysis platform
for system management. In Proceedings of the ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, volume Part F129685, pages
1547–1556. Association for Computing Machinery, 8 2017.

[60] M. H. Lim, J. G. Lou, H. Zhang, Q. Fu, A. B. J. Teoh, Q. Lin, R. Ding,
and D. Zhang. Identifying Recurrent and Unknown Performance Issues.
Proceedings - IEEE International Conference on Data Mining, ICDM, 2015-
Janua(January):320–329, 2014.

[61] Q. Lin, H. Zhang, J. G. Lou, Y. Zhang, and X. Chen. Log clustering based problem
identification for online service systems. Proceedings - International Conference
on Software Engineering, pages 102–111, 2016.

[62] A. Makanju, A. Nur Zincir-Heywood, and E. E. Milios. Clustering Event Logs
Using Iterative Partitioning. Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD ’09, 2009.

[63] A. Memon, Zebao Gao, Bao Nguyen, S. Dhanda, E. Nickell, R. Siemborski, and
J. Micco. Taming Google-scale continuous testing. In 2017 IEEE/ACM 39th In-
ternational Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP), pages 233–242. IEEE, 5 2017.

[64] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang, S. Tao,
P. Sun, and R. Zhou. LogAnomaly: Unsupervised Detection of Sequential and
Quantitative Anomalies in Unstructured Logs. Technical report, 2019.

[65] S. Messaoudi, A. Panichella, D. Bianculli, L. Briand, and R. Sasnauskas. A search-
based approach for accurate identification of log message formats. In Proceedings
- International Conference on Software Engineering, pages 167–177. IEEE Com-
puter Society, 5 2018.

Bibliography 61

[66] S. Messaoudi, D. Shin, A. Panichella, D. Bianculli, and L. C. Briand. Log-based
slicing for system-level test cases. In ISSTA 2021 - Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pages 517–
528. Association for Computing Machinery, Inc, 7 2021.

[67] H. Mi, H. Wang, Y. Zhou, M. R. T. Lyu, and H. Cai. Toward fine-grained, unsu-
pervised, scalable performance diagnosis for production cloud computing systems.
IEEE Transactions on Parallel and Distributed Systems, 24(6):1245–1255, 2013.

[68] J. Micco. The State of Continuous Integration Testing @Google. Technical report.

[69] M. Mizutani. Incremental Mining of System Log Format. In 2013 IEEE Interna-
tional Conference on Services Computing, pages 595–602. IEEE, 6 2013.

[70] M. Nagappan and M. A. Vouk. Abstracting log lines to log event types for min-
ing software system logs. In Proceedings - International Conference on Software
Engineering, pages 114–117, 2010.

[71] K. Nagaraj, C. Killian, and J. Neville. Structured Comparative Analysis of Sys-
tems Logs to Diagnose Performance Problems. Technical report.

[72] C. S. C. S. Peirce, N. Houser, C. J. W. Kloesel, and Peirce Edition Project. The
essential Peirce : selected philosophical writings. 1992.

[73] T. Reidemeister, M. Jiang, and P. A. Ward. Mining unstructured log files for
recurrent fault diagnosis. In Proceedings of the 12th IFIP/IEEE International
Symposium on Integrated Network Management, IM 2011, pages 377–384, 2011.

[74] Y. Ren, Z. Gu, Z. Wang, Z. Tian, C. Liu, H. Lu, X. Du, and M. Guizani. System
Log Detection Model Based on Conformal Prediction. Electronics, 9(2):232, 1
2020.

[75] R. E. Rice and C. L. Borgman. The Use of Computer-Monitored Data in infor-
mation Science and Communication Research. Technical report, 1983.

[76] M. Shahin, M. Ali Babar, and L. Zhu. Continuous Integration, Delivery and De-
ployment: A Systematic Review on Approaches, Tools, Challenges and Practices,
2017.

[77] K. Shima. Length Matters: Clustering System Log Messages using Length of
Words. 11 2016.

62 Bibliography

[78] M. Soleimani, F. Campean, and D. Neagu. Integration of Hidden Markov Mod-
elling and Bayesian Network for fault detection and prediction of complex engi-
neered systems. Reliability Engineering and System Safety, 215, 11 2021.

[79] L. Tang, T. Li, and C. S. Perng. LogSig: Generating system events from raw tex-
tual logs. International Conference on Information and Knowledge Management,
Proceedings, (October 2011):785–794, 2011.

[80] A. Tosun, O. Turkgulu, D. Razon, H. Y. Aydemir, and A. Gureller. Predicting
defects using test execution logs in an industrial setting. In Proceedings - 2017
IEEE/ACM 39th International Conference on Software Engineering Companion,
ICSE-C 2017, pages 294–296. Institute of Electrical and Electronics Engineers
Inc., 6 2017.

[81] M. B. Uspenskij. Log mining and knowledgebased models in data storage systems
diagnostics. E3S Web of Conferences, 140:03006, 12 2019.

[82] R. Vaarandi. A data clustering algorithm for mining patterns from event logs. In
Proceedings of the 3rd IEEE Workshop on IP Operations and Management, IPOM
2003, pages 119–126. Institute of Electrical and Electronics Engineers Inc., 2003.

[83] R. Vaarandi and M. Pihelgas. Using security logs for collecting and reporting
technical security metrics. In Proceedings - IEEE Military Communications Con-
ference MILCOM, pages 294–299. Institute of Electrical and Electronics Engineers
Inc., 11 2014.

[84] R. Vaarandi and M. Pihelgas. LogCluster - A data clustering and pattern mining
algorithm for event logs. In Proceedings of the 11th International Conference on
Network and Service Management, CNSM 2015, pages 1–7. Institute of Electrical
and Electronics Engineers Inc., 12 2015.

[85] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan. Online system problem
detection by mining patterns of console logs. In Proceedings - IEEE International
Conference on Data Mining, ICDM, pages 588–597. IEEE, 12 2009.

[86] B. Zhang, H. Zhang, P. Moscato, and A. Zhang. Anomaly Detection via Mining
Numerical Workflow Relations from Logs. In Proceedings of the IEEE Symposium
on Reliable Distributed Systems, volume 2020-September, pages 195–204. IEEE
Computer Society, 9 2020.

[87] M. J. Zhen, A. E. Hassan, P. Flora, and G. Hamann. Abstracting execution
logs to execution events for enterprise applications. In Proceedings - International
Conference on Quality Software, pages 181–186, 2008.

Bibliography 63

[88] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu. Tools and
Benchmarks for Automated Log Parsing. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice (ICSE-
SEIP), pages 121–130. IEEE, 5 2019.

	Terms and terminology
	Introduction
	Methodology
	Related work
	Concept
	Data set description
	Type of failures
	Data transformation
	Type of clusters
	String similarity algorithms
	Summary

	Implementation
	Approach 1: Log parsing algorithms on Pytest frameworks test logs
	Approach 2: Manual log parsing of Pytest frameworks test logs
	Approach 3: The utilisation of XMLs files from the Pytest framework
	Outcome

	Quantified results of three approaches
	Approach 1: Log parsing algorithm approach
	 Approach 2: Manual parsing algorithm approach
	Data set 1 results
	Data set 2 results
	Data set 3 results

	Approach 3: XML logs from Pytest framework approach
	Data set 1 results
	Data set 2 results
	Data set 3 results

	Results from applying the TFA to an open-source project
	Discussion
	Answer to RQ1 - To what extent is the concept, in the form of the software tool, applicable to address the log analysing challenges?
	Answer to RQ2 - How does the concept, in the form of the software tool, improve the performance of log analyses?

	Conclusions
	Bibliography

